These are the new guides for Rails 4.0 based on v4.0.6. These guides are designed to make you immediately productive with Rails, and to help you understand how all of the pieces fit together.
The guides for Rails 3.2.x are available at http://guides.rubyonrails.org/v3.2.18/.
The guides for Rails 2.3.x are available at http://guides.rubyonrails.org/v2.3.11/.
We'd like to thank the following people for their tireless contributions to this project.
Vijayakumar, found as Vijay Dev on the web, is a web applications developer and an open source enthusiast who lives in Chennai, India. He started using Rails in 2009 and began actively contributing to Rails documentation in late 2010. He tweets a lot and also blogs.
Xavier Noria has been into Ruby on Rails since 2005. He is a Rails core team member and enjoys combining his passion for Rails and his past life as a proofreader of math textbooks. Xavier is currently an independent Ruby on Rails consultant. Oh, he also tweets and can be found everywhere as "fxn".
Jason Zimdars is an experienced creative director and web designer who has lead UI and UX design for numerous websites and web applications. You can see more of his design and writing at Thinkcage.com or follow him on Twitter.
Ryan Bigg works as the Community Manager at Spree Commerce and has been working with Rails since 2006. He's the author of Multi Tenancy With Rails and co-author of Rails 4 in Action. He's written many gems which can be seen on his GitHub page and he also tweets prolifically as @ryanbigg.
Oscar Del Ben is a software engineer at Wildfire. He's a regular open source contributor (GitHub account) and tweets regularly at @oscardelben.
Frederick Cheung is Chief Wizard at Texperts where he has been using Rails since 2006. He is based in Cambridge (UK) and when not consuming fine ales he blogs at spacevatican.org.
Tore Darell is an independent developer based in Menton, France who specialises in cruft-free web applications using Ruby, Rails and unobtrusive JavaScript. His home on the internet is his blog Sneaky Abstractions.
Mike Gunderloy is a consultant with ActionRails. He brings 25 years of experience in a variety of languages to bear on his current work with Rails. His near-daily links and other blogging can be found at A Fresh Cup and he twitters too much.
Mikel Lindsaar has been working with Rails since 2006 and is the author of the Ruby Mail gem and core contributor (he helped re-write Action Mailer's API). Mikel is the founder of RubyX, has a blog and tweets.
Cássio Marques is a Brazilian software developer working with different programming languages such as Ruby, JavaScript, CPP and Java, as an independent consultant. He blogs at /* CODIFICANDO */, which is mainly written in Portuguese, but will soon get a new section for posts with English translation.
James Miller is a software developer for JK Tech in San Diego, CA. You can find James on GitHub, Gmail, Twitter, and Freenode as "bensie".
Pratik Naik is a Ruby on Rails developer at 37signals and also a member of the Rails core team. He maintains a blog at has_many :bugs, :through => :rails and has a semi-active twitter account.
Emilio Tagua —a.k.a. miloops— is an Argentinian entrepreneur, developer, open source contributor and Rails evangelist. Cofounder of Eventioz. He has been using Rails since 2006 and contributing since early 2008. Can be found at gmail, twitter, freenode, everywhere as "miloops".
Heiko Webers is the founder of bauland42, a German web application security consulting and development company focused on Ruby on Rails. He blogs at the Ruby on Rails Security Project. After 10 years of desktop application development, Heiko has rarely looked back.
Akshay Surve is the Founder at DeltaX, hackathon specialist, a midnight code junkie and ocassionally writes prose. You can connect with him on Twitter, Linkedin, Personal Blog or Quora.
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 License
"Rails", "Ruby on Rails", and the Rails logo are trademarks of David Heinemeier Hansson. All rights reserved.
This guide is designed for beginners who want to get started with a Rails application from scratch. It does not assume that you have any prior experience with Rails. However, to get the most out of it, you need to have some prerequisites installed:
Rails is a web application framework running on the Ruby programming language. If you have no prior experience with Ruby, you will find a very steep learning curve diving straight into Rails. There are some good free resources on the internet for learning Ruby, including:
Rails is a web application development framework written in the Ruby language. It is designed to make programming web applications easier by making assumptions about what every developer needs to get started. It allows you to write less code while accomplishing more than many other languages and frameworks. Experienced Rails developers also report that it makes web application development more fun.
Rails is opinionated software. It makes the assumption that there is the "best" way to do things, and it's designed to encourage that way - and in some cases to discourage alternatives. If you learn "The Rails Way" you'll probably discover a tremendous increase in productivity. If you persist in bringing old habits from other languages to your Rails development, and trying to use patterns you learned elsewhere, you may have a less happy experience.
The Rails philosophy includes two major guiding principles:
The best way to use this guide is to follow each step as it happens, no code or step needed to make this example application has been left out, so you can literally follow along step by step. You can get the complete code here.
By following along with this guide, you'll create a Rails project called blog
, a (very) simple weblog. Before you can start building the application, you need to make sure that you have Rails itself installed.
The examples below use #
and $
to denote superuser and regular user terminal prompts respectively in a UNIX-like OS. If you are using Windows, your prompt will look something like c:\source_code>
Open up a command line prompt. On Mac OS X open Terminal.app, on Windows choose "Run" from your Start menu and type 'cmd.exe'. Any commands prefaced with a dollar sign $
should be run in the command line. Verify that you have a current version of Ruby installed:
To install Rails, use the gem install
command provided by RubyGems:
A number of tools exist to help you quickly install Ruby and Ruby on Rails on your system. Windows users can use Rails Installer, while Mac OS X users can use Rails One Click.
To verify that you have everything installed correctly, you should be able to run the following:
If it says something like "Rails 4.0.0", you are ready to continue.
Rails comes with a number of scripts called generators that are designed to make your development life easier by creating everything that's necessary to start working on a particular task. One of these is the new application generator, which will provide you with the foundation of a fresh Rails application so that you don't have to write it yourself.
To use this generator, open a terminal, navigate to a directory where you have rights to create files, and type:
This will create a Rails application called Blog in a directory called blog and install the gem dependencies that are already mentioned in Gemfile
using bundle install
.
You can see all of the command line options that the Rails application builder accepts by running rails new -h
.
After you create the blog application, switch to its folder to continue work directly in that application:
The rails new blog
command we ran above created a folder in your working directory called blog
. The blog
directory has a number of auto-generated files and folders that make up the structure of a Rails application. Most of the work in this tutorial will happen in the app/
folder, but here's a basic rundown on the function of each of the files and folders that Rails created by default:
File/Folder	Purpose
app/ | Contains the controllers, models, views, helpers, mailers and assets for your application. You'll focus on this folder for the remainder of this guide. |
bin/ | Contains the rails script that starts your app and can contain other scripts you use to deploy or run your application. |
config/ | Configure your application's runtime rules, routes, database, and more. This is covered in more detail in Configuring Rails Applications |
config.ru | Rack configuration for Rack based servers used to start the application. |
db/ | Contains your current database schema, as well as the database migrations. |
Gemfile Gemfile.lock | These files allow you to specify what gem dependencies are needed for your Rails application. These files are used by the Bundler gem. For more information about Bundler, see the Bundler website |
lib/ | Extended modules for your application. |
log/ | Application log files. |
public/ | The only folder seen to the world as-is. Contains the static files and compiled assets. |
Rakefile | This file locates and loads tasks that can be run from the command line. The task definitions are defined throughout the components of Rails. Rather than changing Rakefile, you should add your own tasks by adding files to the lib/tasks directory of your application. |
README.rdoc | This is a brief instruction manual for your application. You should edit this file to tell others what your application does, how to set it up, and so on. |
test/ | Unit tests, fixtures, and other test apparatus. These are covered in Testing Rails Applications |
tmp/ | Temporary files (like cache, pid and session files) |
vendor/ | A place for all third-party code. In a typical Rails application, this includes Ruby Gems and the Rails source code (if you optionally install it into your project). |
To begin with, let's get some text up on screen quickly. To do this, you need to get your Rails application server running.
You actually have a functional Rails application already. To see it, you need to start a web server on your development machine. You can do this by running the following in the root directory of your rails application:
Compiling CoffeeScript to JavaScript requires a JavaScript runtime and the absence of a runtime will give you an execjs
error. Usually Mac OS X and Windows come with a JavaScript runtime installed. Rails adds the therubyracer
gem to Gemfile in a commented line for new apps and you can uncomment if you need it. therubyrhino
is the recommended runtime for JRuby users and is added by default to Gemfile in apps generated under JRuby. You can investigate about all the supported runtimes at ExecJS.
This will fire up WEBrick, a webserver built into Ruby by default. To see your application in action, open a browser window and navigate to http://localhost:3000. You should see the Rails default information page:
To stop the web server, hit Ctrl+C in the terminal window where it's running. To verify the server has stopped you should see your command prompt cursor again. For most UNIX-like systems including Mac OS X this will be a dollar sign $
. In development mode, Rails does not generally require you to restart the server; changes you make in files will be automatically picked up by the server.
The "Welcome Aboard" page is the smoke test for a new Rails application: it makes sure that you have your software configured correctly enough to serve a page. You can also click on the About your application’s environment link to see a summary of your application's environment.
To get Rails saying "Hello", you need to create at minimum a controller and a view.
A controller's purpose is to receive specific requests for the application. Routing decides which controller receives which requests. Often, there is more than one route to each controller, and different routes can be served by different actions. Each action's purpose is to collect information to provide it to a view.
A view's purpose is to display this information in a human readable format. An important distinction to make is that it is the controller, not the view, where information is collected. The view should just display that information. By default, view templates are written in a language called ERB (Embedded Ruby) which is converted by the request cycle in Rails before being sent to the user.
To create a new controller, you will need to run the "controller" generator and tell it you want a controller called "welcome" with an action called "index", just like this:
Rails will create several files and a route for you.
Most important of these are of course the controller, located at app/controllers/welcome_controller.rb
and the view, located at app/views/welcome/index.html.erb
.
Open the app/views/welcome/index.html.erb
file in your text editor. Delete all of the existing code in the file, and replace it with the following single line of code:
Now that we have made the controller and view, we need to tell Rails when we want Hello Rails! to show up. In our case, we want it to show up when we navigate to the root URL of our site, http://localhost:3000. At the moment, "Welcome Aboard" is occupying that spot.
Next, you have to tell Rails where your actual home page is located.
Open the file config/routes.rb
in your editor.
This is your application's routing file which holds entries in a special DSL (domain-specific language) that tells Rails how to connect incoming requests to controllers and actions. This file contains many sample routes on commented lines, and one of them actually shows you how to connect the root of your site to a specific controller and action. Find the line beginning with root
and uncomment it. It should look something like the following:
The root "welcome#index"
tells Rails to map requests to the root of the application to the welcome controller's index action and get "welcome/index"
tells Rails to map requests to http://localhost:3000/welcome/index to the welcome controller's index action. This was created earlier when you ran the controller generator (rails generate controller welcome index
).
If you navigate to http://localhost:3000 in your browser, you'll see the Hello, Rails!
message you put into app/views/welcome/index.html.erb
, indicating that this new route is indeed going to WelcomeController
's index
action and is rendering the view correctly.
For more information about routing, refer to Rails Routing from the Outside In.
Now that you've seen how to create a controller, an action and a view, let's create something with a bit more substance.
In the Blog application, you will now create a new resource. A resource is the term used for a collection of similar objects, such as posts, people or animals. You can create, read, update and destroy items for a resource and these operations are referred to as CRUD operations.
Rails provides a resources
method which can be used to declare a standard REST resource. Here's how config/routes.rb
will look like.
If you run rake routes
, you'll see that all the routes for the standard RESTful actions.
In the next section, you will add the ability to create new posts in your application and be able to view them. This is the "C" and the "R" from CRUD: creation and reading. The form for doing this will look like this:
It will look a little basic for now, but that's ok. We'll look at improving the styling for it afterwards.
The first thing that you are going to need to create a new post within the application is a place to do that. A great place for that would be at /posts/new
. With the route already defined, requests can now be made to /posts/new
in the application. Navigate to http://localhost:3000/posts/new and you'll see a routing error:
This error occurs because the route needs to have a controller defined in order to serve the request. The solution to this particular problem is simple: create a controller called PostsController
. You can do this by running this command:
If you open up the newly generated app/controllers/posts_controller.rb
you'll see a fairly empty controller:
A controller is simply a class that is defined to inherit from ApplicationController
. It's inside this class that you'll define methods that will become the actions for this controller. These actions will perform CRUD operations on the posts within our system.
There are public
, private
and protected
methods in Ruby
(for more details you can check on Programming Ruby). But only public
methods can be actions for controllers.
If you refresh http://localhost:3000/posts/new now, you'll get a new error:
This error indicates that Rails cannot find the new
action inside the PostsController
that you just generated. This is because when controllers are generated in Rails they are empty by default, unless you tell it you wanted actions during the generation process.
To manually define an action inside a controller, all you need to do is to define a new method inside the controller. Open app/controllers/posts_controller.rb
and inside the PostsController
class, define a new
method like this:
With the new
method defined in PostsController
, if you refresh http://localhost:3000/posts/new you'll see another error:
You're getting this error now because Rails expects plain actions like this one to have views associated with them to display their information. With no view available, Rails errors out.
In the above image, the bottom line has been truncated. Let's see what the full thing looks like:
Missing template posts/new, application/new with {locale:[:en], formats:[:html], handlers:[:erb, :builder, :coffee]}. Searched in: * "/path/to/blog/app/views"
That's quite a lot of text! Let's quickly go through and understand what each part of it does.
The first part identifies what template is missing. In this case, it's the posts/new
template. Rails will first look for this template. If not found, then it will attempt to load a template called application/new
. It looks for one here because the PostsController
inherits from ApplicationController
.
The next part of the message contains a hash. The :locale
key in this hash simply indicates what spoken language template should be retrieved. By default, this is the English — or "en" — template. The next key, :formats
specifies the format of template to be served in response. The default format is :html
, and so Rails is looking for an HTML template. The final key, :handlers
, is telling us what template handlers could be used to render our template. :erb
is most commonly used for HTML templates, :builder
is used for XML templates, and :coffee
uses CoffeeScript to build JavaScript templates.
The final part of this message tells us where Rails has looked for the templates. Templates within a basic Rails application like this are kept in a single location, but in more complex applications it could be many different paths.
The simplest template that would work in this case would be one located at app/views/posts/new.html.erb
. The extension of this file name is key: the first extension is the format of the template, and the second extension is the handler that will be used. Rails is attempting to find a template called posts/new
within app/views
for the application. The format for this template can only be html
and the handler must be one of erb
, builder
or coffee
. Because you want to create a new HTML form, you will be using the ERB
language. Therefore the file should be called posts/new.html.erb
and needs to be located inside the app/views
directory of the application.
Go ahead now and create a new file at app/views/posts/new.html.erb
and write this content in it:
When you refresh http://localhost:3000/posts/new you'll now see that the page has a title. The route, controller, action and view are now working harmoniously! It's time to create the form for a new post.
To create a form within this template, you will use a form builder. The primary form builder for Rails is provided by a helper method called form_for
. To use this method, add this code into app/views/posts/new.html.erb
:
If you refresh the page now, you'll see the exact same form as in the example. Building forms in Rails is really just that easy!
When you call form_for
, you pass it an identifying object for this form. In this case, it's the symbol :post
. This tells the form_for
helper what this form is for. Inside the block for this method, the FormBuilder
object — represented by f
— is used to build two labels and two text fields, one each for the title and text of a post. Finally, a call to submit
on the f
object will create a submit button for the form.
There's one problem with this form though. If you inspect the HTML that is generated, by viewing the source of the page, you will see that the action
attribute for the form is pointing at /posts/new
. This is a problem because this route goes to the very page that you're on right at the moment, and that route should only be used to display the form for a new post.
The form needs to use a different URL in order to go somewhere else. This can be done quite simply with the :url
option of form_for
. Typically in Rails, the action that is used for new form submissions like this is called "create", and so the form should be pointed to that action.
Edit the form_for
line inside app/views/posts/new.html.erb
to look like this:
In this example, the posts_path
helper is passed to the :url
option. What Rails will do with this is that it will point the form to the create
action of the current controller, the PostsController
, and will send a POST
request to that route.
By using the post
method rather than the get
method, Rails will define a route that will only respond to POST methods. The POST method is the typical method used by forms all over the web.
With the form and its associated route defined, you will be able to fill in the form and then click the submit button to begin the process of creating a new post, so go ahead and do that. When you submit the form, you should see a familiar error:
You now need to create the create
action within the PostsController
for this to work.
To make the "Unknown action" go away, you can define a create
action within the PostsController
class in app/controllers/posts_controller.rb
, underneath the new
action:
If you re-submit the form now, you'll see another familiar error: a template is missing. That's ok, we can ignore that for now. What the create
action should be doing is saving our new post to a database.
When a form is submitted, the fields of the form are sent to Rails as parameters. These parameters can then be referenced inside the controller actions, typically to perform a particular task. To see what these parameters look like, change the create
action to this:
The render
method here is taking a very simple hash with a key of text
and value of params[:post].inspect
. The params
method is the object which represents the parameters (or fields) coming in from the form. The params
method returns an ActiveSupport::HashWithIndifferentAccess
object, which allows you to access the keys of the hash using either strings or symbols. In this situation, the only parameters that matter are the ones from the form.
If you re-submit the form one more time you'll now no longer get the missing template error. Instead, you'll see something that looks like the following:
This action is now displaying the parameters for the post that are coming in from the form. However, this isn't really all that helpful. Yes, you can see the parameters but nothing in particular is being done with them.
Models in Rails use a singular name, and their corresponding database tables use a plural name. Rails provides a generator for creating models, which most Rails developers tend to use when creating new models. To create the new model, run this command in your terminal:
With that command we told Rails that we want a Post
model, together with a title attribute of type string, and a text attribute of type text. Those attributes are automatically added to the posts
table in the database and mapped to the Post
model.
Rails responded by creating a bunch of files. For now, we're only interested in app/models/post.rb
and db/migrate/20120419084633_create_posts.rb
(your name could be a bit different). The latter is responsible for creating the database structure, which is what we'll look at next.
Active Record is smart enough to automatically map column names to model attributes, which means you don't have to declare attributes inside Rails models, as that will be done automatically by Active Record.
As we've just seen, rails generate model
created a database migration file inside the db/migrate
directory. Migrations are Ruby classes that are designed to make it simple to create and modify database tables. Rails uses rake commands to run migrations, and it's possible to undo a migration after it's been applied to your database. Migration filenames include a timestamp to ensure that they're processed in the order that they were created.
If you look in the db/migrate/20120419084633_create_posts.rb
file (remember, yours will have a slightly different name), here's what you'll find:
The above migration creates a method named change
which will be called when you run this migration. The action defined in this method is also reversible, which means Rails knows how to reverse the change made by this migration, in case you want to reverse it later. When you run this migration it will create a posts
table with one string column and a text column. It also creates two timestamp fields to allow Rails to track post creation and update times.
For more information about migrations, refer to Rails Database Migrations.
At this point, you can use a rake command to run the migration:
Rails will execute this migration command and tell you it created the Posts table.
Because you're working in the development environment by default, this command will apply to the database defined in the development
section of your config/database.yml
file. If you would like to execute migrations in another environment, for instance in production, you must explicitly pass it when invoking the command: rake db:migrate RAILS_ENV=production
.
Back in posts_controller
, we need to change the create
action to use the new Post
model to save the data in the database. Open app/controllers/posts_controller.rb
and change the create
action to look like this:
Here's what's going on: every Rails model can be initialized with its respective attributes, which are automatically mapped to the respective database columns. In the first line we do just that (remember that params[:post]
contains the attributes we're interested in). Then, @post.save
is responsible for saving the model in the database. Finally, we redirect the user to the show
action, which we'll define later.
As we'll see later, @post.save
returns a boolean indicating whether the model was saved or not.
If you now go to http://localhost:3000/posts/new you'll almost be able to create a post. Try it! You should get an error that looks like this:
Rails has several security features that help you write secure applications, and you're running into one of them now. This one is called strong_parameters
, which requires us to tell Rails exactly which parameters we want to accept in our controllers. In this case, we want to allow the title
and text
parameters, so change your create
controller action to look like this:
See the permit
? It allows us to accept both title
and text
in this action.
Note that def post_params
is private. This new approach prevents an attacker from setting the model's attributes by manipulating the hash passed to the model. For more information, refer to this blog post about Strong Parameters.
If you submit the form again now, Rails will complain about not finding the show
action. That's not very useful though, so let's add the show
action before proceeding.
As we have seen in the output of rake routes
, the route for show
action is as follows:
The special syntax :id
tells rails that this route expects an :id
parameter, which in our case will be the id of the post.
As we did before, we need to add the show
action in app/controllers/posts_controller.rb
and its respective view.
A couple of things to note. We use Post.find
to find the post we're interested in. We also use an instance variable (prefixed by @
) to hold a reference to the post object. We do this because Rails will pass all instance variables to the view.
Now, create a new file app/views/posts/show.html.erb
with the following content:
With this change, you should finally be able to create new posts. Visit http://localhost:3000/posts/new and give it a try!
We still need a way to list all our posts, so let's do that. We'll use a specific route from config/routes.rb
:
And an action for that route inside the PostsController
in the app/controllers/posts_controller.rb
file:
And then finally a view for this action, located at app/views/posts/index.html.erb
:
Now if you go to http://localhost:3000/posts
you will see a list of all the posts that you have created.
You can now create, show, and list posts. Now let's add some links to navigate through pages.
Open app/views/welcome/index.html.erb
and modify it as follows:
The link_to
method is one of Rails' built-in view helpers. It creates a hyperlink based on text to display and where to go - in this case, to the path for posts.
Let's add links to the other views as well, starting with adding this "New Post" link to app/views/posts/index.html.erb
, placing it above the <table>
tag:
This link will allow you to bring up the form that lets you create a new post. You should also add a link to this template — app/views/posts/new.html.erb
— to go back to the index
action. Do this by adding this underneath the form in this template:
Finally, add another link to the app/views/posts/show.html.erb
template to go back to the index
action as well, so that people who are viewing a single post can go back and view the whole list again:
If you want to link to an action in the same controller, you don't need to specify the :controller
option, as Rails will use the current controller by default.
In development mode (which is what you're working in by default), Rails reloads your application with every browser request, so there's no need to stop and restart the web server when a change is made.
The model file, app/models/post.rb
is about as simple as it can get:
There isn't much to this file - but note that the Post
class inherits from ActiveRecord::Base
. Active Record supplies a great deal of functionality to your Rails models for free, including basic database CRUD (Create, Read, Update, Destroy) operations, data validation, as well as sophisticated search support and the ability to relate multiple models to one another.
Rails includes methods to help you validate the data that you send to models. Open the app/models/post.rb
file and edit it:
These changes will ensure that all posts have a title that is at least five characters long. Rails can validate a variety of conditions in a model, including the presence or uniqueness of columns, their format, and the existence of associated objects. Validations are covered in detail in Active Record Validations
With the validation now in place, when you call @post.save
on an invalid post, it will return false
. If you open app/controllers/posts_controller.rb
again, you'll notice that we don't check the result of calling @post.save
inside the create
action. If @post.save
fails in this situation, we need to show the form back to the user. To do this, change the new
and create
actions inside app/controllers/posts_controller.rb
to these:
The new
action is now creating a new instance variable called @post
, and you'll see why that is in just a few moments.
Notice that inside the create
action we use render
instead of redirect_to
when save
returns false
. The render
method is used so that the @post
object is passed back to the new
template when it is rendered. This rendering is done within the same request as the form submission, whereas the redirect_to
will tell the browser to issue another request.
If you reload http://localhost:3000/posts/new and try to save a post without a title, Rails will send you back to the form, but that's not very useful. You need to tell the user that something went wrong. To do that, you'll modify app/views/posts/new.html.erb
to check for error messages:
A few things are going on. We check if there are any errors with @post.errors.any?
, and in that case we show a list of all errors with @post.errors.full_messages
.
pluralize
is a rails helper that takes a number and a string as its arguments. If the number is greater than one, the string will be automatically pluralized.
The reason why we added @post = Post.new
in posts_controller
is that otherwise @post
would be nil
in our view, and calling @post.errors.any?
would throw an error.
Rails automatically wraps fields that contain an error with a div with class field_with_errors
. You can define a css rule to make them standout.
Now you'll get a nice error message when saving a post without title when you attempt to do just that on the new post form (http://localhost:3000/posts/new).
We've covered the "CR" part of CRUD. Now let's focus on the "U" part, updating posts.
The first step we'll take is adding an edit
action to posts_controller
.
The view will contain a form similar to the one we used when creating new posts. Create a file called app/views/posts/edit.html.erb
and make it look as follows:
This time we point the form to the update
action, which is not defined yet but will be very soon.
The method: :patch
option tells Rails that we want this form to be submitted via the PATCH
HTTP method which is the HTTP method you're expected to use to update resources according to the REST protocol.
By default forms built with the form_for helper are sent via POST
.
Next we need to create the update
action in app/controllers/posts_controller.rb
:
The new method, update
, is used when you want to update a record that already exists, and it accepts a hash containing the attributes that you want to update. As before, if there was an error updating the post we want to show the form back to the user.
You don't need to pass all attributes to update
. For example, if you'd call @post.update(title: 'A new title')
Rails would only update the title
attribute, leaving all other attributes untouched.
Finally, we want to show a link to the edit
action in the list of all the posts, so let's add that now to app/views/posts/index.html.erb
to make it appear next to the "Show" link:
And we'll also add one to the app/views/posts/show.html.erb
template as well, so that there's also an "Edit" link on a post's page. Add this at the bottom of the template:
And here's how our app looks so far:
Our edit
page looks very similar to the new
page, in fact they both share the same code for displaying the form. Let's remove some duplication by using a view partial. By convention, partial files are prefixed by an underscore.
You can read more about partials in the Layouts and Rendering in Rails guide.
Create a new file app/views/posts/_form.html.erb
with the following content:
Everything except for the form_for
declaration remained the same. How form_for
can figure out the right action
and method
attributes when building the form will be explained in just a moment. For now, let's update the app/views/posts/new.html.erb
view to use this new partial, rewriting it completely:
Then do the same for the app/views/posts/edit.html.erb
view:
We're now ready to cover the "D" part of CRUD, deleting posts from the database. Following the REST convention, the route for deleting posts in the config/routes.rb
is:
The delete
routing method should be used for routes that destroy resources. If this was left as a typical get
route, it could be possible for people to craft malicious URLs like this:
We use the delete
method for destroying resources, and this route is mapped to the destroy
action inside app/controllers/posts_controller.rb
, which doesn't exist yet, but is provided below:
You can call destroy
on Active Record objects when you want to delete them from the database. Note that we don't need to add a view for this action since we're redirecting to the index
action.
Finally, add a 'destroy' link to your index
action template (app/views/posts/index.html.erb
) to wrap everything together.
Here we're using link_to
in a different way. We pass the named route as the first argument, and then the final two keys as another argument. The :method
and :'data-confirm'
options are used as HTML5 attributes so that when the link is clicked, Rails will first show a confirm dialog to the user, and then submit the link with method delete
. This is done via the JavaScript file jquery_ujs
which is automatically included into your application's layout (app/views/layouts/application.html.erb
) when you generated the application. Without this file, the confirmation dialog box wouldn't appear.
Congratulations, you can now create, show, list, update and destroy posts.
In general, Rails encourages the use of resources objects in place of declaring routes manually. For more information about routing, see Rails Routing from the Outside In.
It's time to add a second model to the application. The second model will handle comments on posts.
We're going to see the same generator that we used before when creating the Post
model. This time we'll create a Comment
model to hold reference of post comments. Run this command in your terminal:
This command will generate four files:
File | Purpose |
---|---|
db/migrate/20100207235629_create_comments.rb | Migration to create the comments table in your database (your name will include a different timestamp) |
app/models/comment.rb | The Comment model |
test/models/comment_test.rb | Testing harness for the comments model |
test/fixtures/comments.yml | Sample comments for use in testing |
First, take a look at app/models/comment.rb
:
This is very similar to the post.rb
model that you saw earlier. The difference is the line belongs_to :post
, which sets up an Active Record association. You'll learn a little about associations in the next section of this guide.
In addition to the model, Rails has also made a migration to create the corresponding database table:
The t.references
line sets up a foreign key column for the association between the two models. And the add_index
line sets up an index for this association column. Go ahead and run the migration:
Rails is smart enough to only execute the migrations that have not already been run against the current database, so in this case you will just see:
Active Record associations let you easily declare the relationship between two models. In the case of comments and posts, you could write out the relationships this way:
In fact, this is very close to the syntax that Rails uses to declare this association. You've already seen the line of code inside the Comment
model (app/models/comment.rb) that makes each comment belong to a Post:
You'll need to edit app/models/post.rb
to add the other side of the association:
These two declarations enable a good bit of automatic behavior. For example, if you have an instance variable @post
containing a post, you can retrieve all the comments belonging to that post as an array using @post.comments
.
For more information on Active Record associations, see the Active Record Associations guide.
As with the welcome
controller, we will need to add a route so that Rails knows where we would like to navigate to see comments
. Open up the config/routes.rb
file again, and edit it as follows:
This creates comments
as a nested resource within posts
. This is another part of capturing the hierarchical relationship that exists between posts and comments.
For more information on routing, see the Rails Routing guide.
With the model in hand, you can turn your attention to creating a matching controller. Again, we'll use the same generator we used before:
This creates six files and one empty directory:
File/Directory | Purpose |
---|---|
app/controllers/comments_controller.rb | The Comments controller |
app/views/comments/ | Views of the controller are stored here |
test/controllers/comments_controller_test.rb | The test for the controller |
app/helpers/comments_helper.rb | A view helper file |
test/helpers/comments_helper_test.rb | The test for the helper |
app/assets/javascripts/comment.js.coffee | CoffeeScript for the controller |
app/assets/stylesheets/comment.css.scss | Cascading style sheet for the controller |
Like with any blog, our readers will create their comments directly after reading the post, and once they have added their comment, will be sent back to the post show page to see their comment now listed. Due to this, our CommentsController
is there to provide a method to create comments and delete spam comments when they arrive.
So first, we'll wire up the Post show template (app/views/posts/show.html.erb
) to let us make a new comment:
This adds a form on the Post
show page that creates a new comment by calling the CommentsController
create
action. The form_for
call here uses an array, which will build a nested route, such as /posts/1/comments
.
Let's wire up the create
in app/controllers/comments_controller.rb
:
You'll see a bit more complexity here than you did in the controller for posts. That's a side-effect of the nesting that you've set up. Each request for a comment has to keep track of the post to which the comment is attached, thus the initial call to the find
method of the Post
model to get the post in question.
In addition, the code takes advantage of some of the methods available for an association. We use the create
method on @post.comments
to create and save the comment. This will automatically link the comment so that it belongs to that particular post.
Once we have made the new comment, we send the user back to the original post using the post_path(@post)
helper. As we have already seen, this calls the show
action of the PostsController
which in turn renders the show.html.erb
template. This is where we want the comment to show, so let's add that to the app/views/posts/show.html.erb
.
Now you can add posts and comments to your blog and have them show up in the right places.
Now that we have posts and comments working, take a look at the app/views/posts/show.html.erb
template. It is getting long and awkward. We can use partials to clean it up.
First, we will make a comment partial to extract showing all the comments for the post. Create the file app/views/comments/_comment.html.erb
and put the following into it:
Then you can change app/views/posts/show.html.erb
to look like the following:
This will now render the partial in app/views/comments/_comment.html.erb
once for each comment that is in the @post.comments
collection. As the render
method iterates over the @post.comments
collection, it assigns each comment to a local variable named the same as the partial, in this case comment
which is then available in the partial for us to show.
Let us also move that new comment section out to its own partial. Again, you create a file app/views/comments/_form.html.erb
containing:
Then you make the app/views/posts/show.html.erb
look like the following:
The second render just defines the partial template we want to render, comments/form
. Rails is smart enough to spot the forward slash in that string and realize that you want to render the _form.html.erb
file in the app/views/comments
directory.
The @post
object is available to any partials rendered in the view because we defined it as an instance variable.
Another important feature of a blog is being able to delete spam comments. To do this, we need to implement a link of some sort in the view and a DELETE
action in the CommentsController
.
So first, let's add the delete link in the app/views/comments/_comment.html.erb
partial:
Clicking this new "Destroy Comment" link will fire off a DELETE /posts/:post_id/comments/:id
to our CommentsController
, which can then use this to find the comment we want to delete, so let's add a destroy action to our controller (app/controllers/comments_controller.rb
):
The destroy
action will find the post we are looking at, locate the comment within the @post.comments
collection, and then remove it from the database and send us back to the show action for the post.
If you delete a post then its associated comments will also need to be deleted. Otherwise they would simply occupy space in the database. Rails allows you to use the dependent
option of an association to achieve this. Modify the Post model, app/models/post.rb
, as follows:
If you were to publish your blog online, anybody would be able to add, edit and delete posts or delete comments.
Rails provides a very simple HTTP authentication system that will work nicely in this situation.
In the PostsController
we need to have a way to block access to the various actions if the person is not authenticated, here we can use the Rails http_basic_authenticate_with
method, allowing access to the requested action if that method allows it.
To use the authentication system, we specify it at the top of our PostsController
, in this case, we want the user to be authenticated on every action, except for index
and show
, so we write that in app/controllers/posts_controller.rb
:
We also only want to allow authenticated users to delete comments, so in the CommentsController
(app/controllers/comments_controller.rb
) we write:
Now if you try to create a new post, you will be greeted with a basic HTTP Authentication challenge
Now that you've seen your first Rails application, you should feel free to update it and experiment on your own. But you don't have to do everything without help. As you need assistance getting up and running with Rails, feel free to consult these support resources:
Rails also comes with built-in help that you can generate using the rake command-line utility:
rake doc:guides
will put a full copy of the Rails Guides in the doc/guides
folder of your application. Open doc/guides/index.html
in your web browser to explore the Guides.rake doc:rails
will put a full copy of the API documentation for Rails in the doc/api
folder of your application. Open doc/api/index.html
in your web browser to explore the API documentation.To be able to generate the Rails Guides locally with the doc:guides
rake task you need to install the RedCloth gem. Add it to your Gemfile
and run bundle install
and you're ready to go.
The easiest way to work with Rails is to store all external data as UTF-8. If you don't, Ruby libraries and Rails will often be able to convert your native data into UTF-8, but this doesn't always work reliably, so you're better off ensuring that all external data is UTF-8.
If you have made a mistake in this area, the most common symptom is a black diamond with a question mark inside appearing in the browser. Another common symptom is characters like "ü" appearing instead of "ü". Rails takes a number of internal steps to mitigate common causes of these problems that can be automatically detected and corrected. However, if you have external data that is not stored as UTF-8, it can occasionally result in these kinds of issues that cannot be automatically detected by Rails and corrected.
Two very common sources of data that are not UTF-8:
Active Record is the M in MVC - the model - which is the layer of the system responsible for representing business data and logic. Active Record facilitates the creation and use of business objects whose data requires persistent storage to a database. It is an implementation of the Active Record pattern which itself is a description of an Object Relational Mapping system.
Active Record was described by Martin Fowler in his book Patterns of Enterprise Application Architecture. In Active Record, objects carry both persistent data and behavior which operates on that data. Active Record takes the opinion that ensuring data access logic is part of the object will educate users of that object on how to write to and read from the database.
Object-Relational Mapping, commonly referred to as its abbreviation ORM, is a technique that connects the rich objects of an application to tables in a relational database management system. Using ORM, the properties and relationships of the objects in an application can be easily stored and retrieved from a database without writing SQL statements directly and with less overall database access code.
Active Record gives us several mechanisms, the most important being the ability to:
When writing applications using other programming languages or frameworks, it may be necessary to write a lot of configuration code. This is particularly true for ORM frameworks in general. However, if you follow the conventions adopted by Rails, you'll need to write very little configuration (in some case no configuration at all) when creating Active Record models. The idea is that if you configure your applications in the very same way most of the times then this should be the default way. In this cases, explicit configuration would be needed only in those cases where you can't follow the conventions for any reason.
By default, Active Record uses some naming conventions to find out how the mapping between models and database tables should be created. Rails will pluralize your class names to find the respective database table. So, for a class Book
, you should have a database table called books. The Rails pluralization mechanisms are very powerful, being capable to pluralize (and singularize) both regular and irregular words. When using class names composed of two or more words, the model class name should follow the Ruby conventions, using the CamelCase form, while the table name must contain the words separated by underscores. Examples:
book_clubs
)BookClub
)Model / Class | Table / Schema |
---|---|
Post | posts |
LineItem | line_items |
Deer | deer |
Mouse | mice |
Person | people |
Active Record uses naming conventions for the columns in database tables, depending on the purpose of these columns.
singularized_table_name_id
(e.g., item_id
, order_id
). These are the fields that Active Record will look for when you create associations between your models.id
as the table's primary key. When using Rails Migrations to create your tables, this column will be automatically created.There are also some optional column names that will add additional features to Active Record instances:
created_at
- Automatically gets set to the current date and time when the record is first created.updated_at
- Automatically gets set to the current date and time whenever the record is updated.lock_version
- Adds optimistic locking to a model.type
- Specifies that the model uses Single Table Inheritance.(association_name)_type
- Stores the type for polymorphic associations.(table_name)_count
- Used to cache the number of belonging objects on associations. For example, a comments_count
column in a Post
class that has many instances of Comment
will cache the number of existent comments for each post.While these column names are optional, they are in fact reserved by Active Record. Steer clear of reserved keywords unless you want the extra functionality. For example, type
is a reserved keyword used to designate a table using Single Table Inheritance (STI). If you are not using STI, try an analogous keyword like "context", that may still accurately describe the data you are modeling.
It is very easy to create Active Record models. All you have to do is to subclass the ActiveRecord::Base
class and you're good to go:
This will create a Product
model, mapped to a products
table at the database. By doing this you'll also have the ability to map the columns of each row in that table with the attributes of the instances of your model. Suppose that the products
table was created using an SQL sentence like:
Following the table schema above, you would be able to write code like the following:
What if you need to follow a different naming convention or need to use your Rails application with a legacy database? No problem, you can easily override the default conventions.
You can use the ActiveRecord::Base.table_name=
method to specify the table name that should be used:
If you do so, you will have to define manually the class name that is hosting the fixtures (class_name.yml) using the set_fixture_class
method in your test definition:
It's also possible to override the column that should be used as the table's primary key using the ActiveRecord::Base.primary_key=
method:
CRUD is an acronym for the four verbs we use to operate on data: Create, Read, Update and Delete. Active Record automatically creates methods to allow an application to read and manipulate data stored within its tables.
Active Record objects can be created from a hash, a block or have their attributes manually set after creation. The new
method will return a new object while create
will return the object and save it to the database.
For example, given a model User
with attributes of name
and occupation
, the create
method call will create and save a new record into the database:
Using the new
method, an object can be instantiated without being saved:
A call to user.save
will commit the record to the database.
Finally, if a block is provided, both create
and new
will yield the new object to that block for initialization:
Active Record provides a rich API for accessing data within a database. Below are a few examples of different data access methods provided by Active Record.
You can learn more about querying an Active Record model in the Active Record Query Interface guide.
Once an Active Record object has been retrieved, its attributes can be modified and it can be saved to the database.
A shorthand for this is to use a hash mapping attribute names to the desired value, like so:
This is most useful when updating several attributes at once. If, on the other hand, you'd like to update several records in bulk, you may find the update_all
class method useful:
Likewise, once retrieved an Active Record object can be destroyed which removes it from the database.
Active Record allows you to validate the state of a model before it gets written into the database. There are several methods that you can use to check your models and validate that an attribute value is not empty, is unique and not already in the database, follows a specific format and many more.
Validation is a very important issue to consider when persisting to database, so the methods create
, save
and update
take it into account when running: they return false
when validation fails and they didn't actually perform any operation on database. All of these have a bang counterpart (that is, create!
, save!
and update!
), which are stricter in that they raise the exception ActiveRecord::RecordInvalid
if validation fails. A quick example to illustrate:
You can learn more about validations in the Active Record Validations guide.
Active Record callbacks allow you to attach code to certain events in the life-cycle of your models. This enables you to add behavior to your models by transparently executing code when those events occur, like when you create a new record, update it, destroy it and so on. You can learn more about callbacks in the Active Record Callbacks guide.
Rails provides a domain-specific language for managing a database schema called migrations. Migrations are stored in files which are executed against any database that Active Record supports using rake
. Here's a migration that creates a table:
Rails keeps track of which files have been committed to the database and provides rollback features. To actually create the table, you'd run rake db:migrate
and to roll it back, rake db:rollback
.
Note that the above code is database-agnostic: it will run in MySQL, postgresql, Oracle and others. You can learn more about migrations in the Active Record Migrations guide
Migrations are a convenient way to alter your database schema over time in a consistent and easy way. They use a Ruby DSL so that you don't have to write SQL by hand, allowing your schema and changes to be database independent.
You can think of each migration as being a new 'version' of the database. A schema starts off with nothing in it, and each migration modifies it to add or remove tables, columns, or entries. Active Record knows how to update your schema along this timeline, bringing it from whatever point it is in the history to the latest version. Active Record will also update your db/schema.rb
file to match the up-to-date structure of your database.
Here's an example of a migration:
This migration adds a table called products
with a string column called name
and a text column called description
. A primary key column called id
will also be added implicitly, as it's the default primary key for all Active Record models. The timestamps
macro adds two columns, created_at
and updated_at
. These special columns are automatically managed by Active Record if they exist.
Note that we define the change that we want to happen moving forward in time. Before this migration is run, there will be no table. After, the table will exist. Active Record knows how to reverse this migration as well: if we roll this migration back, it will remove the table.
On databases that support transactions with statements that change the schema, migrations are wrapped in a transaction. If the database does not support this then when a migration fails the parts of it that succeeded will not be rolled back. You will have to rollback the changes that were made by hand.
There are certain queries that can't run inside a transaction. If your adapter supports DDL transactions you can use disable_ddl_transaction!
to disable them for a single migration.
If you wish for a migration to do something that Active Record doesn't know how to reverse, you can use reversible
:
Alternatively, you can use up
and down
instead of change
:
Migrations are stored as files in the db/migrate
directory, one for each migration class. The name of the file is of the form YYYYMMDDHHMMSS_create_products.rb
, that is to say a UTC timestamp identifying the migration followed by an underscore followed by the name of the migration. The name of the migration class (CamelCased version) should match the latter part of the file name. For example 20080906120000_create_products.rb
should define class CreateProducts
and 20080906120001_add_details_to_products.rb
should define AddDetailsToProducts
. Rails uses this timestamp to determine which migration should be run and in what order, so if you're copying a migration from another application or generate a file yourself, be aware of its position in the order.
Of course, calculating timestamps is no fun, so Active Record provides a generator to handle making it for you:
This will create an empty but appropriately named migration:
If the migration name is of the form "AddXXXToYYY" or "RemoveXXXFromYYY" and is followed by a list of column names and types then a migration containing the appropriate add_column
and remove_column
statements will be created.
will generate
If you'd like to add an index on the new column, you can do that as well:
will generate
Similarly, you can generate a migration to remove a column from the command line:
generates
You are not limited to one magically generated column. For example
generates
If the migration name is of the form "CreateXXX" and is followed by a list of column names and types then a migration creating the table XXX with the columns listed will be generated. For example:
generates
As always, what has been generated for you is just a starting point. You can add or remove from it as you see fit by editing the db/migrate/YYYYMMDDHHMMSS_add_details_to_products.rb
file.
Also, the generator accepts column type as references
(also available as belongs_to
). For instance
generates
This migration will create a user_id
column and appropriate index.
There is also a generator which will produce join tables if JoinTable
is part of the name:
will produce the following migration:
The model and scaffold generators will create migrations appropriate for adding a new model. This migration will already contain instructions for creating the relevant table. If you tell Rails what columns you want, then statements for adding these columns will also be created. For example, running
will create a migration that looks like this
You can append as many column name/type pairs as you want.
You can also specify some options just after the field type between curly braces. You can use the following modifiers:
limit
Sets the maximum size of the string/text/binary/integer
fieldsprecision
Defines the precision for the decimal
fieldsscale
Defines the scale for the decimal
fieldspolymorphic
Adds a type
column for belongs_to
associationsnull
Allows or disallows NULL
values in the column.For instance, running
will produce a migration that looks like this
Once you have created your migration using one of the generators it's time to get to work!
The create_table
method is one of the most fundamental, but most of the time, will be generated for you from using a model or scaffold generator. A typical use would be
which creates a products
table with a column called name
(and as discussed below, an implicit id
column).
By default, create_table
will create a primary key called id
. You can change the name of the primary key with the :primary_key
option (don't forget to update the corresponding model) or, if you don't want a primary key at all, you can pass the option id: false
. If you need to pass database specific options you can place an SQL fragment in the :options
option. For example,
will append ENGINE=BLACKHOLE
to the SQL statement used to create the table (when using MySQL, the default is ENGINE=InnoDB
).
Migration method create_join_table
creates a HABTM join table. A typical use would be
which creates a categories_products
table with two columns called category_id
and product_id
. These columns have the option :null
set to false
by default.
You can pass the option :table_name
when you want to customize the table name. For example,
will create a categorization
table.
By default, create_join_table
will create two columns with no options, but you can specify these options using the :column_options
option. For example,
will create the product_id
and category_id
with the :null
option as true
.
create_join_table
also accepts a block, which you can use to add indices (which are not created by default) or additional columns:
A close cousin of create_table
is change_table
, used for changing existing tables. It is used in a similar fashion to create_table
but the object yielded to the block knows more tricks. For example
removes the description
and name
columns, creates a part_number
string column and adds an index on it. Finally it renames the upccode
column.
If the helpers provided by Active Record aren't enough you can use the execute
method to execute arbitrary SQL:
For more details and examples of individual methods, check the API documentation. In particular the documentation for ActiveRecord::ConnectionAdapters::SchemaStatements
(which provides the methods available in the change
, up
and down
methods), ActiveRecord::ConnectionAdapters::TableDefinition
(which provides the methods available on the object yielded by create_table
) and ActiveRecord::ConnectionAdapters::Table
(which provides the methods available on the object yielded by change_table
).
change
MethodThe change
method is the primary way of writing migrations. It works for the majority of cases, where Active Record knows how to reverse the migration automatically. Currently, the change
method supports only these migration definitions:
add_column
add_index
add_reference
add_timestamps
create_table
create_join_table
drop_table
(must supply a block)drop_join_table
(must supply a block)remove_timestamps
rename_column
rename_index
remove_reference
rename_table
change_table
is also reversible, as long as the block does not call change
, change_default
or remove
.
If you're going to need to use any other methods, you should use reversible
or write the up
and down
methods instead of using the change
method.
reversible
Complex migrations may require processing that Active Record doesn't know how to reverse. You can use reversible
to specify what to do when running a migration what else to do when reverting it. For example,
Using reversible
will ensure that the instructions are executed in the right order too. If the previous example migration is reverted, the down
block will be run after the home_page_url
column is removed and right before the table products
is dropped.
Sometimes your migration will do something which is just plain irreversible; for example, it might destroy some data. In such cases, you can raise ActiveRecord::IrreversibleMigration
in your down
block. If someone tries to revert your migration, an error message will be displayed saying that it can't be done.
up
/down
MethodsYou can also use the old style of migration using up
and down
methods instead of the change
method. The up
method should describe the transformation you'd like to make to your schema, and the down
method of your migration should revert the transformations done by the up
method. In other words, the database schema should be unchanged if you do an up
followed by a down
. For example, if you create a table in the up
method, you should drop it in the down
method. It is wise to reverse the transformations in precisely the reverse order they were made in the up
method. The example in the reversible
section is equivalent to:
If your migration is irreversible, you should raise ActiveRecord::IrreversibleMigration
from your down
method. If someone tries to revert your migration, an error message will be displayed saying that it can't be done.
You can use Active Record's ability to rollback migrations using the revert
method:
The revert
method also accepts a block of instructions to reverse. This could be useful to revert selected parts of previous migrations. For example, let's imagine that ExampleMigration
is committed and it is later decided it would be best to serialize the product list instead. One could write:
The same migration could also have been written without using revert
but this would have involved a few more steps: reversing the order of create_table
and reversible
, replacing create_table
by drop_table
, and finally replacing up
by down
and vice-versa. This is all taken care of by revert
.
Rails provides a set of Rake tasks to run certain sets of migrations.
The very first migration related Rake task you will use will probably be rake db:migrate
. In its most basic form it just runs the change
or up
method for all the migrations that have not yet been run. If there are no such migrations, it exits. It will run these migrations in order based on the date of the migration.
Note that running the db:migrate
also invokes the db:schema:dump
task, which will update your db/schema.rb
file to match the structure of your database.
If you specify a target version, Active Record will run the required migrations (change, up, down) until it has reached the specified version. The version is the numerical prefix on the migration's filename. For example, to migrate to version 20080906120000 run
If version 20080906120000 is greater than the current version (i.e., it is migrating upwards), this will run the change
(or up
) method on all migrations up to and including 20080906120000, and will not execute any later migrations. If migrating downwards, this will run the down
method on all the migrations down to, but not including, 20080906120000.
A common task is to rollback the last migration. For example, if you made a mistake in it and wish to correct it. Rather than tracking down the version number associated with the previous migration you can run
This will rollback the latest migration, either by reverting the change
method or by running the down
method. If you need to undo several migrations you can provide a STEP
parameter:
will revert the last 3 migrations.
The db:migrate:redo
task is a shortcut for doing a rollback and then migrating back up again. As with the db:rollback
task, you can use the STEP
parameter if you need to go more than one version back, for example
Neither of these Rake tasks do anything you could not do with db:migrate
. They are simply more convenient, since you do not need to explicitly specify the version to migrate to.
The rake db:reset
task will drop the database, recreate it and load the current schema into it.
This is not the same as running all the migrations. It will only use the contents of the current schema.rb file. If a migration can't be rolled back, 'rake db:reset' may not help you. To find out more about dumping the schema see 'schema dumping and you.'
If you need to run a specific migration up or down, the db:migrate:up
and db:migrate:down
tasks will do that. Just specify the appropriate version and the corresponding migration will have its change
, up
or down
method invoked, for example,
will run the 20080906120000 migration by running the change
method (or the up
method). This task will first check whether the migration is already performed and will do nothing if Active Record believes that it has already been run.
By default running rake db:migrate
will run in the development
environment. To run migrations against another environment you can specify it using the RAILS_ENV
environment variable while running the command. For example to run migrations against the test
environment you could run:
By default migrations tell you exactly what they're doing and how long it took. A migration creating a table and adding an index might produce output like this
Several methods are provided in migrations that allow you to control all this:
Method | Purpose |
---|---|
suppress_messages | Takes a block as an argument and suppresses any output generated by the block. |
say | Takes a message argument and outputs it as is. A second boolean argument can be passed to specify whether to indent or not. |
say_with_time | Outputs text along with how long it took to run its block. If the block returns an integer it assumes it is the number of rows affected. |
For example, this migration
generates the following output
If you want Active Record to not output anything, then running rake db:migrate VERBOSE=false
will suppress all output.
Occasionally you will make a mistake when writing a migration. If you have already run the migration then you cannot just edit the migration and run the migration again: Rails thinks it has already run the migration and so will do nothing when you run rake db:migrate
. You must rollback the migration (for example with rake db:rollback
), edit your migration and then run rake db:migrate
to run the corrected version.
In general, editing existing migrations is not a good idea. You will be creating extra work for yourself and your co-workers and cause major headaches if the existing version of the migration has already been run on production machines. Instead, you should write a new migration that performs the changes you require. Editing a freshly generated migration that has not yet been committed to source control (or, more generally, which has not been propagated beyond your development machine) is relatively harmless.
The revert
method can be helpful when writing a new migration to undo previous migrations in whole or in part (see Reverting Previous Migrations above).
When creating or updating data in a migration it is often tempting to use one of your models. After all, they exist to provide easy access to the underlying data. This can be done, but some caution should be observed.
For example, problems occur when the model uses database columns which are (1) not currently in the database and (2) will be created by this or a subsequent migration.
Consider this example, where Alice and Bob are working on the same code base which contains a Product
model:
Bob goes on vacation.
Alice creates a migration for the products
table which adds a new column and initializes it:
She also adds a validation to the Product
model for the new column:
Alice adds a second migration which adds another column to the products
table and initializes it:
She also adds a validation to the Product
model for the new column:
Both migrations work for Alice.
Bob comes back from vacation and:
rake db:migrate
, which includes the one that updates the Product
model.The migration crashes because when the model attempts to save, it tries to validate the second added column, which is not in the database when the first migration runs:
A fix for this is to create a local model within the migration. This keeps Rails from running the validations, so that the migrations run to completion.
When using a local model, it's a good idea to call Product.reset_column_information
to refresh the Active Record cache for the Product
model prior to updating data in the database.
If Alice had done this instead, there would have been no problem:
There are other ways in which the above example could have gone badly.
For example, imagine that Alice creates a migration that selectively updates the description
field on certain products. She runs the migration, commits the code, and then begins working on the next feature, which is to add a new column fuzz
to the products table.
She creates two migrations for this new feature, one which adds the new column, and a second which selectively updates the fuzz
column based on other product attributes.
These migrations run just fine, but when Bob comes back from his vacation and calls rake db:migrate
to run all the outstanding migrations, he gets a subtle bug: The descriptions have defaults, and the fuzz
column is present, but fuzz
is nil
on all products.
The solution is again to use Product.reset_column_information
before referencing the Product model in a migration, ensuring the Active Record's knowledge of the table structure is current before manipulating data in those records.
Migrations, mighty as they may be, are not the authoritative source for your database schema. That role falls to either db/schema.rb
or an SQL file which Active Record generates by examining the database. They are not designed to be edited, they just represent the current state of the database.
There is no need (and it is error prone) to deploy a new instance of an app by replaying the entire migration history. It is much simpler and faster to just load into the database a description of the current schema.
For example, this is how the test database is created: the current development database is dumped (either to db/schema.rb
or db/structure.sql
) and then loaded into the test database.
Schema files are also useful if you want a quick look at what attributes an Active Record object has. This information is not in the model's code and is frequently spread across several migrations, but the information is nicely summed up in the schema file. The annotate_models gem automatically adds and updates comments at the top of each model summarizing the schema if you desire that functionality.
There are two ways to dump the schema. This is set in config/application.rb
by the config.active_record.schema_format
setting, which may be either :sql
or :ruby
.
If :ruby
is selected then the schema is stored in db/schema.rb
. If you look at this file you'll find that it looks an awful lot like one very big migration:
In many ways this is exactly what it is. This file is created by inspecting the database and expressing its structure using create_table
, add_index
, and so on. Because this is database-independent, it could be loaded into any database that Active Record supports. This could be very useful if you were to distribute an application that is able to run against multiple databases.
There is however a trade-off: db/schema.rb
cannot express database specific items such as foreign key constraints, triggers, or stored procedures. While in a migration you can execute custom SQL statements, the schema dumper cannot reconstitute those statements from the database. If you are using features like this, then you should set the schema format to :sql
.
Instead of using Active Record's schema dumper, the database's structure will be dumped using a tool specific to the database (via the db:structure:dump
Rake task) into db/structure.sql
. For example, for PostgreSQL, the pg_dump
utility is used. For MySQL, this file will contain the output of SHOW CREATE TABLE
for the various tables.
Loading these schemas is simply a question of executing the SQL statements they contain. By definition, this will create a perfect copy of the database's structure. Using the :sql
schema format will, however, prevent loading the schema into a RDBMS other than the one used to create it.
Because schema dumps are the authoritative source for your database schema, it is strongly recommended that you check them into source control.
The Active Record way claims that intelligence belongs in your models, not in the database. As such, features such as triggers or foreign key constraints, which push some of that intelligence back into the database, are not heavily used.
Validations such as validates :foreign_key, uniqueness: true
are one way in which models can enforce data integrity. The :dependent
option on associations allows models to automatically destroy child objects when the parent is destroyed. Like anything which operates at the application level, these cannot guarantee referential integrity and so some people augment them with foreign key constraints in the database.
Although Active Record does not provide any tools for working directly with such features, the execute
method can be used to execute arbitrary SQL. You could also use some gem like foreigner which add foreign key support to Active Record (including support for dumping foreign keys in db/schema.rb
).
Some people use migrations to add data to the database:
However, Rails has a 'seeds' feature that should be used for seeding a database with initial data. It's a really simple feature: just fill up db/seeds.rb
with some Ruby code, and run rake db:seed
:
This is generally a much cleaner way to set up the database of a blank application.
Here's an example of a very simple validation:
As you can see, our validation lets us know that our Person
is not valid without a name
attribute. The second Person
will not be persisted to the database.
Before we dig into more details, let's talk about how validations fit into the big picture of your application.
Validations are used to ensure that only valid data is saved into your database. For example, it may be important to your application to ensure that every user provides a valid email address and mailing address. Model-level validations are the best way to ensure that only valid data is saved into your database. They are database agnostic, cannot be bypassed by end users, and are convenient to test and maintain. Rails makes them easy to use, provides built-in helpers for common needs, and allows you to create your own validation methods as well.
There are several other ways to validate data before it is saved into your database, including native database constraints, client-side validations, controller-level validations. Here's a summary of the pros and cons:
Choose these in certain, specific cases. It's the opinion of the Rails team that model-level validations are the most appropriate in most circumstances.
There are two kinds of Active Record objects: those that correspond to a row inside your database and those that do not. When you create a fresh object, for example using the new
method, that object does not belong to the database yet. Once you call save
upon that object it will be saved into the appropriate database table. Active Record uses the new_record?
instance method to determine whether an object is already in the database or not. Consider the following simple Active Record class:
We can see how it works by looking at some rails console
output:
Creating and saving a new record will send an SQL INSERT
operation to the database. Updating an existing record will send an SQL UPDATE
operation instead. Validations are typically run before these commands are sent to the database. If any validations fail, the object will be marked as invalid and Active Record will not perform the INSERT
or UPDATE
operation. This avoids storing an invalid object in the database. You can choose to have specific validations run when an object is created, saved, or updated.
There are many ways to change the state of an object in the database. Some methods will trigger validations, but some will not. This means that it's possible to save an object in the database in an invalid state if you aren't careful.
The following methods trigger validations, and will save the object to the database only if the object is valid:
create
create!
save
save!
update
update!
The bang versions (e.g. save!
) raise an exception if the record is invalid. The non-bang versions don't, save
and update
return false
, create
just returns the object.
The following methods skip validations, and will save the object to the database regardless of its validity. They should be used with caution.
decrement!
decrement_counter
increment!
increment_counter
toggle!
touch
update_all
update_attribute
update_column
update_columns
update_counters
Note that save
also has the ability to skip validations if passed validate: false
as argument. This technique should be used with caution.
save(validate: false)
valid?
and invalid?
To verify whether or not an object is valid, Rails uses the valid?
method. You can also use this method on your own. valid?
triggers your validations and returns true if no errors were found in the object, and false otherwise. As you saw above:
After Active Record has performed validations, any errors found can be accessed through the errors
instance method, which returns a collection of errors. By definition, an object is valid if this collection is empty after running validations.
Note that an object instantiated with new
will not report errors even if it's technically invalid, because validations are not run when using new
.
invalid?
is simply the inverse of valid?
. It triggers your validations, returning true if any errors were found in the object, and false otherwise.
errors[]
To verify whether or not a particular attribute of an object is valid, you can use errors[:attribute]
. It returns an array of all the errors for :attribute
. If there are no errors on the specified attribute, an empty array is returned.
This method is only useful after validations have been run, because it only inspects the errors collection and does not trigger validations itself. It's different from the ActiveRecord::Base#invalid?
method explained above because it doesn't verify the validity of the object as a whole. It only checks to see whether there are errors found on an individual attribute of the object.
We'll cover validation errors in greater depth in the Working with Validation Errors section. For now, let's turn to the built-in validation helpers that Rails provides by default.
Active Record offers many pre-defined validation helpers that you can use directly inside your class definitions. These helpers provide common validation rules. Every time a validation fails, an error message is added to the object's errors
collection, and this message is associated with the attribute being validated.
Each helper accepts an arbitrary number of attribute names, so with a single line of code you can add the same kind of validation to several attributes.
All of them accept the :on
and :message
options, which define when the validation should be run and what message should be added to the errors
collection if it fails, respectively. The :on
option takes one of the values :create
or :update
. There is a default error message for each one of the validation helpers. These messages are used when the :message
option isn't specified. Let's take a look at each one of the available helpers.
acceptance
This method validates that a checkbox on the user interface was checked when a form was submitted. This is typically used when the user needs to agree to your application's terms of service, confirm reading some text, or any similar concept. This validation is very specific to web applications and this 'acceptance' does not need to be recorded anywhere in your database (if you don't have a field for it, the helper will just create a virtual attribute).
The default error message for this helper is "must be accepted".
It can receive an :accept
option, which determines the value that will be considered acceptance. It defaults to "1" and can be easily changed.
validates_associated
You should use this helper when your model has associations with other models and they also need to be validated. When you try to save your object, valid?
will be called upon each one of the associated objects.
This validation will work with all of the association types.
Don't use validates_associated
on both ends of your associations. They would call each other in an infinite loop.
The default error message for validates_associated
is "is invalid". Note that each associated object will contain its own errors
collection; errors do not bubble up to the calling model.
confirmation
You should use this helper when you have two text fields that should receive exactly the same content. For example, you may want to confirm an email address or a password. This validation creates a virtual attribute whose name is the name of the field that has to be confirmed with "_confirmation" appended.
In your view template you could use something like
This check is performed only if email_confirmation
is not nil
. To require confirmation, make sure to add a presence check for the confirmation attribute (we'll take a look at presence
later on this guide):
The default error message for this helper is "doesn't match confirmation".
exclusion
This helper validates that the attributes' values are not included in a given set. In fact, this set can be any enumerable object.
The exclusion
helper has an option :in
that receives the set of values that will not be accepted for the validated attributes. The :in
option has an alias called :within
that you can use for the same purpose, if you'd like to. This example uses the :message
option to show how you can include the attribute's value.
The default error message is "is reserved".
format
This helper validates the attributes' values by testing whether they match a given regular expression, which is specified using the :with
option.
The default error message is "is invalid".
inclusion
This helper validates that the attributes' values are included in a given set. In fact, this set can be any enumerable object.
The inclusion
helper has an option :in
that receives the set of values that will be accepted. The :in
option has an alias called :within
that you can use for the same purpose, if you'd like to. The previous example uses the :message
option to show how you can include the attribute's value.
The default error message for this helper is "is not included in the list".
length
This helper validates the length of the attributes' values. It provides a variety of options, so you can specify length constraints in different ways:
The possible length constraint options are:
:minimum
- The attribute cannot have less than the specified length.:maximum
- The attribute cannot have more than the specified length.:in
(or :within
) - The attribute length must be included in a given interval. The value for this option must be a range.:is
- The attribute length must be equal to the given value.The default error messages depend on the type of length validation being performed. You can personalize these messages using the :wrong_length
, :too_long
, and :too_short
options and %{count}
as a placeholder for the number corresponding to the length constraint being used. You can still use the :message
option to specify an error message.
This helper counts characters by default, but you can split the value in a different way using the :tokenizer
option:
Note that the default error messages are plural (e.g., "is too short (minimum is %{count} characters)"). For this reason, when :minimum
is 1 you should provide a personalized message or use presence: true
instead. When :in
or :within
have a lower limit of 1, you should either provide a personalized message or call presence
prior to length
.
numericality
This helper validates that your attributes have only numeric values. By default, it will match an optional sign followed by an integral or floating point number. To specify that only integral numbers are allowed set :only_integer
to true.
If you set :only_integer
to true
, then it will use the
regular expression to validate the attribute's value. Otherwise, it will try to convert the value to a number using Float
.
Note that the regular expression above allows a trailing newline character.
Besides :only_integer
, this helper also accepts the following options to add constraints to acceptable values:
:greater_than
- Specifies the value must be greater than the supplied value. The default error message for this option is "must be greater than %{count}".:greater_than_or_equal_to
- Specifies the value must be greater than or equal to the supplied value. The default error message for this option is "must be greater than or equal to %{count}".:equal_to
- Specifies the value must be equal to the supplied value. The default error message for this option is "must be equal to %{count}".:less_than
- Specifies the value must be less than the supplied value. The default error message for this option is "must be less than %{count}".:less_than_or_equal_to
- Specifies the value must be less than or equal the supplied value. The default error message for this option is "must be less than or equal to %{count}".:odd
- Specifies the value must be an odd number if set to true. The default error message for this option is "must be odd".:even
- Specifies the value must be an even number if set to true. The default error message for this option is "must be even".The default error message is "is not a number".
presence
This helper validates that the specified attributes are not empty. It uses the blank?
method to check if the value is either nil
or a blank string, that is, a string that is either empty or consists of whitespace.
If you want to be sure that an association is present, you'll need to test whether the associated object itself is present, and not the foreign key used to map the association.
In order to validate associated records whose presence is required, you must specify the :inverse_of
option for the association:
If you validate the presence of an object associated via a has_one
or has_many
relationship, it will check that the object is neither blank?
nor marked_for_destruction?
.
Since false.blank?
is true, if you want to validate the presence of a boolean field you should use validates :field_name, inclusion: { in: [true, false] }
.
The default error message is "can't be empty".
absence
This helper validates that the specified attributes are absent. It uses the present?
method to check if the value is not either nil or a blank string, that is, a string that is either empty or consists of whitespace.
If you want to be sure that an association is absent, you'll need to test whether the associated object itself is absent, and not the foreign key used to map the association.
In order to validate associated records whose absence is required, you must specify the :inverse_of
option for the association:
If you validate the absence of an object associated via a has_one
or has_many
relationship, it will check that the object is neither present?
nor marked_for_destruction?
.
Since false.present?
is false, if you want to validate the absence of a boolean field you should use validates :field_name, exclusion: { in: [true, false] }
.
The default error message is "must be blank".
uniqueness
This helper validates that the attribute's value is unique right before the object gets saved. It does not create a uniqueness constraint in the database, so it may happen that two different database connections create two records with the same value for a column that you intend to be unique. To avoid that, you must create a unique index in your database.
The validation happens by performing an SQL query into the model's table, searching for an existing record with the same value in that attribute.
There is a :scope
option that you can use to specify other attributes that are used to limit the uniqueness check:
There is also a :case_sensitive
option that you can use to define whether the uniqueness constraint will be case sensitive or not. This option defaults to true.
Note that some databases are configured to perform case-insensitive searches anyway.
The default error message is "has already been taken".
validates_with
This helper passes the record to a separate class for validation.
Errors added to record.errors[:base]
relate to the state of the record as a whole, and not to a specific attribute.
The validates_with
helper takes a class, or a list of classes to use for validation. There is no default error message for validates_with
. You must manually add errors to the record's errors collection in the validator class.
To implement the validate method, you must have a record
parameter defined, which is the record to be validated.
Like all other validations, validates_with
takes the :if
, :unless
and :on
options. If you pass any other options, it will send those options to the validator class as options
:
Note that the validator will be initialized only once for the whole application life cycle, and not on each validation run, so be careful about using instance variables inside it.
If your validator is complex enough that you want instance variables, you can easily use a plain old Ruby object instead:
validates_each
This helper validates attributes against a block. It doesn't have a predefined validation function. You should create one using a block, and every attribute passed to validates_each
will be tested against it. In the following example, we don't want names and surnames to begin with lower case.
The block receives the record, the attribute's name and the attribute's value. You can do anything you like to check for valid data within the block. If your validation fails, you should add an error message to the model, therefore making it invalid.
These are common validation options:
:allow_nil
The :allow_nil
option skips the validation when the value being validated is nil
.
:allow_blank
The :allow_blank
option is similar to the :allow_nil
option. This option will let validation pass if the attribute's value is blank?
, like nil
or an empty string for example.
:message
As you've already seen, the :message
option lets you specify the message that will be added to the errors
collection when validation fails. When this option is not used, Active Record will use the respective default error message for each validation helper.
:on
The :on
option lets you specify when the validation should happen. The default behavior for all the built-in validation helpers is to be run on save (both when you're creating a new record and when you're updating it). If you want to change it, you can use on: :create
to run the validation only when a new record is created or on: :update
to run the validation only when a record is updated.
You can also specify validations to be strict and raise ActiveModel::StrictValidationFailed
when the object is invalid.
There is also an ability to pass custom exception to :strict
option
Sometimes it will make sense to validate an object only when a given predicate is satisfied. You can do that by using the :if
and :unless
options, which can take a symbol, a string, a Proc
or an Array
. You may use the :if
option when you want to specify when the validation should happen. If you want to specify when the validation should not happen, then you may use the :unless
option.
:if
and :unless
You can associate the :if
and :unless
options with a symbol corresponding to the name of a method that will get called right before validation happens. This is the most commonly used option.
:if
and :unless
You can also use a string that will be evaluated using eval
and needs to contain valid Ruby code. You should use this option only when the string represents a really short condition.
:if
and :unless
Finally, it's possible to associate :if
and :unless
with a Proc
object which will be called. Using a Proc
object gives you the ability to write an inline condition instead of a separate method. This option is best suited for one-liners.
Sometimes it is useful to have multiple validations use one condition, it can be easily achieved using with_options
.
All validations inside of with_options
block will have automatically passed the condition if: :is_admin?
On the other hand, when multiple conditions define whether or not a validation should happen, an Array
can be used. Moreover, you can apply both :if
and :unless
to the same validation.
The validation only runs when all the :if
conditions and none of the :unless
conditions are evaluated to true
.
When the built-in validation helpers are not enough for your needs, you can write your own validators or validation methods as you prefer.
Custom validators are classes that extend ActiveModel::Validator
. These classes must implement a validate
method which takes a record as an argument and performs the validation on it. The custom validator is called using the validates_with
method.
The easiest way to add custom validators for validating individual attributes is with the convenient ActiveModel::EachValidator
. In this case, the custom validator class must implement a validate_each
method which takes three arguments: record, attribute and value which correspond to the instance, the attribute to be validated and the value of the attribute in the passed instance.
As shown in the example, you can also combine standard validations with your own custom validators.
You can also create methods that verify the state of your models and add messages to the errors
collection when they are invalid. You must then register these methods by using the validate
class method, passing in the symbols for the validation methods' names.
You can pass more than one symbol for each class method and the respective validations will be run in the same order as they were registered.
By default such validations will run every time you call valid?
. It is also possible to control when to run these custom validations by giving an :on
option to the validate
method, with either: :create
or :update
.
In addition to the valid?
and invalid?
methods covered earlier, Rails provides a number of methods for working with the errors
collection and inquiring about the validity of objects.
The following is a list of the most commonly used methods. Please refer to the ActiveModel::Errors
documentation for a list of all the available methods.
errors
Returns an instance of the class ActiveModel::Errors
containing all errors. Each key is the attribute name and the value is an array of strings with all errors.
errors[]
errors[]
is used when you want to check the error messages for a specific attribute. It returns an array of strings with all error messages for the given attribute, each string with one error message. If there are no errors related to the attribute, it returns an empty array.
errors.add
The add
method lets you manually add messages that are related to particular attributes. You can use the errors.full_messages
or errors.to_a
methods to view the messages in the form they might be displayed to a user. Those particular messages get the attribute name prepended (and capitalized). add
receives the name of the attribute you want to add the message to, and the message itself.
Another way to do this is using []=
setter
errors[:base]
You can add error messages that are related to the object's state as a whole, instead of being related to a specific attribute. You can use this method when you want to say that the object is invalid, no matter the values of its attributes. Since errors[:base]
is an array, you can simply add a string to it and it will be used as an error message.
errors.clear
The clear
method is used when you intentionally want to clear all the messages in the errors
collection. Of course, calling errors.clear
upon an invalid object won't actually make it valid: the errors
collection will now be empty, but the next time you call valid?
or any method that tries to save this object to the database, the validations will run again. If any of the validations fail, the errors
collection will be filled again.
errors.size
The size
method returns the total number of error messages for the object.
Once you've created a model and added validations, if that model is created via a web form, you probably want to display an error message when one of the validations fail.
Because every application handles this kind of thing differently, Rails does not include any view helpers to help you generate these messages directly. However, due to the rich number of methods Rails gives you to interact with validations in general, it's fairly easy to build your own. In addition, when generating a scaffold, Rails will put some ERB into the _form.html.erb
that it generates that displays the full list of errors on that model.
Assuming we have a model that's been saved in an instance variable named @post
, it looks like this:
Furthermore, if you use the Rails form helpers to generate your forms, when a validation error occurs on a field, it will generate an extra <div>
around the entry.
You can then style this div however you'd like. The default scaffold that Rails generates, for example, adds this CSS rule:
This means that any field with an error ends up with a 2 pixel red border.
During the normal operation of a Rails application, objects may be created, updated, and destroyed. Active Record provides hooks into this object life cycle so that you can control your application and its data.
Callbacks allow you to trigger logic before or after an alteration of an object's state.
Callbacks are methods that get called at certain moments of an object's life cycle. With callbacks it is possible to write code that will run whenever an Active Record object is created, saved, updated, deleted, validated, or loaded from the database.
In order to use the available callbacks, you need to register them. You can implement the callbacks as ordinary methods and use a macro-style class method to register them as callbacks:
The macro-style class methods can also receive a block. Consider using this style if the code inside your block is so short that it fits in a single line:
Callbacks can also be registered to only fire on certain life cycle events:
It is considered good practice to declare callback methods as protected or private. If left public, they can be called from outside of the model and violate the principle of object encapsulation.
Here is a list with all the available Active Record callbacks, listed in the same order in which they will get called during the respective operations:
before_validation
after_validation
before_save
around_save
before_create
around_create
after_create
after_save
before_validation
after_validation
before_save
around_save
before_update
around_update
after_update
after_save
before_destroy
around_destroy
after_destroy
after_save
runs both on create and update, but always after the more specific callbacks after_create
and after_update
, no matter the order in which the macro calls were executed.
after_initialize
and after_find
The after_initialize
callback will be called whenever an Active Record object is instantiated, either by directly using new
or when a record is loaded from the database. It can be useful to avoid the need to directly override your Active Record initialize
method.
The after_find
callback will be called whenever Active Record loads a record from the database. after_find
is called before after_initialize
if both are defined.
The after_initialize
and after_find
callbacks have no before_*
counterparts, but they can be registered just like the other Active Record callbacks.
after_touch
The after_touch
callback will be called whenever an Active Record object is touched.
It can be used along with belongs_to
:
The following methods trigger callbacks:
create
create!
decrement!
destroy
destroy!
destroy_all
increment!
save
save!
save(validate: false)
toggle!
update_attribute
update
update!
valid?
Additionally, the after_find
callback is triggered by the following finder methods:
all
first
find
find_by
find_by_*
find_by_*!
find_by_sql
last
The after_initialize
callback is triggered every time a new object of the class is initialized.
The find_by_*
and find_by_*!
methods are dynamic finders generated automatically for every attribute. Learn more about them at the Dynamic finders section
Just as with validations, it is also possible to skip callbacks. These methods should be used with caution, however, because important business rules and application logic may be kept in callbacks. Bypassing them without understanding the potential implications may lead to invalid data.
decrement
decrement_counter
delete
delete_all
increment
increment_counter
toggle
touch
update_column
update_columns
update_all
update_counters
As you start registering new callbacks for your models, they will be queued for execution. This queue will include all your model's validations, the registered callbacks, and the database operation to be executed.
The whole callback chain is wrapped in a transaction. If any before callback method returns exactly false
or raises an exception, the execution chain gets halted and a ROLLBACK is issued; after callbacks can only accomplish that by raising an exception.
Raising an arbitrary exception may break code that expects save
and its friends not to fail like that. The ActiveRecord::Rollback
exception is thought precisely to tell Active Record a rollback is going on. That one is internally captured but not reraised.
Callbacks work through model relationships, and can even be defined by them. Suppose an example where a user has many posts. A user's posts should be destroyed if the user is destroyed. Let's add an after_destroy
callback to the User
model by way of its relationship to the Post
model:
As with validations, we can also make the calling of a callback method conditional on the satisfaction of a given predicate. We can do this using the :if
and :unless
options, which can take a symbol, a string, a Proc
or an Array
. You may use the :if
option when you want to specify under which conditions the callback should be called. If you want to specify the conditions under which the callback should not be called, then you may use the :unless
option.
:if
and :unless
with a Symbol
You can associate the :if
and :unless
options with a symbol corresponding to the name of a predicate method that will get called right before the callback. When using the :if
option, the callback won't be executed if the predicate method returns false; when using the :unless
option, the callback won't be executed if the predicate method returns true. This is the most common option. Using this form of registration it is also possible to register several different predicates that should be called to check if the callback should be executed.
:if
and :unless
with a StringYou can also use a string that will be evaluated using eval
and hence needs to contain valid Ruby code. You should use this option only when the string represents a really short condition:
:if
and :unless
with a Proc
Finally, it is possible to associate :if
and :unless
with a Proc
object. This option is best suited when writing short validation methods, usually one-liners:
When writing conditional callbacks, it is possible to mix both :if
and :unless
in the same callback declaration:
Sometimes the callback methods that you'll write will be useful enough to be reused by other models. Active Record makes it possible to create classes that encapsulate the callback methods, so it becomes very easy to reuse them.
Here's an example where we create a class with an after_destroy
callback for a PictureFile
model:
When declared inside a class, as above, the callback methods will receive the model object as a parameter. We can now use the callback class in the model:
Note that we needed to instantiate a new PictureFileCallbacks
object, since we declared our callback as an instance method. This is particularly useful if the callbacks make use of the state of the instantiated object. Often, however, it will make more sense to declare the callbacks as class methods:
If the callback method is declared this way, it won't be necessary to instantiate a PictureFileCallbacks
object.
You can declare as many callbacks as you want inside your callback classes.
There are two additional callbacks that are triggered by the completion of a database transaction: after_commit
and after_rollback
. These callbacks are very similar to the after_save
callback except that they don't execute until after database changes have either been committed or rolled back. They are most useful when your active record models need to interact with external systems which are not part of the database transaction.
Consider, for example, the previous example where the PictureFile
model needs to delete a file after the corresponding record is destroyed. If anything raises an exception after the after_destroy
callback is called and the transaction rolls back, the file will have been deleted and the model will be left in an inconsistent state. For example, suppose that picture_file_2
in the code below is not valid and the save!
method raises an error.
By using the after_commit
callback we can account for this case.
the :on
option specifies when a callback will be fired. If you don't supply the :on
option the callback will fire for every action.
The after_commit
and after_rollback
callbacks are guaranteed to be called for all models created, updated, or destroyed within a transaction block. If any exceptions are raised within one of these callbacks, they will be ignored so that they don't interfere with the other callbacks. As such, if your callback code could raise an exception, you'll need to rescue it and handle it appropriately within the callback.
Why do we need associations between models? Because they make common operations simpler and easier in your code. For example, consider a simple Rails application that includes a model for customers and a model for orders. Each customer can have many orders. Without associations, the model declarations would look like this:
Now, suppose we wanted to add a new order for an existing customer. We'd need to do something like this:
Or consider deleting a customer, and ensuring that all of its orders get deleted as well:
With Active Record associations, we can streamline these — and other — operations by declaratively telling Rails that there is a connection between the two models. Here's the revised code for setting up customers and orders:
With this change, creating a new order for a particular customer is easier:
Deleting a customer and all of its orders is much easier:
To learn more about the different types of associations, read the next section of this guide. That's followed by some tips and tricks for working with associations, and then by a complete reference to the methods and options for associations in Rails.
In Rails, an association is a connection between two Active Record models. Associations are implemented using macro-style calls, so that you can declaratively add features to your models. For example, by declaring that one model belongs_to
another, you instruct Rails to maintain Primary Key–Foreign Key information between instances of the two models, and you also get a number of utility methods added to your model. Rails supports six types of associations:
belongs_to
has_one
has_many
has_many :through
has_one :through
has_and_belongs_to_many
In the remainder of this guide, you'll learn how to declare and use the various forms of associations. But first, a quick introduction to the situations where each association type is appropriate.
belongs_to
AssociationA belongs_to
association sets up a one-to-one connection with another model, such that each instance of the declaring model "belongs to" one instance of the other model. For example, if your application includes customers and orders, and each order can be assigned to exactly one customer, you'd declare the order model this way:
belongs_to
associations must use the singular term. If you used the pluralized form in the above example for the customer
association in the Order
model, you would be told that there was an "uninitialized constant Order::Customers". This is because Rails automatically infers the class name from the association name. If the association name is wrongly pluralized, then the inferred class will be wrongly pluralized too.
The corresponding migration might look like this:
has_one
AssociationA has_one
association also sets up a one-to-one connection with another model, but with somewhat different semantics (and consequences). This association indicates that each instance of a model contains or possesses one instance of another model. For example, if each supplier in your application has only one account, you'd declare the supplier model like this:
The corresponding migration might look like this:
has_many
AssociationA has_many
association indicates a one-to-many connection with another model. You'll often find this association on the "other side" of a belongs_to
association. This association indicates that each instance of the model has zero or more instances of another model. For example, in an application containing customers and orders, the customer model could be declared like this:
The name of the other model is pluralized when declaring a has_many
association.
The corresponding migration might look like this:
has_many :through
AssociationA has_many :through
association is often used to set up a many-to-many connection with another model. This association indicates that the declaring model can be matched with zero or more instances of another model by proceeding through a third model. For example, consider a medical practice where patients make appointments to see physicians. The relevant association declarations could look like this:
The corresponding migration might look like this:
The collection of join models can be managed via the API. For example, if you assign
new join models are created for newly associated objects, and if some are gone their rows are deleted.
Automatic deletion of join models is direct, no destroy callbacks are triggered.
The has_many :through
association is also useful for setting up "shortcuts" through nested has_many
associations. For example, if a document has many sections, and a section has many paragraphs, you may sometimes want to get a simple collection of all paragraphs in the document. You could set that up this way:
With through: :sections
specified, Rails will now understand:
has_one :through
AssociationA has_one :through
association sets up a one-to-one connection with another model. This association indicates that the declaring model can be matched with one instance of another model by proceeding through a third model. For example, if each supplier has one account, and each account is associated with one account history, then the supplier model could look like this:
The corresponding migration might look like this:
has_and_belongs_to_many
AssociationA has_and_belongs_to_many
association creates a direct many-to-many connection with another model, with no intervening model. For example, if your application includes assemblies and parts, with each assembly having many parts and each part appearing in many assemblies, you could declare the models this way:
The corresponding migration might look like this:
belongs_to
and has_one
If you want to set up a one-to-one relationship between two models, you'll need to add belongs_to
to one, and has_one
to the other. How do you know which is which?
The distinction is in where you place the foreign key (it goes on the table for the class declaring the belongs_to
association), but you should give some thought to the actual meaning of the data as well. The has_one
relationship says that one of something is yours - that is, that something points back to you. For example, it makes more sense to say that a supplier owns an account than that an account owns a supplier. This suggests that the correct relationships are like this:
The corresponding migration might look like this:
Using t.integer :supplier_id
makes the foreign key naming obvious and explicit. In current versions of Rails, you can abstract away this implementation detail by using t.references :supplier
instead.
has_many :through
and has_and_belongs_to_many
Rails offers two different ways to declare a many-to-many relationship between models. The simpler way is to use has_and_belongs_to_many
, which allows you to make the association directly:
The second way to declare a many-to-many relationship is to use has_many :through
. This makes the association indirectly, through a join model:
The simplest rule of thumb is that you should set up a has_many :through
relationship if you need to work with the relationship model as an independent entity. If you don't need to do anything with the relationship model, it may be simpler to set up a has_and_belongs_to_many
relationship (though you'll need to remember to create the joining table in the database).
You should use has_many :through
if you need validations, callbacks, or extra attributes on the join model.
A slightly more advanced twist on associations is the polymorphic association. With polymorphic associations, a model can belong to more than one other model, on a single association. For example, you might have a picture model that belongs to either an employee model or a product model. Here's how this could be declared:
You can think of a polymorphic belongs_to
declaration as setting up an interface that any other model can use. From an instance of the Employee
model, you can retrieve a collection of pictures: @employee.pictures
.
Similarly, you can retrieve @product.pictures
.
If you have an instance of the Picture
model, you can get to its parent via @picture.imageable
. To make this work, you need to declare both a foreign key column and a type column in the model that declares the polymorphic interface:
This migration can be simplified by using the t.references
form:
In designing a data model, you will sometimes find a model that should have a relation to itself. For example, you may want to store all employees in a single database model, but be able to trace relationships such as between manager and subordinates. This situation can be modeled with self-joining associations:
With this setup, you can retrieve @employee.subordinates
and @employee.manager
.
Here are a few things you should know to make efficient use of Active Record associations in your Rails applications:
All of the association methods are built around caching, which keeps the result of the most recent query available for further operations. The cache is even shared across methods. For example:
But what if you want to reload the cache, because data might have been changed by some other part of the application? Just pass true
to the association call:
You are not free to use just any name for your associations. Because creating an association adds a method with that name to the model, it is a bad idea to give an association a name that is already used for an instance method of ActiveRecord::Base
. The association method would override the base method and break things. For instance, attributes
or connection
are bad names for associations.
Associations are extremely useful, but they are not magic. You are responsible for maintaining your database schema to match your associations. In practice, this means two things, depending on what sort of associations you are creating. For belongs_to
associations you need to create foreign keys, and for has_and_belongs_to_many
associations you need to create the appropriate join table.
belongs_to
AssociationsWhen you declare a belongs_to
association, you need to create foreign keys as appropriate. For example, consider this model:
This declaration needs to be backed up by the proper foreign key declaration on the orders table:
If you create an association some time after you build the underlying model, you need to remember to create an add_column
migration to provide the necessary foreign key.
has_and_belongs_to_many
AssociationsIf you create a has_and_belongs_to_many
association, you need to explicitly create the joining table. Unless the name of the join table is explicitly specified by using the :join_table
option, Active Record creates the name by using the lexical order of the class names. So a join between customer and order models will give the default join table name of "customers_orders" because "c" outranks "o" in lexical ordering.
The precedence between model names is calculated using the <
operator for String
. This means that if the strings are of different lengths, and the strings are equal when compared up to the shortest length, then the longer string is considered of higher lexical precedence than the shorter one. For example, one would expect the tables "paper_boxes" and "papers" to generate a join table name of "papers_paper_boxes" because of the length of the name "paper_boxes", but it in fact generates a join table name of "paper_boxes_papers" (because the underscore '_' is lexicographically less than 's' in common encodings).
Whatever the name, you must manually generate the join table with an appropriate migration. For example, consider these associations:
These need to be backed up by a migration to create the assemblies_parts
table. This table should be created without a primary key:
We pass id: false
to create_table
because that table does not represent a model. That's required for the association to work properly. If you observe any strange behavior in a has_and_belongs_to_many
association like mangled models IDs, or exceptions about conflicting IDs, chances are you forgot that bit.
By default, associations look for objects only within the current module's scope. This can be important when you declare Active Record models within a module. For example:
This will work fine, because both the Supplier
and the Account
class are defined within the same scope. But the following will not work, because Supplier
and Account
are defined in different scopes:
To associate a model with a model in a different namespace, you must specify the complete class name in your association declaration:
It's normal for associations to work in two directions, requiring declaration on two different models:
By default, Active Record doesn't know about the connection between these associations. This can lead to two copies of an object getting out of sync:
This happens because c and o.customer are two different in-memory representations of the same data, and neither one is automatically refreshed from changes to the other. Active Record provides the :inverse_of
option so that you can inform it of these relations:
With these changes, Active Record will only load one copy of the customer object, preventing inconsistencies and making your application more efficient:
There are a few limitations to inverse_of
support:
:through
associations.:polymorphic
associations.:as
associations.belongs_to
associations, has_many
inverse associations are ignored.The following sections give the details of each type of association, including the methods that they add and the options that you can use when declaring an association.
belongs_to
Association ReferenceThe belongs_to
association creates a one-to-one match with another model. In database terms, this association says that this class contains the foreign key. If the other class contains the foreign key, then you should use has_one
instead.
belongs_to
When you declare a belongs_to
association, the declaring class automatically gains four methods related to the association:
association(force_reload = false)
association=(associate)
build_association(attributes = {})
create_association(attributes = {})
In all of these methods, association
is replaced with the symbol passed as the first argument to belongs_to
. For example, given the declaration:
Each instance of the order model will have these methods:
When initializing a new has_one
or belongs_to
association you must use the build_
prefix to build the association, rather than the association.build
method that would be used for has_many
or has_and_belongs_to_many
associations. To create one, use the create_
prefix.
association(force_reload = false)
The association
method returns the associated object, if any. If no associated object is found, it returns nil
.
If the associated object has already been retrieved from the database for this object, the cached version will be returned. To override this behavior (and force a database read), pass true
as the force_reload
argument.
association=(associate)
The association=
method assigns an associated object to this object. Behind the scenes, this means extracting the primary key from the associate object and setting this object's foreign key to the same value.
build_association(attributes = {})
The build_association
method returns a new object of the associated type. This object will be instantiated from the passed attributes, and the link through this object's foreign key will be set, but the associated object will not yet be saved.
create_association(attributes = {})
The create_association
method returns a new object of the associated type. This object will be instantiated from the passed attributes, the link through this object's foreign key will be set, and, once it passes all of the validations specified on the associated model, the associated object will be saved.
belongs_to
While Rails uses intelligent defaults that will work well in most situations, there may be times when you want to customize the behavior of the belongs_to
association reference. Such customizations can easily be accomplished by passing options and scope blocks when you create the association. For example, this association uses two such options:
The belongs_to
association supports these options:
:autosave
:class_name
:counter_cache
:dependent
:foreign_key
:inverse_of
:polymorphic
:touch
:validate
:autosave
If you set the :autosave
option to true
, Rails will save any loaded members and destroy members that are marked for destruction whenever you save the parent object.
:class_name
If the name of the other model cannot be derived from the association name, you can use the :class_name
option to supply the model name. For example, if an order belongs to a customer, but the actual name of the model containing customers is Patron
, you'd set things up this way:
:counter_cache
The :counter_cache
option can be used to make finding the number of belonging objects more efficient. Consider these models:
With these declarations, asking for the value of @customer.orders.size
requires making a call to the database to perform a COUNT(*)
query. To avoid this call, you can add a counter cache to the belonging model:
With this declaration, Rails will keep the cache value up to date, and then return that value in response to the size
method.
Although the :counter_cache
option is specified on the model that includes the belongs_to
declaration, the actual column must be added to the associated model. In the case above, you would need to add a column named orders_count
to the Customer
model. You can override the default column name if you need to:
Counter cache columns are added to the containing model's list of read-only attributes through attr_readonly
.
:dependent
If you set the :dependent
option to :destroy
, then deleting this object will call the destroy
method on the associated object to delete that object. If you set the :dependent
option to :delete
, then deleting this object will delete the associated object without calling its destroy
method. If you set the :dependent
option to :restrict
, then attempting to delete this object will result in a ActiveRecord::DeleteRestrictionError
if there are any associated objects.
You should not specify this option on a belongs_to
association that is connected with a has_many
association on the other class. Doing so can lead to orphaned records in your database.
:foreign_key
By convention, Rails assumes that the column used to hold the foreign key on this model is the name of the association with the suffix _id
added. The :foreign_key
option lets you set the name of the foreign key directly:
In any case, Rails will not create foreign key columns for you. You need to explicitly define them as part of your migrations.
:inverse_of
The :inverse_of
option specifies the name of the has_many
or has_one
association that is the inverse of this association. Does not work in combination with the :polymorphic
options.
:polymorphic
Passing true
to the :polymorphic
option indicates that this is a polymorphic association. Polymorphic associations were discussed in detail earlier in this guide.
:touch
If you set the :touch
option to :true
, then the updated_at
or updated_on
timestamp on the associated object will be set to the current time whenever this object is saved or destroyed:
In this case, saving or destroying an order will update the timestamp on the associated customer. You can also specify a particular timestamp attribute to update:
:validate
If you set the :validate
option to true
, then associated objects will be validated whenever you save this object. By default, this is false
: associated objects will not be validated when this object is saved.
belongs_to
There may be times when you wish to customize the query used by belongs_to
. Such customizations can be achieved via a scope block. For example:
You can use any of the standard querying methods inside the scope block. The following ones are discussed below:
where
includes
readonly
select
where
The where
method lets you specify the conditions that the associated object must meet.
includes
You can use the includes
method let you specify second-order associations that should be eager-loaded when this association is used. For example, consider these models:
If you frequently retrieve customers directly from line items (@line_item.order.customer
), then you can make your code somewhat more efficient by including customers in the association from line items to orders:
There's no need to use includes
for immediate associations - that is, if you have Order belongs_to :customer
, then the customer is eager-loaded automatically when it's needed.
readonly
If you use readonly
, then the associated object will be read-only when retrieved via the association.
select
The select
method lets you override the SQL SELECT
clause that is used to retrieve data about the associated object. By default, Rails retrieves all columns.
If you use the select
method on a belongs_to
association, you should also set the :foreign_key
option to guarantee the correct results.
You can see if any associated objects exist by using the association.nil?
method:
Assigning an object to a belongs_to
association does not automatically save the object. It does not save the associated object either.
has_one
Association ReferenceThe has_one
association creates a one-to-one match with another model. In database terms, this association says that the other class contains the foreign key. If this class contains the foreign key, then you should use belongs_to
instead.
has_one
When you declare a has_one
association, the declaring class automatically gains four methods related to the association:
association(force_reload = false)
association=(associate)
build_association(attributes = {})
create_association(attributes = {})
In all of these methods, association
is replaced with the symbol passed as the first argument to has_one
. For example, given the declaration:
Each instance of the Supplier
model will have these methods:
When initializing a new has_one
or belongs_to
association you must use the build_
prefix to build the association, rather than the association.build
method that would be used for has_many
or has_and_belongs_to_many
associations. To create one, use the create_
prefix.
association(force_reload = false)
The association
method returns the associated object, if any. If no associated object is found, it returns nil
.
If the associated object has already been retrieved from the database for this object, the cached version will be returned. To override this behavior (and force a database read), pass true
as the force_reload
argument.
association=(associate)
The association=
method assigns an associated object to this object. Behind the scenes, this means extracting the primary key from this object and setting the associate object's foreign key to the same value.
build_association(attributes = {})
The build_association
method returns a new object of the associated type. This object will be instantiated from the passed attributes, and the link through its foreign key will be set, but the associated object will not yet be saved.
create_association(attributes = {})
The create_association
method returns a new object of the associated type. This object will be instantiated from the passed attributes, the link through its foreign key will be set, and, once it passes all of the validations specified on the associated model, the associated object will be saved.
has_one
While Rails uses intelligent defaults that will work well in most situations, there may be times when you want to customize the behavior of the has_one
association reference. Such customizations can easily be accomplished by passing options when you create the association. For example, this association uses two such options:
The has_one
association supports these options:
:as
:autosave
:class_name
:dependent
:foreign_key
:inverse_of
:primary_key
:source
:source_type
:through
:validate
:as
Setting the :as
option indicates that this is a polymorphic association. Polymorphic associations were discussed in detail earlier in this guide.
:autosave
If you set the :autosave
option to true
, Rails will save any loaded members and destroy members that are marked for destruction whenever you save the parent object.
:class_name
If the name of the other model cannot be derived from the association name, you can use the :class_name
option to supply the model name. For example, if a supplier has an account, but the actual name of the model containing accounts is Billing
, you'd set things up this way:
:dependent
Controls what happens to the associated object when its owner is destroyed:
:destroy
causes the associated object to also be destroyed:delete
causes the associated object to be deleted directly from the database (so callbacks will not execute):nullify
causes the foreign key to be set to NULL
. Callbacks are not executed.:restrict_with_exception
causes an exception to be raised if there is an associated record:restrict_with_error
causes an error to be added to the owner if there is an associated object:foreign_key
By convention, Rails assumes that the column used to hold the foreign key on the other model is the name of this model with the suffix _id
added. The :foreign_key
option lets you set the name of the foreign key directly:
In any case, Rails will not create foreign key columns for you. You need to explicitly define them as part of your migrations.
:inverse_of
The :inverse_of
option specifies the name of the belongs_to
association that is the inverse of this association. Does not work in combination with the :through
or :as
options.
:primary_key
By convention, Rails assumes that the column used to hold the primary key of this model is id
. You can override this and explicitly specify the primary key with the :primary_key
option.
:source
The :source
option specifies the source association name for a has_one :through
association.
:source_type
The :source_type
option specifies the source association type for a has_one :through
association that proceeds through a polymorphic association.
:through
The :through
option specifies a join model through which to perform the query. has_one :through
associations were discussed in detail earlier in this guide.
:validate
If you set the :validate
option to true
, then associated objects will be validated whenever you save this object. By default, this is false
: associated objects will not be validated when this object is saved.
has_one
There may be times when you wish to customize the query used by has_one
. Such customizations can be achieved via a scope block. For example:
You can use any of the standard querying methods inside the scope block. The following ones are discussed below:
where
includes
readonly
select
where
The where
method lets you specify the conditions that the associated object must meet.
includes
You can use the includes
method to specify second-order associations that should be eager-loaded when this association is used. For example, consider these models:
If you frequently retrieve representatives directly from suppliers (@supplier.account.representative
), then you can make your code somewhat more efficient by including representatives in the association from suppliers to accounts:
readonly
If you use the readonly
method, then the associated object will be read-only when retrieved via the association.
select
The select
method lets you override the SQL SELECT
clause that is used to retrieve data about the associated object. By default, Rails retrieves all columns.
You can see if any associated objects exist by using the association.nil?
method:
When you assign an object to a has_one
association, that object is automatically saved (in order to update its foreign key). In addition, any object being replaced is also automatically saved, because its foreign key will change too.
If either of these saves fails due to validation errors, then the assignment statement returns false
and the assignment itself is cancelled.
If the parent object (the one declaring the has_one
association) is unsaved (that is, new_record?
returns true
) then the child objects are not saved. They will automatically when the parent object is saved.
If you want to assign an object to a has_one
association without saving the object, use the association.build
method.
has_many
Association ReferenceThe has_many
association creates a one-to-many relationship with another model. In database terms, this association says that the other class will have a foreign key that refers to instances of this class.
has_many
When you declare a has_many
association, the declaring class automatically gains 13 methods related to the association:
collection(force_reload = false)
collection<<(object, ...)
collection.delete(object, ...)
collection.destroy(object, ...)
collection=objects
collection_singular_ids
collection_singular_ids=ids
collection.clear
collection.empty?
collection.size
collection.find(...)
collection.where(...)
collection.exists?(...)
collection.build(attributes = {}, ...)
collection.create(attributes = {})
In all of these methods, collection
is replaced with the symbol passed as the first argument to has_many
, and collection_singular
is replaced with the singularized version of that symbol. For example, given the declaration:
Each instance of the customer model will have these methods:
collection(force_reload = false)
The collection
method returns an array of all of the associated objects. If there are no associated objects, it returns an empty array.
collection<<(object, ...)
The collection<<
method adds one or more objects to the collection by setting their foreign keys to the primary key of the calling model.
collection.delete(object, ...)
The collection.delete
method removes one or more objects from the collection by setting their foreign keys to NULL
.
Additionally, objects will be destroyed if they're associated with dependent: :destroy
, and deleted if they're associated with dependent: :delete_all
.
collection.destroy(object, ...)
The collection.destroy
method removes one or more objects from the collection by running destroy
on each object.
Objects will always be removed from the database, ignoring the :dependent
option.
collection=objects
The collection=
method makes the collection contain only the supplied objects, by adding and deleting as appropriate.
collection_singular_ids
The collection_singular_ids
method returns an array of the ids of the objects in the collection.
collection_singular_ids=ids
The collection_singular_ids=
method makes the collection contain only the objects identified by the supplied primary key values, by adding and deleting as appropriate.
collection.clear
The collection.clear
method removes every object from the collection. This destroys the associated objects if they are associated with dependent: :destroy
, deletes them directly from the database if dependent: :delete_all
, and otherwise sets their foreign keys to NULL
.
collection.empty?
The collection.empty?
method returns true
if the collection does not contain any associated objects.
collection.size
The collection.size
method returns the number of objects in the collection.
collection.find(...)
The collection.find
method finds objects within the collection. It uses the same syntax and options as ActiveRecord::Base.find
.
collection.where(...)
The collection.where
method finds objects within the collection based on the conditions supplied but the objects are loaded lazily meaning that the database is queried only when the object(s) are accessed.
collection.exists?(...)
The collection.exists?
method checks whether an object meeting the supplied conditions exists in the collection. It uses the same syntax and options as ActiveRecord::Base.exists?
.
collection.build(attributes = {}, ...)
The collection.build
method returns one or more new objects of the associated type. These objects will be instantiated from the passed attributes, and the link through their foreign key will be created, but the associated objects will not yet be saved.
collection.create(attributes = {})
The collection.create
method returns a new object of the associated type. This object will be instantiated from the passed attributes, the link through its foreign key will be created, and, once it passes all of the validations specified on the associated model, the associated object will be saved.
has_many
While Rails uses intelligent defaults that will work well in most situations, there may be times when you want to customize the behavior of the has_many
association reference. Such customizations can easily be accomplished by passing options when you create the association. For example, this association uses two such options:
The has_many
association supports these options:
:as
:autosave
:class_name
:dependent
:foreign_key
:inverse_of
:primary_key
:source
:source_type
:through
:validate
:as
Setting the :as
option indicates that this is a polymorphic association, as discussed earlier in this guide.
:autosave
If you set the :autosave
option to true
, Rails will save any loaded members and destroy members that are marked for destruction whenever you save the parent object.
:class_name
If the name of the other model cannot be derived from the association name, you can use the :class_name
option to supply the model name. For example, if a customer has many orders, but the actual name of the model containing orders is Transaction
, you'd set things up this way:
:dependent
Controls what happens to the associated objects when their owner is destroyed:
:destroy
causes all the associated objects to also be destroyed:delete_all
causes all the associated objects to be deleted directly from the database (so callbacks will not execute):nullify
causes the foreign keys to be set to NULL
. Callbacks are not executed.:restrict_with_exception
causes an exception to be raised if there are any associated records:restrict_with_error
causes an error to be added to the owner if there are any associated objectsThis option is ignored when you use the :through
option on the association.
:foreign_key
By convention, Rails assumes that the column used to hold the foreign key on the other model is the name of this model with the suffix _id
added. The :foreign_key
option lets you set the name of the foreign key directly:
In any case, Rails will not create foreign key columns for you. You need to explicitly define them as part of your migrations.
:inverse_of
The :inverse_of
option specifies the name of the belongs_to
association that is the inverse of this association. Does not work in combination with the :through
or :as
options.
:primary_key
By convention, Rails assumes that the column used to hold the primary key of the association is id
. You can override this and explicitly specify the primary key with the :primary_key
option.
:source
The :source
option specifies the source association name for a has_many :through
association. You only need to use this option if the name of the source association cannot be automatically inferred from the association name.
:source_type
The :source_type
option specifies the source association type for a has_many :through
association that proceeds through a polymorphic association.
:through
The :through
option specifies a join model through which to perform the query. has_many :through
associations provide a way to implement many-to-many relationships, as discussed earlier in this guide.
:validate
If you set the :validate
option to false
, then associated objects will not be validated whenever you save this object. By default, this is true
: associated objects will be validated when this object is saved.
has_many
There may be times when you wish to customize the query used by has_many
. Such customizations can be achieved via a scope block. For example:
You can use any of the standard querying methods inside the scope block. The following ones are discussed below:
where
extending
group
includes
limit
offset
order
readonly
select
uniq
where
The where
method lets you specify the conditions that the associated object must meet.
You can also set conditions via a hash:
If you use a hash-style where
option, then record creation via this association will be automatically scoped using the hash. In this case, using @customer.confirmed_orders.create
or @customer.confirmed_orders.build
will create orders where the confirmed column has the value true
.
extending
The extending
method specifies a named module to extend the association proxy. Association extensions are discussed in detail later in this guide.
group
The group
method supplies an attribute name to group the result set by, using a GROUP BY
clause in the finder SQL.
includes
You can use the includes
method to specify second-order associations that should be eager-loaded when this association is used. For example, consider these models:
If you frequently retrieve line items directly from customers (@customer.orders.line_items
), then you can make your code somewhat more efficient by including line items in the association from customers to orders:
limit
The limit
method lets you restrict the total number of objects that will be fetched through an association.
offset
The offset
method lets you specify the starting offset for fetching objects via an association. For example, -> { offset(11) }
will skip the first 11 records.
order
The order
method dictates the order in which associated objects will be received (in the syntax used by an SQL ORDER BY
clause).
readonly
If you use the readonly
method, then the associated objects will be read-only when retrieved via the association.
select
The select
method lets you override the SQL SELECT
clause that is used to retrieve data about the associated objects. By default, Rails retrieves all columns.
If you specify your own select
, be sure to include the primary key and foreign key columns of the associated model. If you do not, Rails will throw an error.
distinct
Use the distinct
method to keep the collection free of duplicates. This is mostly useful together with the :through
option.
In the above case there are two readings and person.posts
brings out both of them even though these records are pointing to the same post.
Now let's set distinct
:
In the above case there are still two readings. However person.posts
shows only one post because the collection loads only unique records.
If you want to make sure that, upon insertion, all of the records in the persisted association are distinct (so that you can be sure that when you inspect the association that you will never find duplicate records), you should add a unique index on the table itself. For example, if you have a table named person_posts
and you want to make sure all the posts are unique, you could add the following in a migration:
Note that checking for uniqueness using something like include?
is subject to race conditions. Do not attempt to use include?
to enforce distinctness in an association. For instance, using the post example from above, the following code would be racy because multiple users could be attempting this at the same time:
When you assign an object to a has_many
association, that object is automatically saved (in order to update its foreign key). If you assign multiple objects in one statement, then they are all saved.
If any of these saves fails due to validation errors, then the assignment statement returns false
and the assignment itself is cancelled.
If the parent object (the one declaring the has_many
association) is unsaved (that is, new_record?
returns true
) then the child objects are not saved when they are added. All unsaved members of the association will automatically be saved when the parent is saved.
If you want to assign an object to a has_many
association without saving the object, use the collection.build
method.
has_and_belongs_to_many
Association ReferenceThe has_and_belongs_to_many
association creates a many-to-many relationship with another model. In database terms, this associates two classes via an intermediate join table that includes foreign keys referring to each of the classes.
has_and_belongs_to_many
When you declare a has_and_belongs_to_many
association, the declaring class automatically gains 13 methods related to the association:
collection(force_reload = false)
collection<<(object, ...)
collection.delete(object, ...)
collection.destroy(object, ...)
collection=objects
collection_singular_ids
collection_singular_ids=ids
collection.clear
collection.empty?
collection.size
collection.find(...)
collection.where(...)
collection.exists?(...)
collection.build(attributes = {})
collection.create(attributes = {})
In all of these methods, collection
is replaced with the symbol passed as the first argument to has_and_belongs_to_many
, and collection_singular
is replaced with the singularized version of that symbol. For example, given the declaration:
Each instance of the part model will have these methods:
If the join table for a has_and_belongs_to_many
association has additional columns beyond the two foreign keys, these columns will be added as attributes to records retrieved via that association. Records returned with additional attributes will always be read-only, because Rails cannot save changes to those attributes.
The use of extra attributes on the join table in a has_and_belongs_to_many
association is deprecated. If you require this sort of complex behavior on the table that joins two models in a many-to-many relationship, you should use a has_many :through
association instead of has_and_belongs_to_many
.
collection(force_reload = false)
The collection
method returns an array of all of the associated objects. If there are no associated objects, it returns an empty array.
collection<<(object, ...)
The collection<<
method adds one or more objects to the collection by creating records in the join table.
This method is aliased as collection.concat
and collection.push
.
collection.delete(object, ...)
The collection.delete
method removes one or more objects from the collection by deleting records in the join table. This does not destroy the objects.
This does not trigger callbacks on the join records.
collection.destroy(object, ...)
The collection.destroy
method removes one or more objects from the collection by running destroy
on each record in the join table, including running callbacks. This does not destroy the objects.
collection=objects
The collection=
method makes the collection contain only the supplied objects, by adding and deleting as appropriate.
collection_singular_ids
The collection_singular_ids
method returns an array of the ids of the objects in the collection.
collection_singular_ids=ids
The collection_singular_ids=
method makes the collection contain only the objects identified by the supplied primary key values, by adding and deleting as appropriate.
collection.clear
The collection.clear
method removes every object from the collection by deleting the rows from the joining table. This does not destroy the associated objects.
collection.empty?
The collection.empty?
method returns true
if the collection does not contain any associated objects.
collection.size
The collection.size
method returns the number of objects in the collection.
collection.find(...)
The collection.find
method finds objects within the collection. It uses the same syntax and options as ActiveRecord::Base.find
. It also adds the additional condition that the object must be in the collection.
collection.where(...)
The collection.where
method finds objects within the collection based on the conditions supplied but the objects are loaded lazily meaning that the database is queried only when the object(s) are accessed. It also adds the additional condition that the object must be in the collection.
collection.exists?(...)
The collection.exists?
method checks whether an object meeting the supplied conditions exists in the collection. It uses the same syntax and options as ActiveRecord::Base.exists?
.
collection.build(attributes = {})
The collection.build
method returns a new object of the associated type. This object will be instantiated from the passed attributes, and the link through the join table will be created, but the associated object will not yet be saved.
collection.create(attributes = {})
The collection.create
method returns a new object of the associated type. This object will be instantiated from the passed attributes, the link through the join table will be created, and, once it passes all of the validations specified on the associated model, the associated object will be saved.
has_and_belongs_to_many
While Rails uses intelligent defaults that will work well in most situations, there may be times when you want to customize the behavior of the has_and_belongs_to_many
association reference. Such customizations can easily be accomplished by passing options when you create the association. For example, this association uses two such options:
The has_and_belongs_to_many
association supports these options:
:association_foreign_key
:autosave
:class_name
:foreign_key
:join_table
:validate
:readonly
:association_foreign_key
By convention, Rails assumes that the column in the join table used to hold the foreign key pointing to the other model is the name of that model with the suffix _id
added. The :association_foreign_key
option lets you set the name of the foreign key directly:
The :foreign_key
and :association_foreign_key
options are useful when setting up a many-to-many self-join. For example:
:autosave
If you set the :autosave
option to true
, Rails will save any loaded members and destroy members that are marked for destruction whenever you save the parent object.
:class_name
If the name of the other model cannot be derived from the association name, you can use the :class_name
option to supply the model name. For example, if a part has many assemblies, but the actual name of the model containing assemblies is Gadget
, you'd set things up this way:
:foreign_key
By convention, Rails assumes that the column in the join table used to hold the foreign key pointing to this model is the name of this model with the suffix _id
added. The :foreign_key
option lets you set the name of the foreign key directly:
:join_table
If the default name of the join table, based on lexical ordering, is not what you want, you can use the :join_table
option to override the default.
:validate
If you set the :validate
option to false
, then associated objects will not be validated whenever you save this object. By default, this is true
: associated objects will be validated when this object is saved.
has_and_belongs_to_many
There may be times when you wish to customize the query used by has_and_belongs_to_many
. Such customizations can be achieved via a scope block. For example:
You can use any of the standard querying methods inside the scope block. The following ones are discussed below:
where
extending
group
includes
limit
offset
order
readonly
select
uniq
where
The where
method lets you specify the conditions that the associated object must meet.
You can also set conditions via a hash:
If you use a hash-style where
, then record creation via this association will be automatically scoped using the hash. In this case, using @parts.assemblies.create
or @parts.assemblies.build
will create orders where the factory
column has the value "Seattle".
extending
The extending
method specifies a named module to extend the association proxy. Association extensions are discussed in detail later in this guide.
group
The group
method supplies an attribute name to group the result set by, using a GROUP BY
clause in the finder SQL.
includes
You can use the includes
method to specify second-order associations that should be eager-loaded when this association is used.
limit
The limit
method lets you restrict the total number of objects that will be fetched through an association.
offset
The offset
method lets you specify the starting offset for fetching objects via an association. For example, if you set offset(11)
, it will skip the first 11 records.
order
The order
method dictates the order in which associated objects will be received (in the syntax used by an SQL ORDER BY
clause).
readonly
If you use the readonly
method, then the associated objects will be read-only when retrieved via the association.
select
The select
method lets you override the SQL SELECT
clause that is used to retrieve data about the associated objects. By default, Rails retrieves all columns.
uniq
Use the uniq
method to remove duplicates from the collection.
When you assign an object to a has_and_belongs_to_many
association, that object is automatically saved (in order to update the join table). If you assign multiple objects in one statement, then they are all saved.
If any of these saves fails due to validation errors, then the assignment statement returns false
and the assignment itself is cancelled.
If the parent object (the one declaring the has_and_belongs_to_many
association) is unsaved (that is, new_record?
returns true
) then the child objects are not saved when they are added. All unsaved members of the association will automatically be saved when the parent is saved.
If you want to assign an object to a has_and_belongs_to_many
association without saving the object, use the collection.build
method.
Normal callbacks hook into the life cycle of Active Record objects, allowing you to work with those objects at various points. For example, you can use a :before_save
callback to cause something to happen just before an object is saved.
Association callbacks are similar to normal callbacks, but they are triggered by events in the life cycle of a collection. There are four available association callbacks:
before_add
after_add
before_remove
after_remove
You define association callbacks by adding options to the association declaration. For example:
Rails passes the object being added or removed to the callback.
You can stack callbacks on a single event by passing them as an array:
If a before_add
callback throws an exception, the object does not get added to the collection. Similarly, if a before_remove
callback throws an exception, the object does not get removed from the collection.
You're not limited to the functionality that Rails automatically builds into association proxy objects. You can also extend these objects through anonymous modules, adding new finders, creators, or other methods. For example:
If you have an extension that should be shared by many associations, you can use a named extension module. For example:
Extensions can refer to the internals of the association proxy using these three attributes of the proxy_association
accessor:
proxy_association.owner
returns the object that the association is a part of.proxy_association.reflection
returns the reflection object that describes the association.proxy_association.target
returns the associated object for belongs_to
or has_one
, or the collection of associated objects for has_many
or has_and_belongs_to_many
.
To retrieve objects from the database, Active Record provides several finder methods. Each finder method allows you to pass arguments into it to perform certain queries on your database without writing raw SQL.
The methods are:
bind
create_with
eager_load
extending
from
group
having
includes
joins
limit
lock
none
offset
order
preload
readonly
references
reorder
reverse_order
select
distinct
uniq
where
All of the above methods return an instance of ActiveRecord::Relation
.
The primary operation of Model.find(options)
can be summarized as:
after_find
callbacks, if any.Active Record provides five different ways of retrieving a single object.
Using Model.find(primary_key)
, you can retrieve the object corresponding to the specified primary key that matches any supplied options. For example:
The SQL equivalent of the above is:
Model.find(primary_key)
will raise an ActiveRecord::RecordNotFound
exception if no matching record is found.
take
Model.take
retrieves a record without any implicit ordering. For example:
The SQL equivalent of the above is:
Model.take
returns nil
if no record is found and no exception will be raised.
The retrieved record may vary depending on the database engine.
first
Model.first
finds the first record ordered by the primary key. For example:
The SQL equivalent of the above is:
Model.first
returns nil
if no matching record is found and no exception will be raised.
last
Model.last
finds the last record ordered by the primary key. For example:
The SQL equivalent of the above is:
Model.last
returns nil
if no matching record is found and no exception will be raised.
find_by
Model.find_by
finds the first record matching some conditions. For example:
It is equivalent to writing:
take!
Model.take!
retrieves a record without any implicit ordering. For example:
The SQL equivalent of the above is:
Model.take!
raises ActiveRecord::RecordNotFound
if no matching record is found.
first!
Model.first!
finds the first record ordered by the primary key. For example:
The SQL equivalent of the above is:
Model.first!
raises ActiveRecord::RecordNotFound
if no matching record is found.
last!
Model.last!
finds the last record ordered by the primary key. For example:
The SQL equivalent of the above is:
Model.last!
raises ActiveRecord::RecordNotFound
if no matching record is found.
find_by!
Model.find_by!
finds the first record matching some conditions. It raises ActiveRecord::RecordNotFound
if no matching record is found. For example:
It is equivalent to writing:
Model.find(array_of_primary_key)
accepts an array of primary keys, returning an array containing all of the matching records for the supplied primary keys. For example:
The SQL equivalent of the above is:
Model.find(array_of_primary_key)
will raise an ActiveRecord::RecordNotFound
exception unless a matching record is found for all of the supplied primary keys.
Model.take(limit)
retrieves the first number of records specified by limit
without any explicit ordering:
The SQL equivalent of the above is:
Model.first(limit)
finds the first number of records specified by limit
ordered by primary key:
The SQL equivalent of the above is:
Model.last(limit)
finds the number of records specified by limit
ordered by primary key in descending order:
The SQL equivalent of the above is:
We often need to iterate over a large set of records, as when we send a newsletter to a large set of users, or when we export data.
This may appear straightforward:
But this approach becomes increasingly impractical as the table size increases, since User.all.each
instructs Active Record to fetch the entire table in a single pass, build a model object per row, and then keep the entire array of model objects in memory. Indeed, if we have a large number of records, the entire collection may exceed the amount of memory available.
Rails provides two methods that address this problem by dividing records into memory-friendly batches for processing. The first method, find_each
, retrieves a batch of records and then yields each record to the block individually as a model. The second method, find_in_batches
, retrieves a batch of records and then yields the entire batch to the block as an array of models.
The find_each
and find_in_batches
methods are intended for use in the batch processing of a large number of records that wouldn't fit in memory all at once. If you just need to loop over a thousand records the regular find methods are the preferred option.
find_each
The find_each
method retrieves a batch of records and then yields each record to the block individually as a model. In the following example, find_each
will retrieve 1000 records (the current default for both find_each
and find_in_batches
) and then yield each record individually to the block as a model. This process is repeated until all of the records have been processed:
find_each
The find_each
method accepts most of the options allowed by the regular find
method, except for :order
and :limit
, which are reserved for internal use by find_each
.
Two additional options, :batch_size
and :start
, are available as well.
:batch_size
The :batch_size
option allows you to specify the number of records to be retrieved in each batch, before being passed individually to the block. For example, to retrieve records in batches of 5000:
:start
By default, records are fetched in ascending order of the primary key, which must be an integer. The :start
option allows you to configure the first ID of the sequence whenever the lowest ID is not the one you need. This would be useful, for example, if you wanted to resume an interrupted batch process, provided you saved the last processed ID as a checkpoint.
For example, to send newsletters only to users with the primary key starting from 2000, and to retrieve them in batches of 5000:
Another example would be if you wanted multiple workers handling the same processing queue. You could have each worker handle 10000 records by setting the appropriate :start
option on each worker.
find_in_batches
The find_in_batches
method is similar to find_each
, since both retrieve batches of records. The difference is that find_in_batches
yields batches to the block as an array of models, instead of individually. The following example will yield to the supplied block an array of up to 1000 invoices at a time, with the final block containing any remaining invoices:
The :include
option allows you to name associations that should be loaded alongside with the models.
find_in_batches
The find_in_batches
method accepts the same :batch_size
and :start
options as find_each
, as well as most of the options allowed by the regular find
method, except for :order
and :limit
, which are reserved for internal use by find_in_batches
.
The where
method allows you to specify conditions to limit the records returned, representing the WHERE
-part of the SQL statement. Conditions can either be specified as a string, array, or hash.
If you'd like to add conditions to your find, you could just specify them in there, just like Client.where("orders_count = '2'")
. This will find all clients where the orders_count
field's value is 2.
Building your own conditions as pure strings can leave you vulnerable to SQL injection exploits. For example, Client.where("first_name LIKE '%#{params[:first_name]}%'")
is not safe. See the next section for the preferred way to handle conditions using an array.
Now what if that number could vary, say as an argument from somewhere? The find would then take the form:
Active Record will go through the first element in the conditions value and any additional elements will replace the question marks (?)
in the first element.
If you want to specify multiple conditions:
In this example, the first question mark will be replaced with the value in params[:orders]
and the second will be replaced with the SQL representation of false
, which depends on the adapter.
This code is highly preferable:
to this code:
because of argument safety. Putting the variable directly into the conditions string will pass the variable to the database as-is. This means that it will be an unescaped variable directly from a user who may have malicious intent. If you do this, you put your entire database at risk because once a user finds out they can exploit your database they can do just about anything to it. Never ever put your arguments directly inside the conditions string.
For more information on the dangers of SQL injection, see the Ruby on Rails Security Guide.
Similar to the (?)
replacement style of params, you can also specify keys/values hash in your array conditions:
This makes for clearer readability if you have a large number of variable conditions.
Active Record also allows you to pass in hash conditions which can increase the readability of your conditions syntax. With hash conditions, you pass in a hash with keys of the fields you want conditionalised and the values of how you want to conditionalise them:
Only equality, range and subset checking are possible with Hash conditions.
The field name can also be a string:
In the case of a belongs_to relationship, an association key can be used to specify the model if an Active Record object is used as the value. This method works with polymorphic relationships as well.
The values cannot be symbols. For example, you cannot do Client.where(status: :active)
.
This will find all clients created yesterday by using a BETWEEN
SQL statement:
This demonstrates a shorter syntax for the examples in Array Conditions
If you want to find records using the IN
expression you can pass an array to the conditions hash:
This code will generate SQL like this:
NOT
SQL queries can be built by where.not
.
In other words, this query can be generated by calling where
with no argument, then immediately chain with not
passing where
conditions.
To retrieve records from the database in a specific order, you can use the order
method.
For example, if you're getting a set of records and want to order them in ascending order by the created_at
field in your table:
You could specify ASC
or DESC
as well:
Or ordering by multiple fields:
If you want to call order
multiple times e.g. in different context, new order will append previous one
By default, Model.find
selects all the fields from the result set using select *
.
To select only a subset of fields from the result set, you can specify the subset via the select
method.
For example, to select only viewable_by
and locked
columns:
The SQL query used by this find call will be somewhat like:
Be careful because this also means you're initializing a model object with only the fields that you've selected. If you attempt to access a field that is not in the initialized record you'll receive:
Where <attribute>
is the attribute you asked for. The id
method will not raise the ActiveRecord::MissingAttributeError
, so just be careful when working with associations because they need the id
method to function properly.
If you would like to only grab a single record per unique value in a certain field, you can use distinct
:
This would generate SQL like:
You can also remove the uniqueness constraint:
To apply LIMIT
to the SQL fired by the Model.find
, you can specify the LIMIT
using limit
and offset
methods on the relation.
You can use limit
to specify the number of records to be retrieved, and use offset
to specify the number of records to skip before starting to return the records. For example
will return a maximum of 5 clients and because it specifies no offset it will return the first 5 in the table. The SQL it executes looks like this:
Adding offset
to that
will return instead a maximum of 5 clients beginning with the 31st. The SQL looks like:
To apply a GROUP BY
clause to the SQL fired by the finder, you can specify the group
method on the find.
For example, if you want to find a collection of the dates orders were created on:
And this will give you a single Order
object for each date where there are orders in the database.
The SQL that would be executed would be something like this:
SQL uses the HAVING
clause to specify conditions on the GROUP BY
fields. You can add the HAVING
clause to the SQL fired by the Model.find
by adding the :having
option to the find.
For example:
The SQL that would be executed would be something like this:
This will return single order objects for each day, but only those that are ordered more than $100 in a day.
except
You can specify certain conditions to be excepted by using the except
method. For example:
The SQL that would be executed:
unscope
The except
method does not work when the relation is merged. For example:
will still have an order if the order comes from a default scope on Comment. In order to remove all ordering, even from relations which are merged in, use unscope as follows:
You can additionally unscope specific where clauses. For example:
only
You can also override conditions using the only
method. For example:
The SQL that would be executed:
reorder
The reorder
method overrides the default scope order. For example:
The SQL that would be executed:
In case the reorder
clause is not used, the SQL executed would be:
reverse_order
The reverse_order
method reverses the ordering clause if specified.
The SQL that would be executed:
If no ordering clause is specified in the query, the reverse_order
orders by the primary key in reverse order.
The SQL that would be executed:
This method accepts no arguments.
The none
method returns a chainable relation with no records. Any subsequent conditions chained to the returned relation will continue generating empty relations. This is useful in scenarios where you need a chainable response to a method or a scope that could return zero results.
Active Record provides readonly
method on a relation to explicitly disallow modification of any of the returned objects. Any attempt to alter a readonly record will not succeed, raising an ActiveRecord::ReadOnlyRecord
exception.
As client
is explicitly set to be a readonly object, the above code will raise an ActiveRecord::ReadOnlyRecord
exception when calling client.save
with an updated value of visits.
using joins
without an explicit select
will return readonly records.
Locking is helpful for preventing race conditions when updating records in the database and ensuring atomic updates.
Active Record provides two locking mechanisms:
Optimistic locking allows multiple users to access the same record for edits, and assumes a minimum of conflicts with the data. It does this by checking whether another process has made changes to a record since it was opened. An ActiveRecord::StaleObjectError
exception is thrown if that has occurred and the update is ignored.
Optimistic locking column
In order to use optimistic locking, the table needs to have a column called lock_version
of type integer. Each time the record is updated, Active Record increments the lock_version
column. If an update request is made with a lower value in the lock_version
field than is currently in the lock_version
column in the database, the update request will fail with an ActiveRecord::StaleObjectError
. Example:
You're then responsible for dealing with the conflict by rescuing the exception and either rolling back, merging, or otherwise apply the business logic needed to resolve the conflict.
This behavior can be turned off by setting ActiveRecord::Base.lock_optimistically = false
.
To override the name of the lock_version
column, ActiveRecord::Base
provides a class attribute called locking_column
:
Pessimistic locking uses a locking mechanism provided by the underlying database. Using lock
when building a relation obtains an exclusive lock on the selected rows. Relations using lock
are usually wrapped inside a transaction for preventing deadlock conditions.
For example:
The above session produces the following SQL for a MySQL backend:
You can also pass raw SQL to the lock
method for allowing different types of locks. For example, MySQL has an expression called LOCK IN SHARE MODE
where you can lock a record but still allow other queries to read it. To specify this expression just pass it in as the lock option:
If you already have an instance of your model, you can start a transaction and acquire the lock in one go using the following code:
Active Record provides a finder method called joins
for specifying JOIN
clauses on the resulting SQL. There are multiple ways to use the joins
method.
You can just supply the raw SQL specifying the JOIN
clause to joins
:
This will result in the following SQL:
using joins
might return readonly records. See readonly for more details.
This method only works with INNER JOIN
.
Active Record lets you use the names of the associations defined on the model as a shortcut for specifying JOIN
clause for those associations when using the joins
method.
For example, consider the following Category
, Post
, Comments
and Guest
models:
Now all of the following will produce the expected join queries using INNER JOIN
:
This produces:
Or, in English: "return a Category object for all categories with posts". Note that you will see duplicate categories if more than one post has the same category. If you want unique categories, you can use Category.joins(:posts).uniq
.
This produces:
Or, in English: "return all posts that have a category and at least one comment". Note again that posts with multiple comments will show up multiple times.
This produces:
Or, in English: "return all posts that have a comment made by a guest."
This produces:
You can specify conditions on the joined tables using the regular Array and String conditions. Hash conditions provides a special syntax for specifying conditions for the joined tables:
An alternative and cleaner syntax is to nest the hash conditions:
This will find all clients who have orders that were created yesterday, again using a BETWEEN
SQL expression.
Eager loading is the mechanism for loading the associated records of the objects returned by Model.find
using as few queries as possible.
N + 1 queries problem
Consider the following code, which finds 10 clients and prints their postcodes:
This code looks fine at the first sight. But the problem lies within the total number of queries executed. The above code executes 1 (to find 10 clients) + 10 (one per each client to load the address) = 11 queries in total.
Solution to N + 1 queries problem
Active Record lets you specify in advance all the associations that are going to be loaded. This is possible by specifying the includes
method of the Model.find
call. With includes
, Active Record ensures that all of the specified associations are loaded using the minimum possible number of queries.
Revisiting the above case, we could rewrite Client.limit(10)
to use eager load addresses:
The above code will execute just 2 queries, as opposed to 11 queries in the previous case:
Active Record lets you eager load any number of associations with a single Model.find
call by using an array, hash, or a nested hash of array/hash with the includes
method.
This loads all the posts and the associated category and comments for each post.
This will find the category with id 1 and eager load all of the associated posts, the associated posts' tags and comments, and every comment's guest association.
Even though Active Record lets you specify conditions on the eager loaded associations just like joins
, the recommended way is to use joins instead.
However if you must do this, you may use where
as you would normally.
This would generate a query which contains a LEFT OUTER JOIN
whereas the joins
method would generate one using the INNER JOIN
function instead.
If there was no where
condition, this would generate the normal set of two queries.
If, in the case of this includes
query, there were no comments for any posts, all the posts would still be loaded. By using joins
(an INNER JOIN), the join conditions must match, otherwise no records will be returned.
Scoping allows you to specify commonly-used queries which can be referenced as method calls on the association objects or models. With these scopes, you can use every method previously covered such as where
, joins
and includes
. All scope methods will return an ActiveRecord::Relation
object which will allow for further methods (such as other scopes) to be called on it.
To define a simple scope, we use the scope
method inside the class, passing the query that we'd like to run when this scope is called:
This is exactly the same as defining a class method, and which you use is a matter of personal preference:
Scopes are also chainable within scopes:
To call this published
scope we can call it on either the class:
Or on an association consisting of Post
objects:
Your scope can take arguments:
This may then be called using this:
However, this is just duplicating the functionality that would be provided to you by a class method.
Using a class method is the preferred way to accept arguments for scopes. These methods will still be accessible on the association objects:
Just like where
clauses scopes are merged using AND
conditions.
We can mix and match scope
and where
conditions and the final sql will have all conditions joined with AND
.
If we do want the last where clause
to win then Relation#merge
can be used .
One important caveat is that default_scope
will be overridden by scope
and where
conditions.
As you can see above the default_scope
is being overridden by both scope
and where
conditions.
If we wish for a scope to be applied across all queries to the model we can use the default_scope
method within the model itself.
When queries are executed on this model, the SQL query will now look something like this:
If you need to do more complex things with a default scope, you can alternatively define it as a class method:
If we wish to remove scoping for any reason we can use the unscoped
method. This is especially useful if a default_scope
is specified in the model and should not be applied for this particular query.
This method removes all scoping and will do a normal query on the table.
Note that chaining unscoped
with a scope
does not work. In these cases, it is recommended that you use the block form of unscoped
:
For every field (also known as an attribute) you define in your table, Active Record provides a finder method. If you have a field called first_name
on your Client
model for example, you get find_by_first_name
for free from Active Record. If you have a locked
field on the Client
model, you also get find_by_locked
and methods.
You can specify an exclamation point (!
) on the end of the dynamic finders to get them to raise an ActiveRecord::RecordNotFound
error if they do not return any records, like Client.find_by_name!("Ryan")
If you want to find both by name and locked, you can chain these finders together by simply typing "and
" between the fields. For example, Client.find_by_first_name_and_locked("Ryan", true)
.
Some dynamic finders have been deprecated in Rails 4.0 and will be removed in Rails 4.1. The best practice is to use Active Record scopes instead. You can find the deprecation gem at https://github.com/rails/activerecord-deprecated_finders
It's common that you need to find a record or create it if it doesn't exist. You can do that with the find_or_create_by
and find_or_create_by!
methods.
find_or_create_by
The find_or_create_by
method checks whether a record with the attributes exists. If it doesn't, then create
is called. Let's see an example.
Suppose you want to find a client named 'Andy', and if there's none, create one. You can do so by running:
The SQL generated by this method looks like this:
find_or_create_by
returns either the record that already exists or the new record. In our case, we didn't already have a client named Andy so the record is created and returned.
The new record might not be saved to the database; that depends on whether validations passed or not (just like create
).
Suppose we want to set the 'locked' attribute to true if we're creating a new record, but we don't want to include it in the query. So we want to find the client named "Andy", or if that client doesn't exist, create a client named "Andy" which is not locked.
We can achieve this in two ways. The first is to use create_with
:
The second way is using a block:
The block will only be executed if the client is being created. The second time we run this code, the block will be ignored.
find_or_create_by!
You can also use find_or_create_by!
to raise an exception if the new record is invalid. Validations are not covered on this guide, but let's assume for a moment that you temporarily add
to your Client
model. If you try to create a new Client
without passing an orders_count
, the record will be invalid and an exception will be raised:
find_or_initialize_by
The find_or_initialize_by
method will work just like find_or_create_by
but it will call new
instead of create
. This means that a new model instance will be created in memory but won't be saved to the database. Continuing with the find_or_create_by
example, we now want the client named 'Nick':
Because the object is not yet stored in the database, the SQL generated looks like this:
When you want to save it to the database, just call save
:
If you'd like to use your own SQL to find records in a table you can use find_by_sql
. The find_by_sql
method will return an array of objects even if the underlying query returns just a single record. For example you could run this query:
find_by_sql
provides you with a simple way of making custom calls to the database and retrieving instantiated objects.
select_all
find_by_sql
has a close relative called connection#select_all
. select_all
will retrieve objects from the database using custom SQL just like find_by_sql
but will not instantiate them. Instead, you will get an array of hashes where each hash indicates a record.
pluck
pluck
can be used to query a single or multiple columns from the underlying table of a model. It accepts a list of column names as argument and returns an array of values of the specified columns with the corresponding data type.
pluck
makes it possible to replace code like:
with:
Unlike select
, pluck
directly converts a database result into a Ruby Array
, without constructing ActiveRecord
objects. This can mean better performance for a large or often-running query. However, any model method overrides will not be available. For example:
Furthermore, unlike select
and other Relation
scopes, pluck
triggers an immediate query, and thus cannot be chained with any further scopes, although it can work with scopes already constructed earlier:
ids
ids
can be used to pluck all the IDs for the relation using the table's primary key.
If you simply want to check for the existence of the object there's a method called exists?
. This method will query the database using the same query as find
, but instead of returning an object or collection of objects it will return either true
or false
.
The exists?
method also takes multiple ids, but the catch is that it will return true if any one of those records exists.
It's even possible to use exists?
without any arguments on a model or a relation.
The above returns true
if there is at least one client with the first_name
'Ryan' and false
otherwise.
The above returns false
if the clients
table is empty and true
otherwise.
You can also use any?
and many?
to check for existence on a model or relation.
This section uses count as an example method in this preamble, but the options described apply to all sub-sections.
All calculation methods work directly on a model:
Or on a relation:
You can also use various finder methods on a relation for performing complex calculations:
Which will execute:
If you want to see how many records are in your model's table you could call Client.count
and that will return the number. If you want to be more specific and find all the clients with their age present in the database you can use Client.count(:age)
.
For options, please see the parent section, Calculations.
If you want to see the average of a certain number in one of your tables you can call the average
method on the class that relates to the table. This method call will look something like this:
This will return a number (possibly a floating point number such as 3.14159265) representing the average value in the field.
For options, please see the parent section, Calculations.
If you want to find the minimum value of a field in your table you can call the minimum
method on the class that relates to the table. This method call will look something like this:
For options, please see the parent section, Calculations.
If you want to find the maximum value of a field in your table you can call the maximum
method on the class that relates to the table. This method call will look something like this:
For options, please see the parent section, Calculations.
If you want to find the sum of a field for all records in your table you can call the sum
method on the class that relates to the table. This method call will look something like this:
For options, please see the parent section, Calculations.
You can run EXPLAIN on the queries triggered by relations. For example,
may yield
under MySQL.
Active Record performs a pretty printing that emulates the one of the database shells. So, the same query running with the PostgreSQL adapter would yield instead
Eager loading may trigger more than one query under the hood, and some queries may need the results of previous ones. Because of that, explain
actually executes the query, and then asks for the query plans. For example,
yields
under MySQL.
Interpretation of the output of EXPLAIN is beyond the scope of this guide. The following pointers may be helpful:
Action View and Action Controller are the two major components of Action Pack. In Rails, web requests are handled by Action Pack, which splits the work into a controller part (performing the logic) and a view part (rendering a template). Typically, Action Controller will be concerned with communicating with the database and performing CRUD actions where necessary. Action View is then responsible for compiling the response.
Action View templates are written using embedded Ruby in tags mingled with HTML. To avoid cluttering the templates with boilerplate code, a number of helper classes provide common behavior for forms, dates, and strings. It's also easy to add new helpers to your application as it evolves.
Some features of Action View are tied to Active Record, but that doesn't mean Action View depends on Active Record. Action View is an independent package that can be used with any sort of Ruby libraries.
For each controller there is an associated directory in the app/views
directory which holds the template files that make up the views associated with that controller. These files are used to display the view that results from each controller action.
Let's take a look at what Rails does by default when creating a new resource using the scaffold generator:
There is a naming convention for views in Rails. Typically, the views share their name with the associated controller action, as you can see above. For example, the index controller action of the posts_controller.rb
will use the index.html.erb
view file in the app/views/posts
directory. The complete HTML returned to the client is composed of a combination of this ERB file, a layout template that wraps it, and all the partials that the view may reference. Later on this guide you can find a more detailed documentation of each one of these three components.
As mentioned before, the final HTML output is a composition of three Rails elements: Templates
, Partials
and Layouts
. Below is a brief overview of each one of them.
Action View templates can be written in several ways. If the template file has a .erb
extension then it uses a mixture of ERB (included in Ruby) and HTML. If the template file has a .builder
extension then a fresh instance of Builder::XmlMarkup
library is used.
Rails supports multiple template systems and uses a file extension to distinguish amongst them. For example, an HTML file using the ERB template system will have .html.erb
as a file extension.
Within an ERB template, Ruby code can be included using both <% %>
and <%= %>
tags. The <% %>
tags are used to execute Ruby code that does not return anything, such as conditions, loops or blocks, and the <%= %>
tags are used when you want output.
Consider the following loop for names:
The loop is set up in regular embedding tags (<% %>
) and the name is written using the output embedding tags (<%= %>
). Note that this is not just a usage suggestion, for regular output functions like print
or puts
won't work with ERB templates. So this would be wrong:
To suppress leading and trailing whitespaces, you can use <%-
-%>
interchangeably with <%
and %>
.
Builder templates are a more programmatic alternative to ERB. They are especially useful for generating XML content. An XmlMarkup object named xml
is automatically made available to templates with a .builder
extension.
Here are some basic examples:
which would produce:
Any method with a block will be treated as an XML markup tag with nested markup in the block. For example, the following:
would produce something like:
Below is a full-length RSS example actually used on Basecamp:
By default, Rails will compile each template to a method in order to render it. When you alter a template, Rails will check the file's modification time and recompile it in development mode.
Partial templates – usually just called "partials" – are another device for breaking the rendering process into more manageable chunks. With partials, you can extract pieces of code from your templates to separate files and also reuse them throughout your templates.
To render a partial as part of a view, you use the render
method within the view:
This will render a file named _menu.html.erb
at that point within the view that is being rendered. Note the leading underscore character: partials are named with a leading underscore to distinguish them from regular views, even though they are referred to without the underscore. This holds true even when you're pulling in a partial from another folder:
That code will pull in the partial from app/views/shared/_menu.html.erb
.
One way to use partials is to treat them as the equivalent of subroutines; a way to move details out of a view so that you can grasp what's going on more easily. For example, you might have a view that looks like this:
Here, the _ad_banner.html.erb
and _footer.html.erb
partials could contain content that is shared among many pages in your application. You don't need to see the details of these sections when you're concentrating on a particular page.
as
and object
optionsBy default ActionView::Partials::PartialRenderer
has its object in a local variable with the same name as the template. So, given:
within product we'll get @product
in the local variable product
, as if we had written:
With the as
option we can specify a different name for the local variable. For example, if we wanted it to be item
instead of product
we would do:
The object
option can be used to directly specify which object is rendered into the partial; useful when the template's object is elsewhere (eg. in a different instance variable or in a local variable).
For example, instead of:
we would do:
The object
and as
options can also be used together:
It is very common that a template needs to iterate over a collection and render a sub-template for each of the elements. This pattern has been implemented as a single method that accepts an array and renders a partial for each one of the elements in the array.
So this example for rendering all the products:
can be rewritten in a single line:
When a partial is called like this (eg. with a collection), the individual instances of the partial have access to the member of the collection being rendered via a variable named after the partial. In this case, the partial is _product
, and within it you can refer to product
to get the instance that is being rendered.
You can use a shorthand syntax for rendering collections. Assuming @products
is a collection of Product
instances, you can simply write the following to produce the same result:
Rails determines the name of the partial to use by looking at the model name in the collection, Product
in this case. In fact, you can even create a heterogeneous collection and render it this way, and Rails will choose the proper partial for each member of the collection.
You can also specify a second partial to be rendered between instances of the main partial by using the :spacer_template
option:
Rails will render the _product_ruler
partial (with no data passed to it) between each pair of _product
partials.
Layouts can be used to render a common view template around the results of Rails controller actions. Typically, every Rails application has a couple of overall layouts that most pages are rendered within. For example, a site might have a layout for a logged in user, and a layout for the marketing or sales side of the site. The logged in user layout might include top-level navigation that should be present across many controller actions. The sales layout for a SaaS app might include top-level navigation for things like "Pricing" and "Contact Us." You would expect each layout to have a different look and feel. You can read more details about Layouts in the Layouts and Rendering in Rails guide.
Partials can have their own layouts applied to them. These layouts are different than the ones that are specified globally for the entire action, but they work in a similar fashion.
Let's say we're displaying a post on a page, that should be wrapped in a div
for display purposes. First, we'll create a new Post
:
In the show
template, we'll render the _post
partial wrapped in the box
layout:
posts/show.html.erb
The box
layout simply wraps the _post
partial in a div
:
posts/_box.html.erb
The _post
partial wraps the post's body
in a div
with the id
of the post using the div_for
helper:
posts/_post.html.erb
this would output the following:
Note that the partial layout has access to the local post
variable that was passed into the render
call. However, unlike application-wide layouts, partial layouts still have the underscore prefix.
You can also render a block of code within a partial layout instead of calling yield
. For example, if we didn't have the _post
partial, we could do this instead:
posts/show.html.erb
Supposing we use the same _box
partial from above, this would produce the same output as the previous example.
..
WIP: Not all the helpers are listed here. For a full list see the API documentation
The following is only a brief overview summary of the helpers available in Action View. It's recommended that you review the API Documentation, which covers all of the helpers in more detail, but this should serve as a good starting point.
This module provides methods for generating container tags, such as div
, for your record. This is the recommended way of creating a container for render your Active Record object, as it adds an appropriate class and id attributes to that container. You can then refer to those containers easily by following the convention, instead of having to think about which class or id attribute you should use.
Renders a container tag that relates to your Active Record Object.
For example, given @post
is the object of Post
class, you can do:
This will generate this HTML output:
You can also supply HTML attributes as an additional option hash. For example:
Will generate this HTML output:
You can pass a collection of Active Record objects. This method will loop through your objects and create a container for each of them. For example, given @posts
is an array of two Post
objects:
Will generate this HTML output:
This is actually a convenient method which calls content_tag_for
internally with :div
as the tag name. You can pass either an Active Record object or a collection of objects. For example:
Will generate this HTML output:
This module provides methods for generating HTML that links views to assets such as images, JavaScript files, stylesheets, and feeds.
By default, Rails links to these assets on the current host in the public folder, but you can direct Rails to link to assets from a dedicated assets server by setting config.action_controller.asset_host
in the application configuration, typically in config/environments/production.rb
. For example, let's say your asset host is assets.example.com
:
Register one or more JavaScript files to be included when symbol is passed to javascript_include_tag. This method is typically intended to be called from plugin initialization to register JavaScript files that the plugin installed in vendor/assets/javascripts
.
Register one or more stylesheet files to be included when symbol is passed to stylesheet_link_tag
. This method is typically intended to be called from plugin initialization to register stylesheet files that the plugin installed in vendor/assets/stylesheets
.
Returns a link tag that browsers and news readers can use to auto-detect an RSS or Atom feed.
Computes the path to an image asset in the app/assets/images
directory. Full paths from the document root will be passed through. Used internally by image_tag
to build the image path.
Fingerprint will be added to the filename if config.assets.digest is set to true.
Computes the url to an image asset in the app/assets/images
directory. This will call image_path
internally and merge with your current host or your asset host.
Returns an html image tag for the source. The source can be a full path or a file that exists in your app/assets/images
directory.
Returns an html script tag for each of the sources provided. You can pass in the filename (.js
extension is optional) of JavaScript files that exist in your app/assets/javascripts
directory for inclusion into the current page or you can pass the full path relative to your document root.
If the application does not use the asset pipeline, to include the jQuery JavaScript library in your application, pass :defaults
as the source. When using :defaults
, if an application.js
file exists in your app/assets/javascripts
directory, it will be included as well.
You can also include all JavaScript files in the app/assets/javascripts
directory using :all
as the source.
You can also cache multiple JavaScript files into one file, which requires less HTTP connections to download and can better be compressed by gzip (leading to faster transfers). Caching will only happen if ActionController::Base.perform_caching
is set to true (which is the case by default for the Rails production environment, but not for the development environment).
Computes the path to a JavaScript asset in the app/assets/javascripts
directory. If the source filename has no extension, .js
will be appended. Full paths from the document root will be passed through. Used internally by javascript_include_tag
to build the script path.
Computes the url to a JavaScript asset in the app/assets/javascripts
directory. This will call javascript_path
internally and merge with your current host or your asset host.
Returns a stylesheet link tag for the sources specified as arguments. If you don't specify an extension, .css
will be appended automatically.
You can also include all styles in the stylesheet directory using :all as the source:
You can also cache multiple stylesheets into one file, which requires less HTTP connections and can better be compressed by gzip (leading to faster transfers). Caching will only happen if ActionController::Base.perform_caching is set to true (which is the case by default for the Rails production environment, but not for the development environment).
Computes the path to a stylesheet asset in the app/assets/stylesheets
directory. If the source filename has no extension, .css will be appended. Full paths from the document root will be passed through. Used internally by stylesheet_link_tag to build the stylesheet path.
Computes the url to a stylesheet asset in the app/assets/stylesheets
directory. This will call stylesheet_path
internally and merge with your current host or your asset host.
This helper makes building an Atom feed easy. Here's a full usage example:
config/routes.rb
app/controllers/posts_controller.rb
app/views/posts/index.atom.builder
Allows you to measure the execution time of a block in a template and records the result to the log. Wrap this block around expensive operations or possible bottlenecks to get a time reading for the operation.
This would add something like "Process data files (0.34523)" to the log, which you can then use to compare timings when optimizing your code.
A method for caching fragments of a view rather than an entire action or page. This technique is useful caching pieces like menus, lists of news topics, static HTML fragments, and so on. This method takes a block that contains the content you wish to cache. See ActionController::Caching::Fragments
for more information.
The capture
method allows you to extract part of a template into a variable. You can then use this variable anywhere in your templates or layout.
The captured variable can then be used anywhere else.
Calling content_for
stores a block of markup in an identifier for later use. You can make subsequent calls to the stored content in other templates or the layout by passing the identifier as an argument to yield
.
For example, let's say we have a standard application layout, but also a special page that requires certain JavaScript that the rest of the site doesn't need. We can use content_for
to include this JavaScript on our special page without fattening up the rest of the site.
app/views/layouts/application.html.erb
app/views/posts/special.html.erb
Returns a set of select tags (one for year, month, and day) pre-selected for accessing a specified date-based attribute.
Returns a set of select tags (one for year, month, day, hour, and minute) pre-selected for accessing a specified datetime-based attribute.
Reports the approximate distance in time between two Time or Date objects or integers as seconds. Set include_seconds
to true if you want more detailed approximations.
Returns a set of html select-tags (one for year, month, and day) pre-selected with the date
provided.
Returns a set of html select-tags (one for year, month, day, hour, and minute) pre-selected with the datetime
provided.
Returns a select tag with options for each of the days 1 through 31 with the current day selected.
Returns a select tag with options for each of the hours 0 through 23 with the current hour selected.
Returns a select tag with options for each of the minutes 0 through 59 with the current minute selected.
Returns a select tag with options for each of the months January through December with the current month selected.
Returns a select tag with options for each of the seconds 0 through 59 with the current second selected.
Returns a set of html select-tags (one for hour and minute).
Returns a select tag with options for each of the five years on each side of the current, which is selected. The five year radius can be changed using the :start_year
and :end_year
keys in the options
.
Like distance_of_time_in_words
, but where to_time
is fixed to Time.now
.
Returns a set of select tags (one for hour, minute and optionally second) pre-selected for accessing a specified time-based attribute. The selects are prepared for multi-parameter assignment to an Active Record object.
Returns a pre
tag that has object dumped by YAML. This creates a very readable way to inspect an object.
Form helpers are designed to make working with models much easier compared to using just standard HTML elements by providing a set of methods for creating forms based on your models. This helper generates the HTML for forms, providing a method for each sort of input (e.g., text, password, select, and so on). When the form is submitted (i.e., when the user hits the submit button or form.submit is called via JavaScript), the form inputs will be bundled into the params object and passed back to the controller.
There are two types of form helpers: those that specifically work with model attributes and those that don't. This helper deals with those that work with model attributes; to see an example of form helpers that don't work with model attributes, check the ActionView::Helpers::FormTagHelper documentation.
The core method of this helper, form_for, gives you the ability to create a form for a model instance; for example, let's say that you have a model Person and want to create a new instance of it:
The HTML generated for this would be:
The params object created when this form is submitted would look like:
The params hash has a nested person value, which can therefore be accessed with params[:person] in the controller.
Returns a checkbox tag tailored for accessing a specified attribute.
Creates a scope around a specific model object like form_for, but doesn't create the form tags themselves. This makes fields_for suitable for specifying additional model objects in the same form:
Returns a file upload input tag tailored for accessing a specified attribute.
Creates a form and a scope around a specific model object that is used as a base for questioning about values for the fields.
Returns a hidden input tag tailored for accessing a specified attribute.
Returns a label tag tailored for labelling an input field for a specified attribute.
Returns an input tag of the "password" type tailored for accessing a specified attribute.
Returns a radio button tag for accessing a specified attribute.
Returns a textarea opening and closing tag set tailored for accessing a specified attribute.
Returns an input tag of the "text" type tailored for accessing a specified attribute.
Provides a number of methods for turning different kinds of containers into a set of option tags.
Returns select
and option
tags for the collection of existing return values of method
for object
's class.
Example object structure for use with this method:
Sample usage (selecting the associated Author for an instance of Post, @post
):
If @post.author_id
is 1, this would return:
Returns radio_button
tags for the collection of existing return values of method
for object
's class.
Example object structure for use with this method:
Sample usage (selecting the associated Author for an instance of Post, @post
):
If @post.author_id
is 1, this would return:
Returns check_box
tags for the collection of existing return values of method
for object
's class.
Example object structure for use with this method:
Sample usage (selecting the associated Authors for an instance of Post, @post
):
If @post.author_ids
is [1], this would return:
Returns a string of option tags for pretty much any country in the world.
Return select and option tags for the given object and method, using country_options_for_select to generate the list of option tags.
Returns a string of option
tags, like options_from_collection_for_select
, but groups them by optgroup
tags based on the object relationships of the arguments.
Example object structure for use with this method:
Sample usage:
Possible output:
Note: Only the optgroup
and option
tags are returned, so you still have to wrap the output in an appropriate select
tag.
Accepts a container (hash, array, enumerable, your type) and returns a string of option tags.
Note: Only the option
tags are returned, you have to wrap this call in a regular HTML select
tag.
Returns a string of option tags that have been compiled by iterating over the collection
and assigning the result of a call to the value_method
as the option value and the text_method
as the option text.
For example, imagine a loop iterating over each person in @project.people to generate an input tag:
Note: Only the option
tags are returned, you have to wrap this call in a regular HTML select
tag.
Create a select tag and a series of contained option tags for the provided object and method.
Example:
If @post.person_id
is 1, this would become:
Returns a string of option tags for pretty much any time zone in the world.
Return select and option tags for the given object and method, using time_zone_options_for_select
to generate the list of option tags.
Provides a number of methods for creating form tags that doesn't rely on an Active Record object assigned to the template like FormHelper does. Instead, you provide the names and values manually.
Creates a check box form input tag.
Creates a field set for grouping HTML form elements.
Creates a file upload field.
Example output:
Starts a form tag that points the action to an url configured with url_for_options
just like ActionController::Base#url_for
.
Creates a hidden form input field used to transmit data that would be lost due to HTTP's statelessness or data that should be hidden from the user.
Displays an image which when clicked will submit the form.
Creates a label field.
Creates a password field, a masked text field that will hide the users input behind a mask character.
Creates a radio button; use groups of radio buttons named the same to allow users to select from a group of options.
Creates a dropdown selection box.
Creates a submit button with the text provided as the caption.
Creates a text input area; use a textarea for longer text inputs such as blog posts or descriptions.
Creates a standard text field; use these text fields to input smaller chunks of text like a username or a search query.
Provides functionality for working with JavaScript in your views.
Returns a button that'll trigger a JavaScript function using the onclick handler. Examples:
Includes the Action Pack JavaScript libraries inside a single script
tag.
Escape carrier returns and single and double quotes for JavaScript segments.
Returns a JavaScript tag wrapping the provided code.
Returns a link that will trigger a JavaScript function using the onclick handler and return false after the fact.
Provides methods for converting numbers into formatted strings. Methods are provided for phone numbers, currency, percentage, precision, positional notation, and file size.
Formats a number into a currency string (e.g., $13.65).
Formats the bytes in size into a more understandable representation; useful for reporting file sizes to users.
Formats a number as a percentage string.
Formats a number into a US phone number.
Formats a number with grouped thousands using a delimiter.
Formats a number with the specified level of precision
, which defaults to 3.
Action View has the ability render different templates depending on the current locale.
For example, suppose you have a Posts controller with a show action. By default, calling this action will render app/views/posts/show.html.erb
. But if you set I18n.locale = :de
, then app/views/posts/show.de.html.erb
will be rendered instead. If the localized template isn't present, the undecorated version will be used. This means you're not required to provide localized views for all cases, but they will be preferred and used if available.
You can use the same technique to localize the rescue files in your public directory. For example, setting I18n.locale = :de
and creating public/500.de.html
and public/404.de.html
would allow you to have localized rescue pages.
Since Rails doesn't restrict the symbols that you use to set I18n.locale, you can leverage this system to display different content depending on anything you like. For example, suppose you have some "expert" users that should see different pages from "normal" users. You could add the following to app/controllers/application.rb
:
Then you could create special views like app/views/posts/show.expert.html.erb
that would only be displayed to expert users.
You can read more about the Rails Internationalization (I18n) API here.
This guide focuses on the interaction between Controller and View in the Model-View-Controller triangle. As you know, the Controller is responsible for orchestrating the whole process of handling a request in Rails, though it normally hands off any heavy code to the Model. But then, when it's time to send a response back to the user, the Controller hands things off to the View. It's that handoff that is the subject of this guide.
In broad strokes, this involves deciding what should be sent as the response and calling an appropriate method to create that response. If the response is a full-blown view, Rails also does some extra work to wrap the view in a layout and possibly to pull in partial views. You'll see all of those paths later in this guide.
From the controller's point of view, there are three ways to create an HTTP response:
render
to create a full response to send back to the browserredirect_to
to send an HTTP redirect status code to the browserhead
to create a response consisting solely of HTTP headers to send back to the browserYou've heard that Rails promotes "convention over configuration". Default rendering is an excellent example of this. By default, controllers in Rails automatically render views with names that correspond to valid routes. For example, if you have this code in your BooksController
class:
And the following in your routes file:
And you have a view file app/views/books/index.html.erb
:
Rails will automatically render app/views/books/index.html.erb
when you navigate to /books
and you will see "Books are coming soon!" on your screen.
However a coming soon screen is only minimally useful, so you will soon create your Book
model and add the index action to BooksController
:
Note that we don't have explicit render at the end of the index action in accordance with "convention over configuration" principle. The rule is that if you do not explicitly render something at the end of a controller action, Rails will automatically look for the action_name.html.erb
template in the controller's view path and render it. So in this case, Rails will render the app/views/books/index.html.erb
file.
If we want to display the properties of all the books in our view, we can do so with an ERB template like this:
The actual rendering is done by subclasses of ActionView::TemplateHandlers
. This guide does not dig into that process, but it's important to know that the file extension on your view controls the choice of template handler. Beginning with Rails 2, the standard extensions are .erb
for ERB (HTML with embedded Ruby), and .builder
for Builder (XML generator).
render
In most cases, the ActionController::Base#render
method does the heavy lifting of rendering your application's content for use by a browser. There are a variety of ways to customize the behavior of render
. You can render the default view for a Rails template, or a specific template, or a file, or inline code, or nothing at all. You can render text, JSON, or XML. You can specify the content type or HTTP status of the rendered response as well.
If you want to see the exact results of a call to render
without needing to inspect it in a browser, you can call render_to_string
. This method takes exactly the same options as render
, but it returns a string instead of sending a response back to the browser.
Perhaps the simplest thing you can do with render
is to render nothing at all:
If you look at the response for this using cURL, you will see the following:
We see there is an empty response (no data after the Cache-Control
line), but the request was successful because Rails has set the response to 200 OK. You can set the :status
option on render to change this response. Rendering nothing can be useful for Ajax requests where all you want to send back to the browser is an acknowledgment that the request was completed.
You should probably be using the head
method, discussed later in this guide, instead of render :nothing
. This provides additional flexibility and makes it explicit that you're only generating HTTP headers.
If you want to render the view that corresponds to a different template within the same controller, you can use render
with the name of the view:
If the call to update
fails, calling the update
action in this controller will render the edit.html.erb
template belonging to the same controller.
If you prefer, you can use a symbol instead of a string to specify the action to render:
What if you want to render a template from an entirely different controller from the one that contains the action code? You can also do that with render
, which accepts the full path (relative to app/views
) of the template to render. For example, if you're running code in an AdminProductsController
that lives in app/controllers/admin
, you can render the results of an action to a template in app/views/products
this way:
Rails knows that this view belongs to a different controller because of the embedded slash character in the string. If you want to be explicit, you can use the :template
option (which was required on Rails 2.2 and earlier):
The render
method can also use a view that's entirely outside of your application (perhaps you're sharing views between two Rails applications):
Rails determines that this is a file render because of the leading slash character. To be explicit, you can use the :file
option (which was required on Rails 2.2 and earlier):
The :file
option takes an absolute file-system path. Of course, you need to have rights to the view that you're using to render the content.
By default, the file is rendered without using the current layout. If you want Rails to put the file into the current layout, you need to add the layout: true
option.
If you're running Rails on Microsoft Windows, you should use the :file
option to render a file, because Windows filenames do not have the same format as Unix filenames.
The above three ways of rendering (rendering another template within the controller, rendering a template within another controller and rendering an arbitrary file on the file system) are actually variants of the same action.
In fact, in the BooksController class, inside of the update action where we want to render the edit template if the book does not update successfully, all of the following render calls would all render the edit.html.erb
template in the views/books
directory:
Which one you use is really a matter of style and convention, but the rule of thumb is to use the simplest one that makes sense for the code you are writing.
render
with :inline
The render
method can do without a view completely, if you're willing to use the :inline
option to supply ERB as part of the method call. This is perfectly valid:
There is seldom any good reason to use this option. Mixing ERB into your controllers defeats the MVC orientation of Rails and will make it harder for other developers to follow the logic of your project. Use a separate erb view instead.
By default, inline rendering uses ERB. You can force it to use Builder instead with the :type
option:
You can send plain text - with no markup at all - back to the browser by using the :text
option to render
:
Rendering pure text is most useful when you're responding to Ajax or web service requests that are expecting something other than proper HTML.
By default, if you use the :text
option, the text is rendered without using the current layout. If you want Rails to put the text into the current layout, you need to add the layout: true
option.
JSON is a JavaScript data format used by many Ajax libraries. Rails has built-in support for converting objects to JSON and rendering that JSON back to the browser:
You don't need to call to_json
on the object that you want to render. If you use the :json
option, render
will automatically call to_json
for you.
Rails also has built-in support for converting objects to XML and rendering that XML back to the caller:
You don't need to call to_xml
on the object that you want to render. If you use the :xml
option, render
will automatically call to_xml
for you.
Rails can render vanilla JavaScript:
This will send the supplied string to the browser with a MIME type of text/javascript
.
render
Calls to the render
method generally accept four options:
:content_type
:layout
:location
:status
:content_type
OptionBy default, Rails will serve the results of a rendering operation with the MIME content-type of text/html
(or application/json
if you use the :json
option, or application/xml
for the :xml
option.). There are times when you might like to change this, and you can do so by setting the :content_type
option:
:layout
OptionWith most of the options to render
, the rendered content is displayed as part of the current layout. You'll learn more about layouts and how to use them later in this guide.
You can use the :layout
option to tell Rails to use a specific file as the layout for the current action:
You can also tell Rails to render with no layout at all:
:location
OptionYou can use the :location
option to set the HTTP Location
header:
:status
OptionRails will automatically generate a response with the correct HTTP status code (in most cases, this is 200 OK
). You can use the :status
option to change this:
Rails understands both numeric status codes and the corresponding symbols shown below.
Response Class | HTTP Status Code | Symbol |
---|---|---|
Informational | 100 | :continue |
101 | :switching_protocols | |
102 | :processing | |
Success | 200 | :ok |
201 | :created | |
202 | :accepted | |
203 | :non_authoritative_information | |
204 | :no_content | |
205 | :reset_content | |
206 | :partial_content | |
207 | :multi_status | |
208 | :already_reported | |
226 | :im_used | |
Redirection | 300 | :multiple_choices |
301 | :moved_permanently | |
302 | :found | |
303 | :see_other | |
304 | :not_modified | |
305 | :use_proxy | |
306 | :reserved | |
307 | :temporary_redirect | |
308 | :permanent_redirect | |
Client Error | 400 | :bad_request |
401 | :unauthorized | |
402 | :payment_required | |
403 | :forbidden | |
404 | :not_found | |
405 | :method_not_allowed | |
406 | :not_acceptable | |
407 | :proxy_authentication_required | |
408 | :request_timeout | |
409 | :conflict | |
410 | :gone | |
411 | :length_required | |
412 | :precondition_failed | |
413 | :request_entity_too_large | |
414 | :request_uri_too_long | |
415 | :unsupported_media_type | |
416 | :requested_range_not_satisfiable | |
417 | :expectation_failed | |
422 | :unprocessable_entity | |
423 | :locked | |
424 | :failed_dependency | |
426 | :upgrade_required | |
423 | :precondition_required | |
424 | :too_many_requests | |
426 | :request_header_fields_too_large | |
Server Error | 500 | :internal_server_error |
501 | :not_implemented | |
502 | :bad_gateway | |
503 | :service_unavailable | |
504 | :gateway_timeout | |
505 | :http_version_not_supported | |
506 | :variant_also_negotiates | |
507 | :insufficient_storage | |
508 | :loop_detected | |
510 | :not_extended | |
511 | :network_authentication_required |
To find the current layout, Rails first looks for a file in app/views/layouts
with the same base name as the controller. For example, rendering actions from the PhotosController
class will use app/views/layouts/photos.html.erb
(or app/views/layouts/photos.builder
). If there is no such controller-specific layout, Rails will use app/views/layouts/application.html.erb
or app/views/layouts/application.builder
. If there is no .erb
layout, Rails will use a .builder
layout if one exists. Rails also provides several ways to more precisely assign specific layouts to individual controllers and actions.
You can override the default layout conventions in your controllers by using the layout
declaration. For example:
With this declaration, all of the views rendered by the products controller will use app/views/layouts/inventory.html.erb
as their layout.
To assign a specific layout for the entire application, use a layout
declaration in your ApplicationController
class:
With this declaration, all of the views in the entire application will use app/views/layouts/main.html.erb
for their layout.
You can use a symbol to defer the choice of layout until a request is processed:
Now, if the current user is a special user, they'll get a special layout when viewing a product.
You can even use an inline method, such as a Proc, to determine the layout. For example, if you pass a Proc object, the block you give the Proc will be given the controller
instance, so the layout can be determined based on the current request:
Layouts specified at the controller level support the :only
and :except
options. These options take either a method name, or an array of method names, corresponding to method names within the controller:
With this declaration, the product
layout would be used for everything but the rss
and index
methods.
Layout declarations cascade downward in the hierarchy, and more specific layout declarations always override more general ones. For example:
application_controller.rb
posts_controller.rb
special_posts_controller.rb
old_posts_controller.rb
In this application:
main
layoutPostsController#index
will use the main
layoutSpecialPostsController#index
will use the special
layoutOldPostsController#show
will use no layout at allOldPostsController#index
will use the old
layoutSooner or later, most Rails developers will see the error message "Can only render or redirect once per action". While this is annoying, it's relatively easy to fix. Usually it happens because of a fundamental misunderstanding of the way that render
works.
For example, here's some code that will trigger this error:
If @book.special?
evaluates to true
, Rails will start the rendering process to dump the @book
variable into the special_show
view. But this will not stop the rest of the code in the show
action from running, and when Rails hits the end of the action, it will start to render the regular_show
view - and throw an error. The solution is simple: make sure that you have only one call to render
or redirect
in a single code path. One thing that can help is and return
. Here's a patched version of the method:
Make sure to use and return
instead of && return
because && return
will not work due to the operator precedence in the Ruby Language.
Note that the implicit render done by ActionController detects if render
has been called, so the following will work without errors:
This will render a book with special?
set with the special_show
template, while other books will render with the default show
template.
redirect_to
Another way to handle returning responses to an HTTP request is with redirect_to
. As you've seen, render
tells Rails which view (or other asset) to use in constructing a response. The redirect_to
method does something completely different: it tells the browser to send a new request for a different URL. For example, you could redirect from wherever you are in your code to the index of photos in your application with this call:
You can use redirect_to
with any arguments that you could use with link_to
or url_for
. There's also a special redirect that sends the user back to the page they just came from:
Rails uses HTTP status code 302, a temporary redirect, when you call redirect_to
. If you'd like to use a different status code, perhaps 301, a permanent redirect, you can use the :status
option:
Just like the :status
option for render
, :status
for redirect_to
accepts both numeric and symbolic header designations.
render
and redirect_to
Sometimes inexperienced developers think of redirect_to
as a sort of goto
command, moving execution from one place to another in your Rails code. This is not correct. Your code stops running and waits for a new request for the browser. It just happens that you've told the browser what request it should make next, by sending back an HTTP 302 status code.
Consider these actions to see the difference:
With the code in this form, there will likely be a problem if the @book
variable is nil
. Remember, a render :action
doesn't run any code in the target action, so nothing will set up the @books
variable that the index
view will probably require. One way to fix this is to redirect instead of rendering:
With this code, the browser will make a fresh request for the index page, the code in the index
method will run, and all will be well.
The only downside to this code is that it requires a round trip to the browser: the browser requested the show action with /books/1
and the controller finds that there are no books, so the controller sends out a 302 redirect response to the browser telling it to go to /books/
, the browser complies and sends a new request back to the controller asking now for the index
action, the controller then gets all the books in the database and renders the index template, sending it back down to the browser which then shows it on your screen.
While in a small application, this added latency might not be a problem, it is something to think about if response time is a concern. We can demonstrate one way to handle this with a contrived example:
This would detect that there are no books with the specified ID, populate the @books
instance variable with all the books in the model, and then directly render the index.html.erb
template, returning it to the browser with a flash alert message to tell the user what happened.
head
To Build Header-Only ResponsesThe head
method can be used to send responses with only headers to the browser. It provides a more obvious alternative to calling render :nothing
. The head
method accepts a number or symbol (see reference table) representing a HTTP status code. The options argument is interpreted as a hash of header names and values. For example, you can return only an error header:
This would produce the following header:
Or you can use other HTTP headers to convey other information:
Which would produce:
When Rails renders a view as a response, it does so by combining the view with the current layout, using the rules for finding the current layout that were covered earlier in this guide. Within a layout, you have access to three tools for combining different bits of output to form the overall response:
yield
and content_for
Asset tag helpers provide methods for generating HTML that link views to feeds, JavaScript, stylesheets, images, videos and audios. There are six asset tag helpers available in Rails:
auto_discovery_link_tag
javascript_include_tag
stylesheet_link_tag
image_tag
video_tag
audio_tag
You can use these tags in layouts or other views, although the auto_discovery_link_tag
, javascript_include_tag
, and stylesheet_link_tag
, are most commonly used in the <head>
section of a layout.
The asset tag helpers do not verify the existence of the assets at the specified locations; they simply assume that you know what you're doing and generate the link.
auto_discovery_link_tag
The auto_discovery_link_tag
helper builds HTML that most browsers and newsreaders can use to detect the presence of RSS or Atom feeds. It takes the type of the link (:rss
or :atom
), a hash of options that are passed through to url_for, and a hash of options for the tag:
There are three tag options available for the auto_discovery_link_tag
:
:rel
specifies the rel
value in the link. The default value is "alternate".:type
specifies an explicit MIME type. Rails will generate an appropriate MIME type automatically.:title
specifies the title of the link. The default value is the uppercase :type
value, for example, "ATOM" or "RSS".javascript_include_tag
The javascript_include_tag
helper returns an HTML script
tag for each source provided.
If you are using Rails with the Asset Pipeline enabled, this helper will generate a link to /assets/javascripts/
rather than public/javascripts
which was used in earlier versions of Rails. This link is then served by the asset pipeline.
A JavaScript file within a Rails application or Rails engine goes in one of three locations: app/assets
, lib/assets
or vendor/assets
. These locations are explained in detail in the Asset Organization section in the Asset Pipeline Guide
You can specify a full path relative to the document root, or a URL, if you prefer. For example, to link to a JavaScript file that is inside a directory called javascripts
inside of one of app/assets
, lib/assets
or vendor/assets
, you would do this:
Rails will then output a script
tag such as this:
The request to this asset is then served by the Sprockets gem.
To include multiple files such as app/assets/javascripts/main.js
and app/assets/javascripts/columns.js
at the same time:
To include app/assets/javascripts/main.js
and app/assets/javascripts/photos/columns.js
:
To include http://example.com/main.js
:
stylesheet_link_tag
The stylesheet_link_tag
helper returns an HTML <link>
tag for each source provided.
If you are using Rails with the "Asset Pipeline" enabled, this helper will generate a link to /assets/stylesheets/
. This link is then processed by the Sprockets gem. A stylesheet file can be stored in one of three locations: app/assets
, lib/assets
or vendor/assets
.
You can specify a full path relative to the document root, or a URL. For example, to link to a stylesheet file that is inside a directory called stylesheets
inside of one of app/assets
, lib/assets
or vendor/assets
, you would do this:
To include app/assets/stylesheets/main.css
and app/assets/stylesheets/columns.css
:
To include app/assets/stylesheets/main.css
and app/assets/stylesheets/photos/columns.css
:
To include http://example.com/main.css
:
By default, the stylesheet_link_tag
creates links with media="screen" rel="stylesheet"
. You can override any of these defaults by specifying an appropriate option (:media
, :rel
):
image_tag
The image_tag
helper builds an HTML
tag to the specified file. By default, files are loaded from public/images
.
Note that you must specify the extension of the image.
You can supply a path to the image if you like:
You can supply a hash of additional HTML options:
You can supply alternate text for the image which will be used if the user has images turned off in their browser. If you do not specify an alt text explicitly, it defaults to the file name of the file, capitalized and with no extension. For example, these two image tags would return the same code:
You can also specify a special size tag, in the format "{width}x{height}":
In addition to the above special tags, you can supply a final hash of standard HTML options, such as :class
, :id
or :name
:
video_tag
The video_tag
helper builds an HTML 5 <video>
tag to the specified file. By default, files are loaded from public/videos
.
Produces
Like an image_tag
you can supply a path, either absolute, or relative to the public/videos
directory. Additionally you can specify the size: "#{width}x#{height}"
option just like an image_tag
. Video tags can also have any of the HTML options specified at the end (id
, class
et al).
The video tag also supports all of the <video>
HTML options through the HTML options hash, including:
poster: "image_name.png"
, provides an image to put in place of the video before it starts playing.autoplay: true
, starts playing the video on page load.loop: true
, loops the video once it gets to the end.controls: true
, provides browser supplied controls for the user to interact with the video.autobuffer: true
, the video will pre load the file for the user on page load.You can also specify multiple videos to play by passing an array of videos to the video_tag
:
This will produce:
audio_tag
The audio_tag
helper builds an HTML 5 <audio>
tag to the specified file. By default, files are loaded from public/audios
.
You can supply a path to the audio file if you like:
You can also supply a hash of additional options, such as :id
, :class
etc.
Like the video_tag
, the audio_tag
has special options:
autoplay: true
, starts playing the audio on page loadcontrols: true
, provides browser supplied controls for the user to interact with the audio.autobuffer: true
, the audio will pre load the file for the user on page load.yield
Within the context of a layout, yield
identifies a section where content from the view should be inserted. The simplest way to use this is to have a single yield
, into which the entire contents of the view currently being rendered is inserted:
You can also create a layout with multiple yielding regions:
The main body of the view will always render into the unnamed yield
. To render content into a named yield
, you use the content_for
method.
content_for
MethodThe content_for
method allows you to insert content into a named yield
block in your layout. For example, this view would work with the layout that you just saw:
The result of rendering this page into the supplied layout would be this HTML:
The content_for
method is very helpful when your layout contains distinct regions such as sidebars and footers that should get their own blocks of content inserted. It's also useful for inserting tags that load page-specific JavaScript or css files into the header of an otherwise generic layout.
Partial templates - usually just called "partials" - are another device for breaking the rendering process into more manageable chunks. With a partial, you can move the code for rendering a particular piece of a response to its own file.
To render a partial as part of a view, you use the render
method within the view:
This will render a file named _menu.html.erb
at that point within the view being rendered. Note the leading underscore character: partials are named with a leading underscore to distinguish them from regular views, even though they are referred to without the underscore. This holds true even when you're pulling in a partial from another folder:
That code will pull in the partial from app/views/shared/_menu.html.erb
.
One way to use partials is to treat them as the equivalent of subroutines: as a way to move details out of a view so that you can grasp what's going on more easily. For example, you might have a view that looked like this:
Here, the _ad_banner.html.erb
and _footer.html.erb
partials could contain content that is shared among many pages in your application. You don't need to see the details of these sections when you're concentrating on a particular page.
For content that is shared among all pages in your application, you can use partials directly from layouts.
A partial can use its own layout file, just as a view can use a layout. For example, you might call a partial like this:
This would look for a partial named _link_area.html.erb
and render it using the layout _graybar.html.erb
. Note that layouts for partials follow the same leading-underscore naming as regular partials, and are placed in the same folder with the partial that they belong to (not in the master layouts
folder).
Also note that explicitly specifying :partial
is required when passing additional options such as :layout
.
You can also pass local variables into partials, making them even more powerful and flexible. For example, you can use this technique to reduce duplication between new and edit pages, while still keeping a bit of distinct content:
new.html.erb
edit.html.erb
_form.html.erb
Although the same partial will be rendered into both views, Action View's submit helper will return "Create Zone" for the new action and "Update Zone" for the edit action.
Every partial also has a local variable with the same name as the partial (minus the underscore). You can pass an object in to this local variable via the :object
option:
Within the customer
partial, the customer
variable will refer to @new_customer
from the parent view.
If you have an instance of a model to render into a partial, you can use a shorthand syntax:
Assuming that the @customer
instance variable contains an instance of the Customer
model, this will use _customer.html.erb
to render it and will pass the local variable customer
into the partial which will refer to the @customer
instance variable in the parent view.
Partials are very useful in rendering collections. When you pass a collection to a partial via the :collection
option, the partial will be inserted once for each member in the collection:
index.html.erb
_product.html.erb
When a partial is called with a pluralized collection, then the individual instances of the partial have access to the member of the collection being rendered via a variable named after the partial. In this case, the partial is _product
, and within the _product
partial, you can refer to product
to get the instance that is being rendered.
There is also a shorthand for this. Assuming @products
is a collection of product
instances, you can simply write this in the index.html.erb
to produce the same result:
Rails determines the name of the partial to use by looking at the model name in the collection. In fact, you can even create a heterogeneous collection and render it this way, and Rails will choose the proper partial for each member of the collection:
index.html.erb
customers/_customer.html.erb
employees/_employee.html.erb
In this case, Rails will use the customer or employee partials as appropriate for each member of the collection.
In the event that the collection is empty, render
will return nil, so it should be fairly simple to provide alternative content.
To use a custom local variable name within the partial, specify the :as
option in the call to the partial:
With this change, you can access an instance of the @products
collection as the item
local variable within the partial.
You can also pass in arbitrary local variables to any partial you are rendering with the locals: {}
option:
Would render a partial _products.html.erb
once for each instance of product
in the @products
instance variable passing the instance to the partial as a local variable called item
and to each partial, make the local variable title
available with the value Products Page
.
Rails also makes a counter variable available within a partial called by the collection, named after the member of the collection followed by _counter
. For example, if you're rendering @products
, within the partial you can refer to product_counter
to tell you how many times the partial has been rendered. This does not work in conjunction with the as: :value
option.
You can also specify a second partial to be rendered between instances of the main partial by using the :spacer_template
option:
Rails will render the _product_ruler
partial (with no data passed in to it) between each pair of _product
partials.
When rendering collections it is also possible to use the :layout
option:
The layout will be rendered together with the partial for each item in the collection. The current object and object_counter variables will be available in the layout as well, the same way they do within the partial.
You may find that your application requires a layout that differs slightly from your regular application layout to support one particular controller. Rather than repeating the main layout and editing it, you can accomplish this by using nested layouts (sometimes called sub-templates). Here's an example:
Suppose you have the following ApplicationController
layout:
app/views/layouts/application.html.erb
On pages generated by NewsController
, you want to hide the top menu and add a right menu:
app/views/layouts/news.html.erb
That's it. The News views will use the new layout, hiding the top menu and adding a new right menu inside the "content" div.
There are several ways of getting similar results with different sub-templating schemes using this technique. Note that there is no limit in nesting levels. One can use the ActionView::render
method via render template: 'layouts/news'
to base a new layout on the News layout. If you are sure you will not subtemplate the News
layout, you can replace the content_for?(:news_content) ? yield(:news_content) : yield
with simply yield
.
The most basic form helper is form_tag
.
When called without arguments like this, it creates a <form>
tag which, when submitted, will POST to the current page. For instance, assuming the current page is /home/index
, the generated HTML will look like this (some line breaks added for readability):
Now, you'll notice that the HTML contains something extra: a div
element with two hidden input elements inside. This div is important, because the form cannot be successfully submitted without it. The first input element with name utf8
enforces browsers to properly respect your form's character encoding and is generated for all forms whether their actions are "GET" or "POST". The second input element with name authenticity_token
is a security feature of Rails called cross-site request forgery protection, and form helpers generate it for every non-GET form (provided that this security feature is enabled). You can read more about this in the Security Guide.
Throughout this guide, the div
with the hidden input elements will be excluded from code samples for brevity.
One of the most basic forms you see on the web is a search form. This form contains:
To create this form you will use form_tag
, label_tag
, text_field_tag
, and submit_tag
, respectively. Like this:
This will generate the following HTML:
For every form input, an ID attribute is generated from its name ("q" in the example). These IDs can be very useful for CSS styling or manipulation of form controls with JavaScript.
Besides text_field_tag
and submit_tag
, there is a similar helper for every form control in HTML.
Always use "GET" as the method for search forms. This allows users to bookmark a specific search and get back to it. More generally Rails encourages you to use the right HTTP verb for an action.
The form_tag
helper accepts 2 arguments: the path for the action and an options hash. This hash specifies the method of form submission and HTML options such as the form element's class.
As with the link_to
helper, the path argument doesn't have to be a string; it can be a hash of URL parameters recognizable by Rails' routing mechanism, which will turn the hash into a valid URL. However, since both arguments to form_tag
are hashes, you can easily run into a problem if you would like to specify both. For instance, let's say you write this:
Here, method
and class
are appended to the query string of the generated URL because even though you mean to write two hashes, you really only specified one. So you need to tell Ruby which is which by delimiting the first hash (or both) with curly brackets. This will generate the HTML you expect:
Rails provides a series of helpers for generating form elements such as checkboxes, text fields, and radio buttons. These basic helpers, with names ending in "_tag" (such as text_field_tag
and check_box_tag
), generate just a single <input>
element. The first parameter to these is always the name of the input. When the form is submitted, the name will be passed along with the form data, and will make its way to the params
hash in the controller with the value entered by the user for that field. For example, if the form contains <%= text_field_tag(:query) %>
, then you would be able to get the value of this field in the controller with params[:query]
.
When naming inputs, Rails uses certain conventions that make it possible to submit parameters with non-scalar values such as arrays or hashes, which will also be accessible in params
. You can read more about them in chapter 7 of this guide. For details on the precise usage of these helpers, please refer to the API documentation.
Checkboxes are form controls that give the user a set of options they can enable or disable:
This generates the following:
The first parameter to check_box_tag
, of course, is the name of the input. The second parameter, naturally, is the value of the input. This value will be included in the form data (and be present in params
) when the checkbox is checked.
Radio buttons, while similar to checkboxes, are controls that specify a set of options in which they are mutually exclusive (i.e., the user can only pick one):
Output:
As with check_box_tag
, the second parameter to radio_button_tag
is the value of the input. Because these two radio buttons share the same name (age) the user will only be able to select one, and params[:age]
will contain either "child" or "adult".
Always use labels for checkbox and radio buttons. They associate text with a specific option and, by expanding the clickable region, make it easier for users to click the inputs.
Other form controls worth mentioning are textareas, password fields, hidden fields, search fields, telephone fields, date fields, time fields, color fields, datetime fields, datetime-local fields, month fields, week fields, URL fields and email fields:
Output:
Hidden inputs are not shown to the user but instead hold data like any textual input. Values inside them can be changed with JavaScript.
The search, telephone, date, time, color, datetime, datetime-local, month, week, URL, and email inputs are HTML5 controls. If you require your app to have a consistent experience in older browsers, you will need an HTML5 polyfill (provided by CSS and/or JavaScript). There is definitely no shortage of solutions for this, although a couple of popular tools at the moment are Modernizr and yepnope, which provide a simple way to add functionality based on the presence of detected HTML5 features.
If you're using password input fields (for any purpose), you might want to configure your application to prevent those parameters from being logged. You can learn about this in the Security Guide.
A particularly common task for a form is editing or creating a model object. While the *_tag
helpers can certainly be used for this task they are somewhat verbose as for each tag you would have to ensure the correct parameter name is used and set the default value of the input appropriately. Rails provides helpers tailored to this task. These helpers lack the _tag suffix, for example text_field
, text_area
.
For these helpers the first argument is the name of an instance variable and the second is the name of a method (usually an attribute) to call on that object. Rails will set the value of the input control to the return value of that method for the object and set an appropriate input name. If your controller has defined @person
and that person's name is Henry then a form containing:
will produce output similar to
Upon form submission the value entered by the user will be stored in params[:person][:name]
. The params[:person]
hash is suitable for passing to Person.new
or, if @person
is an instance of Person, @person.update
. While the name of an attribute is the most common second parameter to these helpers this is not compulsory. In the example above, as long as person objects have a name
and a name=
method Rails will be happy.
You must pass the name of an instance variable, i.e. :person
or "person"
, not an actual instance of your model object.
Rails provides helpers for displaying the validation errors associated with a model object. These are covered in detail by the Active Record Validations guide.
While this is an increase in comfort it is far from perfect. If Person has many attributes to edit then we would be repeating the name of the edited object many times. What we want to do is somehow bind a form to a model object, which is exactly what form_for
does.
Assume we have a controller for dealing with articles app/controllers/articles_controller.rb
:
The corresponding view app/views/articles/new.html.erb
using form_for
looks like this:
There are a few things to note here:
@article
is the actual object being edited.:url
hash, HTML options are passed in the :html
hash. Also you can provide a :namespace
option for your form to ensure uniqueness of id attributes on form elements. The namespace attribute will be prefixed with underscore on the generated HTML id.form_for
method yields a form builder object (the f
variable).f
The resulting HTML is:
The name passed to form_for
controls the key used in params
to access the form's values. Here the name is article
and so all the inputs have names of the form article[attribute_name]
. Accordingly, in the create
action params[:article]
will be a hash with keys :title
and :body
. You can read more about the significance of input names in the parameter_names section.
The helper methods called on the form builder are identical to the model object helpers except that it is not necessary to specify which object is being edited since this is already managed by the form builder.
You can create a similar binding without actually creating <form>
tags with the fields_for
helper. This is useful for editing additional model objects with the same form. For example if you had a Person model with an associated ContactDetail model you could create a form for creating both like so:
which produces the following output:
The object yielded by fields_for
is a form builder like the one yielded by form_for
(in fact form_for
calls fields_for
internally).
The Article model is directly available to users of the application, so — following the best practices for developing with Rails — you should declare it a resource:
Declaring a resource has a number of side-affects. See Rails Routing From the Outside In for more information on setting up and using resources.
When dealing with RESTful resources, calls to form_for
can get significantly easier if you rely on record identification. In short, you can just pass the model instance and have Rails figure out model name and the rest:
Notice how the short-style form_for
invocation is conveniently the same, regardless of the record being new or existing. Record identification is smart enough to figure out if the record is new by asking record.new_record?
. It also selects the correct path to submit to and the name based on the class of the object.
Rails will also automatically set the class
and id
of the form appropriately: a form creating an article would have id
and class
new_article
. If you were editing the article with id 23, the class
would be set to edit_article
and the id to edit_article_23
. These attributes will be omitted for brevity in the rest of this guide.
When you're using STI (single-table inheritance) with your models, you can't rely on record identification on a subclass if only their parent class is declared a resource. You will have to specify the model name, :url
, and :method
explicitly.
If you have created namespaced routes, form_for
has a nifty shorthand for that too. If your application has an admin namespace then
will create a form that submits to the articles controller inside the admin namespace (submitting to admin_article_path(@article)
in the case of an update). If you have several levels of namespacing then the syntax is similar:
For more information on Rails' routing system and the associated conventions, please see the routing guide.
The Rails framework encourages RESTful design of your applications, which means you'll be making a lot of "PATCH" and "DELETE" requests (besides "GET" and "POST"). However, most browsers don't support methods other than "GET" and "POST" when it comes to submitting forms.
Rails works around this issue by emulating other methods over POST with a hidden input named "_method"
, which is set to reflect the desired method:
output:
When parsing POSTed data, Rails will take into account the special _method
parameter and acts as if the HTTP method was the one specified inside it ("PATCH" in this example).
Select boxes in HTML require a significant amount of markup (one OPTION
element for each option to choose from), therefore it makes the most sense for them to be dynamically generated.
Here is what the markup might look like:
Here you have a list of cities whose names are presented to the user. Internally the application only wants to handle their IDs so they are used as the options' value attribute. Let's see how Rails can help out here.
The most generic helper is select_tag
, which — as the name implies — simply generates the SELECT
tag that encapsulates an options string:
This is a start, but it doesn't dynamically create the option tags. You can generate option tags with the options_for_select
helper:
The first argument to options_for_select
is a nested array where each element has two elements: option text (city name) and option value (city id). The option value is what will be submitted to your controller. Often this will be the id of a corresponding database object but this does not have to be the case.
Knowing this, you can combine select_tag
and options_for_select
to achieve the desired, complete markup:
options_for_select
allows you to pre-select an option by passing its value.
Whenever Rails sees that the internal value of an option being generated matches this value, it will add the selected
attribute to that option.
The second argument to options_for_select
must be exactly equal to the desired internal value. In particular if the value is the integer 2 you cannot pass "2" to options_for_select
— you must pass 2. Be aware of values extracted from the params
hash as they are all strings.
when :include_blank
or :prompt
are not present, :include_blank
is forced true if the select attribute required
is true, display size
is one and multiple
is not true.
You can add arbitrary attributes to the options using hashes:
In most cases form controls will be tied to a specific database model and as you might expect Rails provides helpers tailored for that purpose. Consistent with other form helpers, when dealing with models you drop the _tag
suffix from select_tag
:
Notice that the third parameter, the options array, is the same kind of argument you pass to options_for_select
. One advantage here is that you don't have to worry about pre-selecting the correct city if the user already has one — Rails will do this for you by reading from the @person.city_id
attribute.
As with other helpers, if you were to use the select
helper on a form builder scoped to the @person
object, the syntax would be:
If you are using select
(or similar helpers such as collection_select
, select_tag
) to set a belongs_to
association you must pass the name of the foreign key (in the example above city_id
), not the name of association itself. If you specify city
instead of city_id
Active Record will raise an error along the lines of ActiveRecord::AssociationTypeMismatch: City(#17815740) expected, got String(#1138750)
when you pass the params
hash to Person.new
or update
. Another way of looking at this is that form helpers only edit attributes. You should also be aware of the potential security ramifications of allowing users to edit foreign keys directly.
Generating options tags with options_for_select
requires that you create an array containing the text and value for each option. But what if you had a City model (perhaps an Active Record one) and you wanted to generate option tags from a collection of those objects? One solution would be to make a nested array by iterating over them:
This is a perfectly valid solution, but Rails provides a less verbose alternative: options_from_collection_for_select
. This helper expects a collection of arbitrary objects and two additional arguments: the names of the methods to read the option value and text from, respectively:
As the name implies, this only generates option tags. To generate a working select box you would need to use it in conjunction with select_tag
, just as you would with options_for_select
. When working with model objects, just as select
combines select_tag
and options_for_select
, collection_select
combines select_tag
with options_from_collection_for_select
.
To recap, options_from_collection_for_select
is to collection_select
what options_for_select
is to select
.
Pairs passed to options_for_select
should have the name first and the id second, however with options_from_collection_for_select
the first argument is the value method and the second the text method.
To leverage time zone support in Rails, you have to ask your users what time zone they are in. Doing so would require generating select options from a list of pre-defined TimeZone objects using collection_select
, but you can simply use the time_zone_select
helper that already wraps this:
There is also time_zone_options_for_select
helper for a more manual (therefore more customizable) way of doing this. Read the API documentation to learn about the possible arguments for these two methods.
Rails used to have a country_select
helper for choosing countries, but this has been extracted to the country_select plugin. When using this, be aware that the exclusion or inclusion of certain names from the list can be somewhat controversial (and was the reason this functionality was extracted from Rails).
You can choose not to use the form helpers generating HTML5 date and time input fields and use the alternative date and time helpers. These date and time helpers differ from all the other form helpers in two important respects:
params
hash with your date or time._tag
suffix to indicate whether a helper is a barebones helper or one that operates on model objects. With dates and times, select_date
, select_time
and select_datetime
are the barebones helpers, date_select
, time_select
and datetime_select
are the equivalent model object helpers.Both of these families of helpers will create a series of select boxes for the different components (year, month, day etc.).
The select_*
family of helpers take as their first argument an instance of Date, Time or DateTime that is used as the currently selected value. You may omit this parameter, in which case the current date is used. For example
outputs (with actual option values omitted for brevity)
The above inputs would result in params[:start_date]
being a hash with keys :year
, :month
, :day
. To get an actual Time or Date object you would have to extract these values and pass them to the appropriate constructor, for example
The :prefix
option is the key used to retrieve the hash of date components from the params
hash. Here it was set to start_date
, if omitted it will default to date
.
select_date
does not work well with forms that update or create Active Record objects as Active Record expects each element of the params
hash to correspond to one attribute. The model object helpers for dates and times submit parameters with special names; when Active Record sees parameters with such names it knows they must be combined with the other parameters and given to a constructor appropriate to the column type. For example:
outputs (with actual option values omitted for brevity)
which results in a params
hash like
When this is passed to Person.new
(or update
), Active Record spots that these parameters should all be used to construct the birth_date
attribute and uses the suffixed information to determine in which order it should pass these parameters to functions such as Date.civil
.
Both families of helpers use the same core set of functions to generate the individual select tags and so both accept largely the same options. In particular, by default Rails will generate year options 5 years either side of the current year. If this is not an appropriate range, the :start_year
and :end_year
options override this. For an exhaustive list of the available options, refer to the API documentation.
As a rule of thumb you should be using date_select
when working with model objects and select_date
in other cases, such as a search form which filters results by date.
In many cases the built-in date pickers are clumsy as they do not aid the user in working out the relationship between the date and the day of the week.
Occasionally you need to display just a single date component such as a year or a month. Rails provides a series of helpers for this, one for each component select_year
, select_month
, select_day
, select_hour
, select_minute
, select_second
. These helpers are fairly straightforward. By default they will generate an input field named after the time component (for example "year" for select_year
, "month" for select_month
etc.) although this can be overridden with the :field_name
option. The :prefix
option works in the same way that it does for select_date
and select_time
and has the same default value.
The first parameter specifies which value should be selected and can either be an instance of a Date, Time or DateTime, in which case the relevant component will be extracted, or a numerical value. For example
will produce the same output if the current year is 2009 and the value chosen by the user can be retrieved by params[:date][:year]
.
A common task is uploading some sort of file, whether it's a picture of a person or a CSV file containing data to process. The most important thing to remember with file uploads is that the rendered form's encoding MUST be set to "multipart/form-data". If you use form_for
, this is done automatically. If you use form_tag
, you must set it yourself, as per the following example.
The following two forms both upload a file.
Rails provides the usual pair of helpers: the barebones file_field_tag
and the model oriented file_field
. The only difference with other helpers is that you cannot set a default value for file inputs as this would have no meaning. As you would expect in the first case the uploaded file is in params[:picture]
and in the second case in params[:person][:picture]
.
The object in the params
hash is an instance of a subclass of IO. Depending on the size of the uploaded file it may in fact be a StringIO or an instance of File backed by a temporary file. In both cases the object will have an original_filename
attribute containing the name the file had on the user's computer and a content_type
attribute containing the MIME type of the uploaded file. The following snippet saves the uploaded content in #{Rails.root}/public/uploads
under the same name as the original file (assuming the form was the one in the previous example).
Once a file has been uploaded, there are a multitude of potential tasks, ranging from where to store the files (on disk, Amazon S3, etc) and associating them with models to resizing image files and generating thumbnails. The intricacies of this are beyond the scope of this guide, but there are several libraries designed to assist with these. Two of the better known ones are CarrierWave and Paperclip.
If the user has not selected a file the corresponding parameter will be an empty string.
Unlike other forms making an asynchronous file upload form is not as simple as providing form_for
with remote: true
. With an Ajax form the serialization is done by JavaScript running inside the browser and since JavaScript cannot read files from your hard drive the file cannot be uploaded. The most common workaround is to use an invisible iframe that serves as the target for the form submission.
As mentioned previously the object yielded by form_for
and fields_for
is an instance of FormBuilder (or a subclass thereof). Form builders encapsulate the notion of displaying form elements for a single object. While you can of course write helpers for your forms in the usual way, you can also subclass FormBuilder and add the helpers there. For example
can be replaced with
by defining a LabellingFormBuilder class similar to the following:
If you reuse this frequently you could define a labeled_form_for
helper that automatically applies the builder: LabellingFormBuilder
option.
The form builder used also determines what happens when you do
If f
is an instance of FormBuilder then this will render the form
partial, setting the partial's object to the form builder. If the form builder is of class LabellingFormBuilder then the labelling_form
partial would be rendered instead.
As you've seen in the previous sections, values from forms can be at the top level of the params
hash or nested in another hash. For example in a standard create
action for a Person model, params[:person]
would usually be a hash of all the attributes for the person to create. The params
hash can also contain arrays, arrays of hashes and so on.
Fundamentally HTML forms don't know about any sort of structured data, all they generate is name–value pairs, where pairs are just plain strings. The arrays and hashes you see in your application are the result of some parameter naming conventions that Rails uses.
You may find you can try out examples in this section faster by using the console to directly invoke Racks' parameter parser. For example,
The two basic structures are arrays and hashes. Hashes mirror the syntax used for accessing the value in params
. For example if a form contains
the params
hash will contain
and params[:person][:name]
will retrieve the submitted value in the controller.
Hashes can be nested as many levels as required, for example
will result in the params
hash being
Normally Rails ignores duplicate parameter names. If the parameter name contains an empty set of square brackets [] then they will be accumulated in an array. If you wanted people to be able to input multiple phone numbers, you could place this in the form:
This would result in params[:person][:phone_number]
being an array.
We can mix and match these two concepts. For example, one element of a hash might be an array as in the previous example, or you can have an array of hashes. For example a form might let you create any number of addresses by repeating the following form fragment
This would result in params[:addresses]
being an array of hashes with keys line1
, line2
and city
. Rails decides to start accumulating values in a new hash whenever it encounters an input name that already exists in the current hash.
There's a restriction, however, while hashes can be nested arbitrarily, only one level of "arrayness" is allowed. Arrays can be usually replaced by hashes, for example instead of having an array of model objects one can have a hash of model objects keyed by their id, an array index or some other parameter.
Array parameters do not play well with the check_box
helper. According to the HTML specification unchecked checkboxes submit no value. However it is often convenient for a checkbox to always submit a value. The check_box
helper fakes this by creating an auxiliary hidden input with the same name. If the checkbox is unchecked only the hidden input is submitted and if it is checked then both are submitted but the value submitted by the checkbox takes precedence. When working with array parameters this duplicate submission will confuse Rails since duplicate input names are how it decides when to start a new array element. It is preferable to either use check_box_tag
or to use hashes instead of arrays.
The previous sections did not use the Rails form helpers at all. While you can craft the input names yourself and pass them directly to helpers such as text_field_tag
Rails also provides higher level support. The two tools at your disposal here are the name parameter to form_for
and fields_for
and the :index
option that helpers take.
You might want to render a form with a set of edit fields for each of a person's addresses. For example:
Assuming the person had two addresses, with ids 23 and 45 this would create output similar to this:
This will result in a params
hash that looks like
Rails knows that all these inputs should be part of the person hash because you called fields_for
on the first form builder. By specifying an :index
option you're telling Rails that instead of naming the inputs person[address][city]
it should insert that index surrounded by [] between the address and the city. This is often useful as it is then easy to locate which Address record should be modified. You can pass numbers with some other significance, strings or even nil
(which will result in an array parameter being created).
To create more intricate nestings, you can specify the first part of the input name (person[address]
in the previous example) explicitly:
will create inputs like
As a general rule the final input name is the concatenation of the name given to fields_for
/form_for
, the index value and the name of the attribute. You can also pass an :index
option directly to helpers such as text_field
, but it is usually less repetitive to specify this at the form builder level rather than on individual input controls.
As a shortcut you can append [] to the name and omit the :index
option. This is the same as specifying index: address
so
produces exactly the same output as the previous example.
If you need to post some data to an external resource it is still great to build your form using rails form helpers. But sometimes you need to set an authenticity_token
for this resource. You can do it by passing an authenticity_token: 'your_external_token'
parameter to the form_tag
options:
Sometimes when you submit data to an external resource, like payment gateway, fields you can use in your form are limited by an external API. So you may want not to generate an authenticity_token
hidden field at all. For doing this just pass false
to the :authenticity_token
option:
The same technique is also available for form_for
:
Or if you don't want to render an authenticity_token
field:
Many apps grow beyond simple forms editing a single object. For example when creating a Person you might want to allow the user to (on the same form) create multiple address records (home, work, etc.). When later editing that person the user should be able to add, remove or amend addresses as necessary.
Active Record provides model level support via the accepts_nested_attributes_for
method:
This creates an addresses_attributes=
method on Person
that allows you to create, update and (optionally) destroy addresses.
The following form allows a user to create a Person
and its associated addresses.
When an association accepts nested attributes fields_for
renders its block once for every element of the association. In particular, if a person has no addresses it renders nothing. A common pattern is for the controller to build one or more empty children so that at least one set of fields is shown to the user. The example below would result in 3 sets of address fields being rendered on the new person form.
fields_for
yields a form builder that names parameters in the format expected the accessor generated by accepts_nested_attributes_for
. For example when creating a user with 2 addresses, the submitted parameters would look like
The keys of the :addresses_attributes
hash are unimportant, they need merely be different for each address.
If the associated object is already saved, fields_for
autogenerates a hidden input with the id
of the saved record. You can disable this by passing include_id: false
to fields_for
. You may wish to do this if the autogenerated input is placed in a location where an input tag is not valid HTML or when using an ORM where children do not have an id.
As usual you need to whitelist the parameters in the controller before you pass them to the model:
You can allow users to delete associated objects by passing allow_destroy: true
to accepts_nested_attributes_for
If the hash of attributes for an object contains the key _destroy
with a value of '1' or 'true' then the object will be destroyed. This form allows users to remove addresses:
Don't forget to update the whitelisted params in your controller to also include the _destroy
field:
It is often useful to ignore sets of fields that the user has not filled in. You can control this by passing a :reject_if
proc to accepts_nested_attributes_for
. This proc will be called with each hash of attributes submitted by the form. If the proc returns false
then Active Record will not build an associated object for that hash. The example below only tries to build an address if the kind
attribute is set.
As a convenience you can instead pass the symbol :all_blank
which will create a proc that will reject records where all the attributes are blank excluding any value for _destroy
.
Rather than rendering multiple sets of fields ahead of time you may wish to add them only when a user clicks on an 'Add new child' button. Rails does not provide any builtin support for this. When generating new sets of fields you must ensure the the key of the associated array is unique - the current javascript date (milliseconds after the epoch) is a common choice.
Action Controller is the C in MVC. After routing has determined which controller to use for a request, your controller is responsible for making sense of the request and producing the appropriate output. Luckily, Action Controller does most of the groundwork for you and uses smart conventions to make this as straightforward as possible.
For most conventional RESTful applications, the controller will receive the request (this is invisible to you as the developer), fetch or save data from a model and use a view to create HTML output. If your controller needs to do things a little differently, that's not a problem, this is just the most common way for a controller to work.
A controller can thus be thought of as a middle man between models and views. It makes the model data available to the view so it can display that data to the user, and it saves or updates data from the user to the model.
For more details on the routing process, see Rails Routing from the Outside In.
The naming convention of controllers in Rails favors pluralization of the last word in the controller's name, although it is not strictly required (e.g. ApplicationController
). For example, ClientsController
is preferable to ClientController
, SiteAdminsController
is preferable to SiteAdminController
or SitesAdminsController
, and so on.
Following this convention will allow you to use the default route generators (e.g. resources
, etc) without needing to qualify each :path
or :controller
, and keeps URL and path helpers' usage consistent throughout your application. See Layouts & Rendering Guide for more details.
The controller naming convention differs from the naming convention of models, which expected to be named in singular form.
A controller is a Ruby class which inherits from ApplicationController
and has methods just like any other class. When your application receives a request, the routing will determine which controller and action to run, then Rails creates an instance of that controller and runs the method with the same name as the action.
As an example, if a user goes to /clients/new
in your application to add a new client, Rails will create an instance of ClientsController
and run the new
method. Note that the empty method from the example above would work just fine because Rails will by default render the new.html.erb
view unless the action says otherwise. The new
method could make available to the view a @client
instance variable by creating a new Client
:
The Layouts & Rendering Guide explains this in more detail.
ApplicationController
inherits from ActionController::Base
, which defines a number of helpful methods. This guide will cover some of these, but if you're curious to see what's in there, you can see all of them in the API documentation or in the source itself.
Only public methods are callable as actions. It is a best practice to lower the visibility of methods which are not intended to be actions, like auxiliary methods or filters.
You will probably want to access data sent in by the user or other parameters in your controller actions. There are two kinds of parameters possible in a web application. The first are parameters that are sent as part of the URL, called query string parameters. The query string is everything after "?" in the URL. The second type of parameter is usually referred to as POST data. This information usually comes from an HTML form which has been filled in by the user. It's called POST data because it can only be sent as part of an HTTP POST request. Rails does not make any distinction between query string parameters and POST parameters, and both are available in the params
hash in your controller:
The params
hash is not limited to one-dimensional keys and values. It can contain arrays and (nested) hashes. To send an array of values, append an empty pair of square brackets "[]" to the key name:
The actual URL in this example will be encoded as "/clients?ids%5b%5d=1&ids%5b%5d=2&ids%5b%5d=3" as "[" and "]" are not allowed in URLs. Most of the time you don't have to worry about this because the browser will take care of it for you, and Rails will decode it back when it receives it, but if you ever find yourself having to send those requests to the server manually you have to keep this in mind.
The value of params[:ids]
will now be ["1", "2", "3"]
. Note that parameter values are always strings; Rails makes no attempt to guess or cast the type.
To send a hash you include the key name inside the brackets:
When this form is submitted, the value of params[:client]
will be { "name" => "Acme", "phone" => "12345", "address" => { "postcode" => "12345", "city" => "Carrot City" } }
. Note the nested hash in params[:client][:address]
.
Note that the params
hash is actually an instance of ActiveSupport::HashWithIndifferentAccess
, which acts like a hash but lets you use symbols and strings interchangeably as keys.
If you're writing a web service application, you might find yourself more comfortable accepting parameters in JSON format. Rails will automatically convert your parameters into the params
hash, which you can access as you would normally.
So for example, if you are sending this JSON content:
You'll get params[:company]
as { "name" => "acme", "address" => "123 Carrot Street" }
.
Also, if you've turned on config.wrap_parameters
in your initializer or calling wrap_parameters
in your controller, you can safely omit the root element in the JSON parameter. The parameters will be cloned and wrapped in the key according to your controller's name by default. So the above parameter can be written as:
And assume that you're sending the data to CompaniesController
, it would then be wrapped in :company
key like this:
You can customize the name of the key or specific parameters you want to wrap by consulting the API documentation
Support for parsing XML parameters has been extracted into a gem named actionpack-xml_parser
The params
hash will always contain the :controller
and :action
keys, but you should use the methods controller_name
and action_name
instead to access these values. Any other parameters defined by the routing, such as :id
will also be available. As an example, consider a listing of clients where the list can show either active or inactive clients. We can add a route which captures the :status
parameter in a "pretty" URL:
In this case, when a user opens the URL /clients/active
, params[:status]
will be set to "active". When this route is used, params[:foo]
will also be set to "bar" just like it was passed in the query string. In the same way params[:action]
will contain "index".
default_url_options
You can set global default parameters for URL generation by defining a method called default_url_options
in your controller. Such a method must return a hash with the desired defaults, whose keys must be symbols:
These options will be used as a starting point when generating URLs, so it's possible they'll be overridden by the options passed in url_for
calls.
If you define default_url_options
in ApplicationController
, as in the example above, it would be used for all URL generation. The method can also be defined in one specific controller, in which case it only affects URLs generated there.
With strong parameters, Action Controller parameters are forbidden to be used in Active Model mass assignments until they have been whitelisted. This means you'll have to make a conscious choice about which attributes to allow for mass updating and thus prevent accidentally exposing that which shouldn't be exposed.
In addition, parameters can be marked as required and flow through a predefined raise/rescue flow to end up as a 400 Bad Request with no effort.
Given
the key :id
will pass the whitelisting if it appears in params
and it has a permitted scalar value associated. Otherwise the key is going to be filtered out, so arrays, hashes, or any other objects cannot be injected.
The permitted scalar types are String
, Symbol
, NilClass
, Numeric
, TrueClass
, FalseClass
, Date
, Time
, DateTime
, StringIO
, IO
, ActionDispatch::Http::UploadedFile
and Rack::Test::UploadedFile
.
To declare that the value in params
must be an array of permitted scalar values map the key to an empty array:
To whitelist an entire hash of parameters, the permit!
method can be used:
This will mark the :log_entry
parameters hash and any subhash of it permitted. Extreme care should be taken when using permit!
as it will allow all current and future model attributes to be mass-assigned.
You can also use permit on nested parameters, like:
This declaration whitelists the name
, emails
and friends
attributes. It is expected that emails
will be an array of permitted scalar values and that friends
will be an array of resources with specific attributes : they should have a name
attribute (any permitted scalar values allowed), a hobbies
attribute as an array of permitted scalar values, and a family
attribute which is restricted to having a name
(any permitted scalar values allowed, too).
You want to also use the permitted attributes in the new
action. This raises the problem that you can't use require
on the root key because normally it does not exist when calling new
:
accepts_nested_attributes_for
allows you to update and destroy associated records. This is based on the id
and _destroy
parameters:
Hashes with integer keys are treated differently and you can declare the attributes as if they were direct children. You get these kinds of parameters when you use accepts_nested_attributes_for
in combination with a has_many
association:
The strong parameter API was designed with the most common use cases in mind. It is not meant as a silver bullet to handle all your whitelisting problems. However you can easily mix the API with your own code to adapt to your situation.
Imagine a scenario where you have parameters representing a product name and a hash of arbitrary data associated with that product, and you want to whitelist the product name attribute but also the whole data hash. The strong parameters API doesn't let you directly whitelist the whole of a nested hash with any keys, but you can use the keys of your nested hash to declare what to whitelist:
Your application has a session for each user in which you can store small amounts of data that will be persisted between requests. The session is only available in the controller and the view and can use one of a number of different storage mechanisms:
ActionDispatch::Session::CookieStore
- Stores everything on the client.ActionDispatch::Session::CacheStore
- Stores the data in the Rails cache.ActionDispatch::Session::ActiveRecordStore
- Stores the data in a database using Active Record. (require activerecord-session_store
gem).ActionDispatch::Session::MemCacheStore
- Stores the data in a memcached cluster (this is a legacy implementation; consider using CacheStore instead).All session stores use a cookie to store a unique ID for each session (you must use a cookie, Rails will not allow you to pass the session ID in the URL as this is less secure).
For most stores, this ID is used to look up the session data on the server, e.g. in a database table. There is one exception, and that is the default and recommended session store - the CookieStore - which stores all session data in the cookie itself (the ID is still available to you if you need it). This has the advantage of being very lightweight and it requires zero setup in a new application in order to use the session. The cookie data is cryptographically signed to make it tamper-proof, but it is not encrypted, so anyone with access to it can read its contents but not edit it (Rails will not accept it if it has been edited).
The CookieStore can store around 4kB of data — much less than the others — but this is usually enough. Storing large amounts of data in the session is discouraged no matter which session store your application uses. You should especially avoid storing complex objects (anything other than basic Ruby objects, the most common example being model instances) in the session, as the server might not be able to reassemble them between requests, which will result in an error.
If your user sessions don't store critical data or don't need to be around for long periods (for instance if you just use the flash for messaging), you can consider using ActionDispatch::Session::CacheStore. This will store sessions using the cache implementation you have configured for your application. The advantage of this is that you can use your existing cache infrastructure for storing sessions without requiring any additional setup or administration. The downside, of course, is that the sessions will be ephemeral and could disappear at any time.
Read more about session storage in the Security Guide.
If you need a different session storage mechanism, you can change it in the config/initializers/session_store.rb
file:
Rails sets up a session key (the name of the cookie) when signing the session data. These can also be changed in config/initializers/session_store.rb
:
You can also pass a :domain
key and specify the domain name for the cookie:
Rails sets up (for the CookieStore) a secret key used for signing the session data. This can be changed in config/initializers/secret_token.rb
Changing the secret when using the CookieStore
will invalidate all existing sessions.
In your controller you can access the session through the session
instance method.
Sessions are lazily loaded. If you don't access sessions in your action's code, they will not be loaded. Hence you will never need to disable sessions, just not accessing them will do the job.
Session values are stored using key/value pairs like a hash:
To store something in the session, just assign it to the key like a hash:
To remove something from the session, assign that key to be nil
:
To reset the entire session, use reset_session
.
The flash is a special part of the session which is cleared with each request. This means that values stored there will only be available in the next request, which is useful for passing error messages etc.
It is accessed in much the same way as the session, as a hash (it's a FlashHash instance).
Let's use the act of logging out as an example. The controller can send a message which will be displayed to the user on the next request:
Note that it is also possible to assign a flash message as part of the redirection. You can assign :notice
, :alert
or the general purpose :flash
:
The destroy
action redirects to the application's root_url
, where the message will be displayed. Note that it's entirely up to the next action to decide what, if anything, it will do with what the previous action put in the flash. It's conventional to display any error alerts or notices from the flash in the application's layout:
This way, if an action sets a notice or an alert message, the layout will display it automatically.
You can pass anything that the session can store; you're not limited to notices and alerts:
If you want a flash value to be carried over to another request, use the keep
method:
flash.now
By default, adding values to the flash will make them available to the next request, but sometimes you may want to access those values in the same request. For example, if the create
action fails to save a resource and you render the new
template directly, that's not going to result in a new request, but you may still want to display a message using the flash. To do this, you can use flash.now
in the same way you use the normal flash
:
Your application can store small amounts of data on the client — called cookies — that will be persisted across requests and even sessions. Rails provides easy access to cookies via the cookies
method, which — much like the session
— works like a hash:
Note that while for session values you set the key to nil
, to delete a cookie value you should use cookies.delete(:key)
.
ActionController makes it extremely easy to render xml
or json
data. If you've generated a controller using scaffolding, it would look something like this:
You may notice in the above code that we're using render xml: @users
, not render xml: @users.to_xml
. If the object is not a String, then Rails will automatically invoke to_xml
for us.
Filters are methods that are run before, after or "around" a controller action.
Filters are inherited, so if you set a filter on ApplicationController
, it will be run on every controller in your application.
"Before" filters may halt the request cycle. A common "before" filter is one which requires that a user is logged in for an action to be run. You can define the filter method this way:
The method simply stores an error message in the flash and redirects to the login form if the user is not logged in. If a "before" filter renders or redirects, the action will not run. If there are additional filters scheduled to run after that filter, they are also cancelled.
In this example the filter is added to ApplicationController
and thus all controllers in the application inherit it. This will make everything in the application require the user to be logged in in order to use it. For obvious reasons (the user wouldn't be able to log in in the first place!), not all controllers or actions should require this. You can prevent this filter from running before particular actions with skip_before_action
:
Now, the LoginsController
's new
and create
actions will work as before without requiring the user to be logged in. The :only
option is used to only skip this filter for these actions, and there is also an :except
option which works the other way. These options can be used when adding filters too, so you can add a filter which only runs for selected actions in the first place.
In addition to "before" filters, you can also run filters after an action has been executed, or both before and after.
"After" filters are similar to "before" filters, but because the action has already been run they have access to the response data that's about to be sent to the client. Obviously, "after" filters cannot stop the action from running.
"Around" filters are responsible for running their associated actions by yielding, similar to how Rack middlewares work.
For example, in a website where changes have an approval workflow an administrator could be able to preview them easily, just apply them within a transaction:
Note that an "around" filter also wraps rendering. In particular, if in the example above, the view itself reads from the database (e.g. via a scope), it will do so within the transaction and thus present the data to preview.
You can choose not to yield and build the response yourself, in which case the action will not be run.
While the most common way to use filters is by creating private methods and using *_action to add them, there are two other ways to do the same thing.
The first is to use a block directly with the *_action methods. The block receives the controller as an argument, and the require_login
filter from above could be rewritten to use a block:
Note that the filter in this case uses send
because the logged_in?
method is private and the filter is not run in the scope of the controller. This is not the recommended way to implement this particular filter, but in more simple cases it might be useful.
The second way is to use a class (actually, any object that responds to the right methods will do) to handle the filtering. This is useful in cases that are more complex and can not be implemented in a readable and reusable way using the two other methods. As an example, you could rewrite the login filter again to use a class:
Again, this is not an ideal example for this filter, because it's not run in the scope of the controller but gets the controller passed as an argument. The filter class has a class method filter
which gets run before or after the action, depending on if it's a before or after filter. Classes used as around filters can also use the same filter
method, which will get run in the same way. The method must yield
to execute the action. Alternatively, it can have both a before
and an after
method that are run before and after the action.
Cross-site request forgery is a type of attack in which a site tricks a user into making requests on another site, possibly adding, modifying or deleting data on that site without the user's knowledge or permission.
The first step to avoid this is to make sure all "destructive" actions (create, update and destroy) can only be accessed with non-GET requests. If you're following RESTful conventions you're already doing this. However, a malicious site can still send a non-GET request to your site quite easily, and that's where the request forgery protection comes in. As the name says, it protects from forged requests.
The way this is done is to add a non-guessable token which is only known to your server to each request. This way, if a request comes in without the proper token, it will be denied access.
If you generate a form like this:
You will see how the token gets added as a hidden field:
Rails adds this token to every form that's generated using the form helpers, so most of the time you don't have to worry about it. If you're writing a form manually or need to add the token for another reason, it's available through the method form_authenticity_token
:
The form_authenticity_token
generates a valid authentication token. That's useful in places where Rails does not add it automatically, like in custom Ajax calls.
The Security Guide has more about this and a lot of other security-related issues that you should be aware of when developing a web application.
In every controller there are two accessor methods pointing to the request and the response objects associated with the request cycle that is currently in execution. The request
method contains an instance of AbstractRequest
and the response
method returns a response object representing what is going to be sent back to the client.
request
ObjectThe request object contains a lot of useful information about the request coming in from the client. To get a full list of the available methods, refer to the API documentation. Among the properties that you can access on this object are:
Property of request | Purpose |
---|---|
host | The hostname used for this request. |
domain(n=2) | The hostname's first n segments, starting from the right (the TLD). |
format | The content type requested by the client. |
method | The HTTP method used for the request. |
get?, post?, patch?, put?, delete?, head? | Returns true if the HTTP method is GET/POST/PATCH/PUT/DELETE/HEAD. |
headers | Returns a hash containing the headers associated with the request. |
port | The port number (integer) used for the request. |
protocol | Returns a string containing the protocol used plus "://", for example "http://". |
query_string | The query string part of the URL, i.e., everything after "?". |
remote_ip | The IP address of the client. |
url | The entire URL used for the request. |
path_parameters
, query_parameters
, and request_parameters
Rails collects all of the parameters sent along with the request in the params
hash, whether they are sent as part of the query string or the post body. The request object has three accessors that give you access to these parameters depending on where they came from. The query_parameters
hash contains parameters that were sent as part of the query string while the request_parameters
hash contains parameters sent as part of the post body. The path_parameters
hash contains parameters that were recognized by the routing as being part of the path leading to this particular controller and action.
response
ObjectThe response object is not usually used directly, but is built up during the execution of the action and rendering of the data that is being sent back to the user, but sometimes - like in an after filter - it can be useful to access the response directly. Some of these accessor methods also have setters, allowing you to change their values.
Property of response | Purpose |
---|---|
body | This is the string of data being sent back to the client. This is most often HTML. |
status | The HTTP status code for the response, like 200 for a successful request or 404 for file not found. |
location | The URL the client is being redirected to, if any. |
content_type | The content type of the response. |
charset | The character set being used for the response. Default is "utf-8". |
headers | Headers used for the response. |
If you want to set custom headers for a response then response.headers
is the place to do it. The headers attribute is a hash which maps header names to their values, and Rails will set some of them automatically. If you want to add or change a header, just assign it to response.headers
this way:
Note: in the above case it would make more sense to use the content_type
setter directly.
Rails comes with two built-in HTTP authentication mechanisms:
HTTP basic authentication is an authentication scheme that is supported by the majority of browsers and other HTTP clients. As an example, consider an administration section which will only be available by entering a username and a password into the browser's HTTP basic dialog window. Using the built-in authentication is quite easy and only requires you to use one method, http_basic_authenticate_with
.
With this in place, you can create namespaced controllers that inherit from AdminController
. The filter will thus be run for all actions in those controllers, protecting them with HTTP basic authentication.
HTTP digest authentication is superior to the basic authentication as it does not require the client to send an unencrypted password over the network (though HTTP basic authentication is safe over HTTPS). Using digest authentication with Rails is quite easy and only requires using one method, authenticate_or_request_with_http_digest
.
As seen in the example above, the authenticate_or_request_with_http_digest
block takes only one argument - the username. And the block returns the password. Returning false
or nil
from the authenticate_or_request_with_http_digest
will cause authentication failure.
Sometimes you may want to send a file to the user instead of rendering an HTML page. All controllers in Rails have the send_data
and the send_file
methods, which will both stream data to the client. send_file
is a convenience method that lets you provide the name of a file on the disk and it will stream the contents of that file for you.
To stream data to the client, use send_data
:
The download_pdf
action in the example above will call a private method which actually generates the PDF document and returns it as a string. This string will then be streamed to the client as a file download and a filename will be suggested to the user. Sometimes when streaming files to the user, you may not want them to download the file. Take images, for example, which can be embedded into HTML pages. To tell the browser a file is not meant to be downloaded, you can set the :disposition
option to "inline". The opposite and default value for this option is "attachment".
If you want to send a file that already exists on disk, use the send_file
method.
This will read and stream the file 4kB at the time, avoiding loading the entire file into memory at once. You can turn off streaming with the :stream
option or adjust the block size with the :buffer_size
option.
If :type
is not specified, it will be guessed from the file extension specified in :filename
. If the content type is not registered for the extension, application/octet-stream
will be used.
Be careful when using data coming from the client (params, cookies, etc.) to locate the file on disk, as this is a security risk that might allow someone to gain access to files they are not meant to.
It is not recommended that you stream static files through Rails if you can instead keep them in a public folder on your web server. It is much more efficient to let the user download the file directly using Apache or another web server, keeping the request from unnecessarily going through the whole Rails stack.
While send_data
works just fine, if you are creating a RESTful application having separate actions for file downloads is usually not necessary. In REST terminology, the PDF file from the example above can be considered just another representation of the client resource. Rails provides an easy and quite sleek way of doing "RESTful downloads". Here's how you can rewrite the example so that the PDF download is a part of the show
action, without any streaming:
In order for this example to work, you have to add the PDF MIME type to Rails. This can be done by adding the following line to the file config/initializers/mime_types.rb
:
Configuration files are not reloaded on each request, so you have to restart the server in order for their changes to take effect.
Now the user can request to get a PDF version of a client just by adding ".pdf" to the URL:
Rails keeps a log file for each environment in the log
folder. These are extremely useful when debugging what's actually going on in your application, but in a live application you may not want every bit of information to be stored in the log file.
You can filter certain request parameters from your log files by appending them to config.filter_parameters
in the application configuration. These parameters will be marked [FILTERED] in the log.
Sometimes it's desirable to filter out from log files some sensible locations your application is redirecting to. You can do that by using the config.filter_redirect
configuration option:
You can set it to a String, a Regexp, or an array of both.
Matching URLs will be marked as '[FILTERED]'.
Most likely your application is going to contain bugs or otherwise throw an exception that needs to be handled. For example, if the user follows a link to a resource that no longer exists in the database, Active Record will throw the ActiveRecord::RecordNotFound
exception.
Rails' default exception handling displays a "500 Server Error" message for all exceptions. If the request was made locally, a nice traceback and some added information gets displayed so you can figure out what went wrong and deal with it. If the request was remote Rails will just display a simple "500 Server Error" message to the user, or a "404 Not Found" if there was a routing error or a record could not be found. Sometimes you might want to customize how these errors are caught and how they're displayed to the user. There are several levels of exception handling available in a Rails application:
By default a production application will render either a 404 or a 500 error message. These messages are contained in static HTML files in the public
folder, in 404.html
and 500.html
respectively. You can customize these files to add some extra information and layout, but remember that they are static; i.e. you can't use RHTML or layouts in them, just plain HTML.
rescue_from
If you want to do something a bit more elaborate when catching errors, you can use rescue_from
, which handles exceptions of a certain type (or multiple types) in an entire controller and its subclasses.
When an exception occurs which is caught by a rescue_from
directive, the exception object is passed to the handler. The handler can be a method or a Proc
object passed to the :with
option. You can also use a block directly instead of an explicit Proc
object.
Here's how you can use rescue_from
to intercept all ActiveRecord::RecordNotFound
errors and do something with them.
Of course, this example is anything but elaborate and doesn't improve on the default exception handling at all, but once you can catch all those exceptions you're free to do whatever you want with them. For example, you could create custom exception classes that will be thrown when a user doesn't have access to a certain section of your application:
Certain exceptions are only rescuable from the ApplicationController
class, as they are raised before the controller gets initialized and the action gets executed. See Pratik Naik's article on the subject for more information.
Sometime you might want to force a particular controller to only be accessible via an HTTPS protocol for security reasons. You can use the force_ssl
method in your controller to enforce that:
Just like the filter, you could also pass :only
and :except
to enforce the secure connection only to specific actions:
Please note that if you find yourself adding force_ssl
to many controllers, you may want to force the whole application to use HTTPS instead. In that case, you can set the config.force_ssl
in your environment file.
The Rails router recognizes URLs and dispatches them to a controller's action. It can also generate paths and URLs, avoiding the need to hardcode strings in your views.
When your Rails application receives an incoming request for:
it asks the router to match it to a controller action. If the first matching route is:
the request is dispatched to the patients
controller's show
action with { id: '17' }
in params
.
You can also generate paths and URLs. If the route above is modified to be:
and your application contains this code in the controller:
and this in the corresponding view:
then the router will generate the path /patients/17
. This reduces the brittleness of your view and makes your code easier to understand. Note that the id does not need to be specified in the route helper.
Resource routing allows you to quickly declare all of the common routes for a given resourceful controller. Instead of declaring separate routes for your index
, show
, new
, edit
, create
, update
and destroy
actions, a resourceful route declares them in a single line of code.
Browsers request pages from Rails by making a request for a URL using a specific HTTP method, such as GET
, POST
, PATCH
, PUT
and DELETE
. Each method is a request to perform an operation on the resource. A resource route maps a number of related requests to actions in a single controller.
When your Rails application receives an incoming request for:
it asks the router to map it to a controller action. If the first matching route is:
Rails would dispatch that request to the destroy
method on the photos
controller with { id: '17' }
in params
.
In Rails, a resourceful route provides a mapping between HTTP verbs and URLs to controller actions. By convention, each action also maps to particular CRUD operations in a database. A single entry in the routing file, such as:
creates seven different routes in your application, all mapping to the Photos
controller:
HTTP Verb | Path | Action | Used for |
---|---|---|---|
GET | /photos | index | display a list of all photos |
GET | /photos/new | new | return an HTML form for creating a new photo |
POST | /photos | create | create a new photo |
GET | /photos/:id | show | display a specific photo |
GET | /photos/:id/edit | edit | return an HTML form for editing a photo |
PATCH/PUT | /photos/:id | update | update a specific photo |
DELETE | /photos/:id | destroy | delete a specific photo |
Because the router uses the HTTP verb and URL to match inbound requests, four URLs map to seven different actions.
Rails routes are matched in the order they are specified, so if you have a resources :photos
above a get 'photos/poll'
the show
action's route for the resources
line will be matched before the get
line. To fix this, move the get
line above the resources
line so that it is matched first.
Creating a resourceful route will also expose a number of helpers to the controllers in your application. In the case of resources :photos
:
photos_path
returns /photos
new_photo_path
returns /photos/new
edit_photo_path(:id)
returns /photos/:id/edit
(for instance, edit_photo_path(10)
returns /photos/10/edit
)photo_path(:id)
returns /photos/:id
(for instance, photo_path(10)
returns /photos/10
)Each of these helpers has a corresponding _url
helper (such as photos_url
) which returns the same path prefixed with the current host, port and path prefix.
If you need to create routes for more than one resource, you can save a bit of typing by defining them all with a single call to resources
:
This works exactly the same as:
Sometimes, you have a resource that clients always look up without referencing an ID. For example, you would like /profile
to always show the profile of the currently logged in user. In this case, you can use a singular resource to map /profile
(rather than /profile/:id
) to the show
action:
Passing a String
to match
will expect a controller#action
format, while passing a Symbol
will map directly to an action:
This resourceful route:
creates six different routes in your application, all mapping to the Geocoders
controller:
HTTP Verb | Path | Action | Used for |
---|---|---|---|
GET | /geocoder/new | new | return an HTML form for creating the geocoder |
POST | /geocoder | create | create the new geocoder |
GET | /geocoder | show | display the one and only geocoder resource |
GET | /geocoder/edit | edit | return an HTML form for editing the geocoder |
PATCH/PUT | /geocoder | update | update the one and only geocoder resource |
DELETE | /geocoder | destroy | delete the geocoder resource |
Because you might want to use the same controller for a singular route (/account
) and a plural route (/accounts/45
), singular resources map to plural controllers. So that, for example, resource :photo
and resources :photos
creates both singular and plural routes that map to the same controller (PhotosController
).
A singular resourceful route generates these helpers:
new_geocoder_path
returns /geocoder/new
edit_geocoder_path
returns /geocoder/edit
geocoder_path
returns /geocoder
As with plural resources, the same helpers ending in _url
will also include the host, port and path prefix.
You may wish to organize groups of controllers under a namespace. Most commonly, you might group a number of administrative controllers under an Admin::
namespace. You would place these controllers under the app/controllers/admin
directory, and you can group them together in your router:
This will create a number of routes for each of the posts
and comments
controller. For Admin::PostsController
, Rails will create:
HTTP Verb | Path | Action | Used for |
---|---|---|---|
GET | /admin/posts | index | admin_posts_path |
GET | /admin/posts/new | new | new_admin_post_path |
POST | /admin/posts | create | admin_posts_path |
GET | /admin/posts/:id | show | admin_post_path(:id) |
GET | /admin/posts/:id/edit | edit | edit_admin_post_path(:id) |
PATCH/PUT | /admin/posts/:id | update | admin_post_path(:id) |
DELETE | /admin/posts/:id | destroy | admin_post_path(:id) |
If you want to route /posts
(without the prefix /admin
) to Admin::PostsController
, you could use:
or, for a single case:
If you want to route /admin/posts
to PostsController
(without the Admin::
module prefix), you could use:
or, for a single case:
In each of these cases, the named routes remain the same as if you did not use scope
. In the last case, the following paths map to PostsController
:
HTTP Verb | Path | Action | Named Helper |
---|---|---|---|
GET | /admin/posts | index | posts_path |
GET | /admin/posts/new | new | new_post_path |
POST | /admin/posts | create | posts_path |
GET | /admin/posts/:id | show | post_path(:id) |
GET | /admin/posts/:id/edit | edit | edit_post_path(:id) |
PATCH/PUT | /admin/posts/:id | update | post_path(:id) |
DELETE | /admin/posts/:id | destroy | post_path(:id) |
It's common to have resources that are logically children of other resources. For example, suppose your application includes these models:
Nested routes allow you to capture this relationship in your routing. In this case, you could include this route declaration:
In addition to the routes for magazines, this declaration will also route ads to an AdsController
. The ad URLs require a magazine:
HTTP Verb | Path | Action | Used for |
---|---|---|---|
GET | /magazines/:magazine_id/ads | index | display a list of all ads for a specific magazine |
GET | /magazines/:magazine_id/ads/new | new | return an HTML form for creating a new ad belonging to a specific magazine |
POST | /magazines/:magazine_id/ads | create | create a new ad belonging to a specific magazine |
GET | /magazines/:magazine_id/ads/:id | show | display a specific ad belonging to a specific magazine |
GET | /magazines/:magazine_id/ads/:id/edit | edit | return an HTML form for editing an ad belonging to a specific magazine |
PATCH/PUT | /magazines/:magazine_id/ads/:id | update | update a specific ad belonging to a specific magazine |
DELETE | /magazines/:magazine_id/ads/:id | destroy | delete a specific ad belonging to a specific magazine |
This will also create routing helpers such as magazine_ads_url
and edit_magazine_ad_path
. These helpers take an instance of Magazine as the first parameter (magazine_ads_url(@magazine)
).
You can nest resources within other nested resources if you like. For example:
Deeply-nested resources quickly become cumbersome. In this case, for example, the application would recognize paths such as:
The corresponding route helper would be publisher_magazine_photo_url
, requiring you to specify objects at all three levels. Indeed, this situation is confusing enough that a popular article by Jamis Buck proposes a rule of thumb for good Rails design:
Resources should never be nested more than 1 level deep.
One way to avoid deep nesting (as recommended above) is to generate the collection actions scoped under the parent, so as to get a sense of the hierarchy, but to not nest the member actions. In other words, to only build routes with the minimal amount of information to uniquely identify the resource, like this:
This idea strikes a balance between descriptive routes and deep nesting. There exists shorthand syntax to achieve just that, via the :shallow
option:
This will generate the exact same routes as the first example. You can also specify the :shallow
option in the parent resource, in which case all of the nested resources will be shallow:
The shallow
method of the DSL creates a scope inside of which every nesting is shallow. This generates the same routes as the previous example:
There exists two options for scope
to customize shallow routes. :shallow_path
prefixes member paths with the specified parameter:
The comments resource here will have the following routes generated for it:
HTTP Verb | Path | Named Helper |
---|---|---|
GET | /posts/:post_id/comments(.:format) | post_comments |
POST | /posts/:post_id/comments(.:format) | post_comments |
GET | /posts/:post_id/comments/new(.:format) | new_post_comment |
GET | /sekret/comments/:id/edit(.:format) | edit_comment |
GET | /sekret/comments/:id(.:format) | comment |
PATCH/PUT | /sekret/comments/:id(.:format) | comment |
DELETE | /sekret/comments/:id(.:format) | comment |
The :shallow_prefix
option adds the specified parameter to the named helpers:
The comments resource here will have the following routes generated for it:
HTTP Verb | Path | Named Helper |
---|---|---|
GET | /posts/:post_id/comments(.:format) | post_comments |
POST | /posts/:post_id/comments(.:format) | post_comments |
GET | /posts/:post_id/comments/new(.:format) | new_post_comment |
GET | /comments/:id/edit(.:format) | edit_sekret_comment |
GET | /comments/:id(.:format) | sekret_comment |
PATCH/PUT | /comments/:id(.:format) | sekret_comment |
DELETE | /comments/:id(.:format) | sekret_comment |
Routing Concerns allows you to declare common routes that can be reused inside others resources and routes. To define a concern:
These concerns can be used in resources to avoid code duplication and share behavior across routes:
The above is equivalent to:
Also you can use them in any place that you want inside the routes, for example in a scope or namespace call:
In addition to using the routing helpers, Rails can also create paths and URLs from an array of parameters. For example, suppose you have this set of routes:
When using magazine_ad_path
, you can pass in instances of Magazine
and Ad
instead of the numeric IDs:
You can also use url_for
with a set of objects, and Rails will automatically determine which route you want:
In this case, Rails will see that @magazine
is a Magazine
and @ad
is an Ad
and will therefore use the magazine_ad_path
helper. In helpers like link_to
, you can specify just the object in place of the full url_for
call:
If you wanted to link to just a magazine:
For other actions, you just need to insert the action name as the first element of the array:
This allows you to treat instances of your models as URLs, and is a key advantage to using the resourceful style.
You are not limited to the seven routes that RESTful routing creates by default. If you like, you may add additional routes that apply to the collection or individual members of the collection.
To add a member route, just add a member
block into the resource block:
This will recognize /photos/1/preview
with GET, and route to the preview
action of PhotosController
, with the resource id value passed in params[:id]
. It will also create the preview_photo_url
and preview_photo_path
helpers.
Within the block of member routes, each route name specifies the HTTP verb that it will recognize. You can use get
, patch
, put
, post
, or delete
here. If you don't have multiple member
routes, you can also pass :on
to a route, eliminating the block:
You can leave out the :on
option, this will create the same member route except that the resource id value will be available in params[:photo_id]
instead of params[:id]
.
To add a route to the collection:
This will enable Rails to recognize paths such as /photos/search
with GET, and route to the search
action of PhotosController
. It will also create the search_photos_url
and search_photos_path
route helpers.
Just as with member routes, you can pass :on
to a route:
To add an alternate new action using the :on
shortcut:
This will enable Rails to recognize paths such as /comments/new/preview
with GET, and route to the preview
action of CommentsController
. It will also create the preview_new_comment_url
and preview_new_comment_path
route helpers.
If you find yourself adding many extra actions to a resourceful route, it's time to stop and ask yourself whether you're disguising the presence of another resource.
In addition to resource routing, Rails has powerful support for routing arbitrary URLs to actions. Here, you don't get groups of routes automatically generated by resourceful routing. Instead, you set up each route within your application separately.
While you should usually use resourceful routing, there are still many places where the simpler routing is more appropriate. There's no need to try to shoehorn every last piece of your application into a resourceful framework if that's not a good fit.
In particular, simple routing makes it very easy to map legacy URLs to new Rails actions.
When you set up a regular route, you supply a series of symbols that Rails maps to parts of an incoming HTTP request. Two of these symbols are special: :controller
maps to the name of a controller in your application, and :action
maps to the name of an action within that controller. For example, consider this route:
If an incoming request of /photos/show/1
is processed by this route (because it hasn't matched any previous route in the file), then the result will be to invoke the show
action of the PhotosController
, and to make the final parameter "1"
available as params[:id]
. This route will also route the incoming request of /photos
to PhotosController#index
, since :action
and :id
are optional parameters, denoted by parentheses.
You can set up as many dynamic segments within a regular route as you like. Anything other than :controller
or :action
will be available to the action as part of params
. If you set up this route:
An incoming path of /photos/show/1/2
will be dispatched to the show
action of the PhotosController
. params[:id]
will be "1"
, and params[:user_id]
will be "2"
.
You can't use :namespace
or :module
with a :controller
path segment. If you need to do this then use a constraint on :controller that matches the namespace you require. e.g:
By default, dynamic segments don't accept dots - this is because the dot is used as a separator for formatted routes. If you need to use a dot within a dynamic segment, add a constraint that overrides this – for example, id: /[^\/]+/
allows anything except a slash.
You can specify static segments when creating a route by not prepending a colon to a fragment:
This route would respond to paths such as /photos/show/1/with_user/2
. In this case, params
would be { controller: 'photos', action: 'show', id: '1', user_id: '2' }
.
The params
will also include any parameters from the query string. For example, with this route:
An incoming path of /photos/show/1?user_id=2
will be dispatched to the show
action of the Photos
controller. params
will be { controller: 'photos', action: 'show', id: '1', user_id: '2' }
.
You do not need to explicitly use the :controller
and :action
symbols within a route. You can supply them as defaults:
With this route, Rails will match an incoming path of /photos/12
to the show
action of PhotosController
.
You can also define other defaults in a route by supplying a hash for the :defaults
option. This even applies to parameters that you do not specify as dynamic segments. For example:
Rails would match photos/12
to the show
action of PhotosController
, and set params[:format]
to "jpg"
.
You can specify a name for any route using the :as
option:
This will create logout_path
and logout_url
as named helpers in your application. Calling logout_path
will return /exit
You can also use this to override routing methods defined by resources, like this:
This will define a user_path
method that will be available in controllers, helpers and views that will go to a route such as /bob
. Inside the show
action of UsersController
, params[:username]
will contain the username for the user. Change :username
in the route definition if you do not want your parameter name to be :username
.
In general, you should use the get
, post
, put
and delete
methods to constrain a route to a particular verb. You can use the match
method with the :via
option to match multiple verbs at once:
You can match all verbs to a particular route using via: :all
:
Routing both GET
and POST
requests to a single action has security implications. In general, you should avoid routing all verbs to an action unless you have a good reason to.
You can use the :constraints
option to enforce a format for a dynamic segment:
This route would match paths such as /photos/A12345
, but not /photos/893
. You can more succinctly express the same route this way:
:constraints
takes regular expressions with the restriction that regexp anchors can't be used. For example, the following route will not work:
However, note that you don't need to use anchors because all routes are anchored at the start.
For example, the following routes would allow for posts
with to_param
values like 1-hello-world
that always begin with a number and users
with to_param
values like david
that never begin with a number to share the root namespace:
You can also constrain a route based on any method on the Request object that returns a String
.
You specify a request-based constraint the same way that you specify a segment constraint:
You can also specify constraints in a block form:
If you have a more advanced constraint, you can provide an object that responds to matches?
that Rails should use. Let's say you wanted to route all users on a blacklist to the BlacklistController
. You could do:
You can also specify constraints as a lambda:
Both the matches?
method and the lambda gets the request
object as an argument.
Route globbing is a way to specify that a particular parameter should be matched to all the remaining parts of a route. For example:
This route would match photos/12
or /photos/long/path/to/12
, setting params[:other]
to "12"
or "long/path/to/12"
. The fragments prefixed with a star are called "wildcard segments".
Wildcard segments can occur anywhere in a route. For example:
would match books/some/section/last-words-a-memoir
with params[:section]
equals 'some/section'
, and params[:title]
equals 'last-words-a-memoir'
.
Technically, a route can have even more than one wildcard segment. The matcher assigns segments to parameters in an intuitive way. For example:
would match zoo/woo/foo/bar/baz
with params[:a]
equals 'zoo/woo'
, and params[:b]
equals 'bar/baz'
.
By requesting '/foo/bar.json'
, your params[:pages]
will be equals to 'foo/bar'
with the request format of JSON. If you want the old 3.0.x behavior back, you could supply format: false
like this:
If you want to make the format segment mandatory, so it cannot be omitted, you can supply format: true
like this:
You can redirect any path to another path using the redirect
helper in your router:
You can also reuse dynamic segments from the match in the path to redirect to:
You can also provide a block to redirect, which receives the params and the request object:
Please note that this redirection is a 301 "Moved Permanently" redirect. Keep in mind that some web browsers or proxy servers will cache this type of redirect, making the old page inaccessible.
In all of these cases, if you don't provide the leading host (http://www.example.com
), Rails will take those details from the current request.
Instead of a String like 'posts#index'
, which corresponds to the index
action in the PostsController
, you can specify any Rack application as the endpoint for a matcher:
As long as Sprockets
responds to call
and returns a [status, headers, body]
, the router won't know the difference between the Rack application and an action. This is an appropriate use of via: :all
, as you will want to allow your Rack application to handle all verbs as it considers appropriate.
For the curious, 'posts#index'
actually expands out to PostsController.action(:index)
, which returns a valid Rack application.
root
You can specify what Rails should route '/'
to with the root
method:
You should put the root
route at the top of the file, because it is the most popular route and should be matched first.
The root
route only routes GET
requests to the action.
You can also use root inside namespaces and scopes as well. For example:
You can specify unicode character routes directly. For example:
While the default routes and helpers generated by resources :posts
will usually serve you well, you may want to customize them in some way. Rails allows you to customize virtually any generic part of the resourceful helpers.
The :controller
option lets you explicitly specify a controller to use for the resource. For example:
will recognize incoming paths beginning with /photos
but route to the Images
controller:
HTTP Verb | Path | Action | Named Helper |
---|---|---|---|
GET | /photos | index | photos_path |
GET | /photos/new | new | new_photo_path |
POST | /photos | create | photos_path |
GET | /photos/:id | show | photo_path(:id) |
GET | /photos/:id/edit | edit | edit_photo_path(:id) |
PATCH/PUT | /photos/:id | update | photo_path(:id) |
DELETE | /photos/:id | destroy | photo_path(:id) |
Use photos_path
, new_photo_path
, etc. to generate paths for this resource.
For namespaced controllers you can use the directory notation. For example:
This will route to the Admin::UserPermissions
controller.
Only the directory notation is supported. Specifying the controller with ruby constant notation (eg. :controller => 'Admin::UserPermissions'
) can lead to routing problems and results in a warning.
You can use the :constraints
option to specify a required format on the implicit id
. For example:
This declaration constrains the :id
parameter to match the supplied regular expression. So, in this case, the router would no longer match /photos/1
to this route. Instead, /photos/RR27
would match.
You can specify a single constraint to apply to a number of routes by using the block form:
Of course, you can use the more advanced constraints available in non-resourceful routes in this context.
By default the :id
parameter doesn't accept dots - this is because the dot is used as a separator for formatted routes. If you need to use a dot within an :id
add a constraint which overrides this - for example id: /[^\/]+/
allows anything except a slash.
The :as
option lets you override the normal naming for the named route helpers. For example:
will recognize incoming paths beginning with /photos
and route the requests to PhotosController
, but use the value of the :as option to name the helpers.
HTTP Verb | Path | Action | Named Helper |
---|---|---|---|
GET | /photos | index | images_path |
GET | /photos/new | new | new_image_path |
POST | /photos | create | images_path |
GET | /photos/:id | show | image_path(:id) |
GET | /photos/:id/edit | edit | edit_image_path(:id) |
PATCH/PUT | /photos/:id | update | image_path(:id) |
DELETE | /photos/:id | destroy | image_path(:id) |
new
and edit
SegmentsThe :path_names
option lets you override the automatically-generated "new" and "edit" segments in paths:
This would cause the routing to recognize paths such as:
The actual action names aren't changed by this option. The two paths shown would still route to the new
and edit
actions.
If you find yourself wanting to change this option uniformly for all of your routes, you can use a scope.
You can use the :as
option to prefix the named route helpers that Rails generates for a route. Use this option to prevent name collisions between routes using a path scope. For example:
This will provide route helpers such as admin_photos_path
, new_admin_photo_path
etc.
To prefix a group of route helpers, use :as
with scope
:
This will generate routes such as admin_photos_path
and admin_accounts_path
which map to /admin/photos
and /admin/accounts
respectively.
The namespace
scope will automatically add :as
as well as :module
and :path
prefixes.
You can prefix routes with a named parameter also:
This will provide you with URLs such as /bob/posts/1
and will allow you to reference the username
part of the path as params[:username]
in controllers, helpers and views.
By default, Rails creates routes for the seven default actions (index, show, new, create, edit, update, and destroy) for every RESTful route in your application. You can use the :only
and :except
options to fine-tune this behavior. The :only
option tells Rails to create only the specified routes:
Now, a GET
request to /photos
would succeed, but a POST
request to /photos
(which would ordinarily be routed to the create
action) will fail.
The :except
option specifies a route or list of routes that Rails should not create:
In this case, Rails will create all of the normal routes except the route for destroy
(a DELETE
request to /photos/:id
).
If your application has many RESTful routes, using :only
and :except
to generate only the routes that you actually need can cut down on memory use and speed up the routing process.
Using scope
, we can alter path names generated by resources:
Rails now creates routes to the CategoriesController
.
HTTP Verb | Path | Action | Used for |
---|---|---|---|
GET | /kategorien | index | categories_path |
GET | /kategorien/neu | new | new_category_path |
POST | /kategorien | create | categories_path |
GET | /kategorien/:id | show | category_path(:id) |
GET | /kategorien/:id/bearbeiten | edit | edit_category_path(:id) |
PATCH/PUT | /kategorien/:id | update | category_path(:id) |
DELETE | /kategorien/:id | destroy | category_path(:id) |
If you want to define the singular form of a resource, you should add additional rules to the Inflector
:
:as
in Nested ResourcesThe :as
option overrides the automatically-generated name for the resource in nested route helpers. For example:
This will create routing helpers such as magazine_periodical_ads_url
and edit_magazine_periodical_ad_path
.
Rails offers facilities for inspecting and testing your routes.
To get a complete list of the available routes in your application, visit http://localhost:3000/rails/info/routes
in your browser while your server is running in the development environment. You can also execute the rake routes
command in your terminal to produce the same output.
Both methods will list all of your routes, in the same order that they appear in routes.rb
. For each route, you'll see:
For example, here's a small section of the rake routes
output for a RESTful route:
You may restrict the listing to the routes that map to a particular controller setting the CONTROLLER
environment variable:
You'll find that the output from rake routes
is much more readable if you widen your terminal window until the output lines don't wrap.
Routes should be included in your testing strategy (just like the rest of your application). Rails offers three built-in assertions designed to make testing routes simpler:
assert_generates
assert_recognizes
assert_routing
assert_generates
Assertionassert_generates
asserts that a particular set of options generate a particular path and can be used with default routes or custom routes. For example:
assert_recognizes
Assertionassert_recognizes
is the inverse of assert_generates
. It asserts that a given path is recognized and routes it to a particular spot in your application. For example:
You can supply a :method
argument to specify the HTTP verb:
assert_routing
AssertionThe assert_routing
assertion checks the route both ways: it tests that the path generates the options, and that the options generate the path. Thus, it combines the functions of assert_generates
and assert_recognizes
:
In order to have a near-zero default footprint, Active Support does not load anything by default. It is broken in small pieces so that you can load just what you need, and also has some convenience entry points to load related extensions in one shot, even everything.
Thus, after a simple require like:
objects do not even respond to blank?
. Let's see how to load its definition.
The most lightweight way to get blank?
is to cherry-pick the file that defines it.
For every single method defined as a core extension this guide has a note that says where such a method is defined. In the case of blank?
the note reads:
Defined in active_support/core_ext/object/blank.rb
.
That means that this single call is enough:
Active Support has been carefully revised so that cherry-picking a file loads only strictly needed dependencies, if any.
The next level is to simply load all extensions to Object
. As a rule of thumb, extensions to SomeClass
are available in one shot by loading active_support/core_ext/some_class
.
Thus, to load all extensions to Object
(including blank?
):
You may prefer just to load all core extensions, there is a file for that:
And finally, if you want to have all Active Support available just issue:
That does not even put the entire Active Support in memory upfront indeed, some stuff is configured via autoload
, so it is only loaded if used.
A Ruby on Rails application loads all Active Support unless config.active_support.bare
is true. In that case, the application will only load what the framework itself cherry-picks for its own needs, and can still cherry-pick itself at any granularity level, as explained in the previous section.
blank?
and present?
The following values are considered to be blank in a Rails application:
nil
and false
,empty?
and is empty.The predicate for strings uses the Unicode-aware character class [:space:]
, so for example U+2029 (paragraph separator) is considered to be whitespace.
Note that numbers are not mentioned. In particular, 0 and 0.0 are not blank.
For example, this method from ActionDispatch::Session::AbstractStore
uses blank?
for checking whether a session key is present:
The method present?
is equivalent to !blank?
. This example is taken from ActionDispatch::Http::Cache::Response
:
Defined in active_support/core_ext/object/blank.rb
.
presence
The presence
method returns its receiver if present?
, and nil
otherwise. It is useful for idioms like this:
Defined in active_support/core_ext/object/blank.rb
.
duplicable?
A few fundamental objects in Ruby are singletons. For example, in the whole life of a program the integer 1 refers always to the same instance:
Hence, there's no way these objects can be duplicated through dup
or clone
:
Some numbers which are not singletons are not duplicable either:
Active Support provides duplicable?
to programmatically query an object about this property:
By definition all objects are duplicable?
except nil
, false
, true
, symbols, numbers, class, and module objects.
Any class can disallow duplication by removing dup
and clone
or raising exceptions from them. Thus only rescue
can tell whether a given arbitrary object is duplicable. duplicable?
depends on the hard-coded list above, but it is much faster than rescue
. Use it only if you know the hard-coded list is enough in your use case.
Defined in active_support/core_ext/object/duplicable.rb
.
deep_dup
The deep_dup
method returns deep copy of a given object. Normally, when you dup
an object that contains other objects, ruby does not dup
them, so it creates a shallow copy of the object. If you have an array with a string, for example, it will look like this:
As you can see, after duplicating the Array
instance, we got another object, therefore we can modify it and the original object will stay unchanged. This is not true for array's elements, however. Since dup
does not make deep copy, the string inside the array is still the same object.
If you need a deep copy of an object, you should use deep_dup
. Here is an example:
If the object is not duplicable, deep_dup
will just return it:
Defined in active_support/core_ext/object/deep_dup.rb
.
try
When you want to call a method on an object only if it is not nil
, the simplest way to achieve it is with conditional statements, adding unnecessary clutter. The alternative is to use try
. try
is like Object#send
except that it returns nil
if sent to nil
.
Here is an example:
Another example is this code from ActiveRecord::ConnectionAdapters::AbstractAdapter
where @logger
could be nil
. You can see that the code uses try
and avoids an unnecessary check.
try
can also be called without arguments but a block, which will only be executed if the object is not nil:
Defined in active_support/core_ext/object/try.rb
.
class_eval(*args, &block)
You can evaluate code in the context of any object's singleton class using class_eval
:
Defined in active_support/core_ext/kernel/singleton_class.rb
.
acts_like?(duck)
The method acts_like?
provides a way to check whether some class acts like some other class based on a simple convention: a class that provides the same interface as String
defines
which is only a marker, its body or return value are irrelevant. Then, client code can query for duck-type-safeness this way:
Rails has classes that act like Date
or Time
and follow this contract.
Defined in active_support/core_ext/object/acts_like.rb
.
to_param
All objects in Rails respond to the method to_param
, which is meant to return something that represents them as values in a query string, or as URL fragments.
By default to_param
just calls to_s
:
The return value of to_param
should not be escaped:
Several classes in Rails overwrite this method.
For example nil
, true
, and false
return themselves. Array#to_param
calls to_param
on the elements and joins the result with "/":
Notably, the Rails routing system calls to_param
on models to get a value for the :id
placeholder. ActiveRecord::Base#to_param
returns the id
of a model, but you can redefine that method in your models. For example, given
we get:
Controllers need to be aware of any redefinition of to_param
because when a request like that comes in "357-john-smith" is the value of params[:id]
.
Defined in active_support/core_ext/object/to_param.rb
.
to_query
Except for hashes, given an unescaped key
this method constructs the part of a query string that would map such key to what to_param
returns. For example, given
we get:
This method escapes whatever is needed, both for the key and the value:
so its output is ready to be used in a query string.
Arrays return the result of applying to_query
to each element with _key_[]
as key, and join the result with "&":
Hashes also respond to to_query
but with a different signature. If no argument is passed a call generates a sorted series of key/value assignments calling to_query(key)
on its values. Then it joins the result with "&":
The method Hash#to_query
accepts an optional namespace for the keys:
Defined in active_support/core_ext/object/to_query.rb
.
with_options
The method with_options
provides a way to factor out common options in a series of method calls.
Given a default options hash, with_options
yields a proxy object to a block. Within the block, methods called on the proxy are forwarded to the receiver with their options merged. For example, you get rid of the duplication in:
this way:
That idiom may convey grouping to the reader as well. For example, say you want to send a newsletter whose language depends on the user. Somewhere in the mailer you could group locale-dependent bits like this:
Since with_options
forwards calls to its receiver they can be nested. Each nesting level will merge inherited defaults in addition to their own.
Defined in active_support/core_ext/object/with_options.rb
.
Active Support provides a better implemention of to_json
than the +json+ gem ordinarily provides for Ruby objects. This is because some classes, like +Hash+ and +OrderedHash+ needs special handling in order to provide a proper JSON representation.
Active Support also provides an implementation of as_json
for the Process::Status class.
Defined in active_support/core_ext/object/to_json.rb
.
Active Support provides several methods to ease access to instance variables.
instance_values
The method instance_values
returns a hash that maps instance variable names without "@" to their corresponding values. Keys are strings:
Defined in active_support/core_ext/object/instance_variables.rb
.
instance_variable_names
The method instance_variable_names
returns an array. Each name includes the "@" sign.
Defined in active_support/core_ext/object/instance_variables.rb
.
The methods silence_warnings
and enable_warnings
change the value of $VERBOSE
accordingly for the duration of their block, and reset it afterwards:
You can silence any stream while a block runs with silence_stream
:
The quietly
method addresses the common use case where you want to silence STDOUT and STDERR, even in subprocesses:
For example, the railties test suite uses that one in a few places to prevent command messages from being echoed intermixed with the progress status.
Silencing exceptions is also possible with suppress
. This method receives an arbitrary number of exception classes. If an exception is raised during the execution of the block and is kind_of?
any of the arguments, suppress
captures it and returns silently. Otherwise the exception is reraised:
Defined in active_support/core_ext/kernel/reporting.rb
.
in?
The predicate in?
tests if an object is included in another object. An ArgumentError
exception will be raised if the argument passed does not respond to include?
.
Examples of in?
:
Defined in active_support/core_ext/object/inclusion.rb
.
Module
alias_method_chain
Using plain Ruby you can wrap methods with other methods, that's called alias chaining.
For example, let's say you'd like params to be strings in functional tests, as they are in real requests, but still want the convenience of assigning integers and other kind of values. To accomplish that you could wrap ActionController::TestCase#process
this way in test/test_helper.rb
:
That's the method get
, post
, etc., delegate the work to.
That technique has a risk, it could be the case that :original_process
was taken. To try to avoid collisions people choose some label that characterizes what the chaining is about:
The method alias_method_chain
provides a shortcut for that pattern:
Rails uses alias_method_chain
all over the code base. For example validations are added to ActiveRecord::Base#save
by wrapping the method that way in a separate module specialized in validations.
Defined in active_support/core_ext/module/aliasing.rb
.
alias_attribute
Model attributes have a reader, a writer, and a predicate. You can alias a model attribute having the corresponding three methods defined for you in one shot. As in other aliasing methods, the new name is the first argument, and the old name is the second (my mnemonic is they go in the same order as if you did an assignment):
Defined in active_support/core_ext/module/aliasing.rb
.
When you are defining an attribute in a class that is meant to be subclassed, name collisions are a risk. That's remarkably important for libraries.
Active Support defines the macros attr_internal_reader
, attr_internal_writer
, and attr_internal_accessor
. They behave like their Ruby built-in attr_*
counterparts, except they name the underlying instance variable in a way that makes collisions less likely.
The macro attr_internal
is a synonym for attr_internal_accessor
:
In the previous example it could be the case that :log_level
does not belong to the public interface of the library and it is only used for development. The client code, unaware of the potential conflict, subclasses and defines its own :log_level
. Thanks to attr_internal
there's no collision.
By default the internal instance variable is named with a leading underscore, @_log_level
in the example above. That's configurable via Module.attr_internal_naming_format
though, you can pass any sprintf
-like format string with a leading @
and a %s
somewhere, which is where the name will be placed. The default is "@_%s"
.
Rails uses internal attributes in a few spots, for examples for views:
Defined in active_support/core_ext/module/attr_internal.rb
.
The macros mattr_reader
, mattr_writer
, and mattr_accessor
are analogous to the cattr_*
macros defined for class. Check Class Attributes.
For example, the dependencies mechanism uses them:
Defined in active_support/core_ext/module/attribute_accessors.rb
.
parent
The parent
method on a nested named module returns the module that contains its corresponding constant:
If the module is anonymous or belongs to the top-level, parent
returns Object
.
Note that in that case parent_name
returns nil
.
Defined in active_support/core_ext/module/introspection.rb
.
parent_name
The parent_name
method on a nested named module returns the fully-qualified name of the module that contains its corresponding constant:
For top-level or anonymous modules parent_name
returns nil
.
Note that in that case parent
returns Object
.
Defined in active_support/core_ext/module/introspection.rb
.
parents
The method parents
calls parent
on the receiver and upwards until Object
is reached. The chain is returned in an array, from bottom to top:
Defined in active_support/core_ext/module/introspection.rb
.
The method local_constants
returns the names of the constants that have been defined in the receiver module:
The names are returned as symbols. (The deprecated method local_constant_names
returns strings.)
Defined in active_support/core_ext/module/introspection.rb
.
The standard methods const_defined?
, const_get
, and const_set
accept bare constant names. Active Support extends this API to be able to pass relative qualified constant names.
The new methods are qualified_const_defined?
, qualified_const_get
, and qualified_const_set
. Their arguments are assumed to be qualified constant names relative to their receiver:
Arguments may be bare constant names:
These methods are analogous to their builtin counterparts. In particular, qualified_constant_defined?
accepts an optional second argument to be able to say whether you want the predicate to look in the ancestors. This flag is taken into account for each constant in the expression while walking down the path.
For example, given
qualified_const_defined?
behaves this way:
As the last example implies, the second argument defaults to true, as in const_defined?
.
For coherence with the builtin methods only relative paths are accepted. Absolute qualified constant names like ::Math::PI
raise NameError
.
Defined in active_support/core_ext/module/qualified_const.rb
.
A named module is reachable if it is stored in its corresponding constant. It means you can reach the module object via the constant.
That is what ordinarily happens, if a module is called "M", the M
constant exists and holds it:
But since constants and modules are indeed kind of decoupled, module objects can become unreachable:
Defined in active_support/core_ext/module/reachable.rb
.
A module may or may not have a name:
You can check whether a module has a name with the predicate anonymous?
:
Note that being unreachable does not imply being anonymous:
though an anonymous module is unreachable by definition.
Defined in active_support/core_ext/module/anonymous.rb
.
The macro delegate
offers an easy way to forward methods.
Let's imagine that users in some application have login information in the User
model but name and other data in a separate Profile
model:
With that configuration you get a user's name via their profile, user.profile.name
, but it could be handy to still be able to access such attribute directly:
That is what delegate
does for you:
It is shorter, and the intention more obvious.
The method must be public in the target.
The delegate
macro accepts several methods:
When interpolated into a string, the :to
option should become an expression that evaluates to the object the method is delegated to. Typically a string or symbol. Such an expression is evaluated in the context of the receiver:
If the :prefix
option is true
this is less generic, see below.
By default, if the delegation raises NoMethodError
and the target is nil
the exception is propagated. You can ask that nil
is returned instead with the :allow_nil
option:
With :allow_nil
the call user.name
returns nil
if the user has no profile.
The option :prefix
adds a prefix to the name of the generated method. This may be handy for example to get a better name:
The previous example generates address_street
rather than street
.
Since in this case the name of the generated method is composed of the target object and target method names, the :to
option must be a method name.
A custom prefix may also be configured:
In the previous example the macro generates avatar_size
rather than size
.
Defined in active_support/core_ext/module/delegation.rb
There are cases where you need to define a method with define_method
, but don't know whether a method with that name already exists. If it does, a warning is issued if they are enabled. No big deal, but not clean either.
The method redefine_method
prevents such a potential warning, removing the existing method before if needed. Rails uses it in a few places, for instance when it generates an association's API:
Defined in active_support/core_ext/module/remove_method.rb
Class
class_attribute
The method class_attribute
declares one or more inheritable class attributes that can be overridden at any level down the hierarchy.
For example ActionMailer::Base
defines:
They can be also accessed and overridden at the instance level.
The generation of the writer instance method can be prevented by setting the option :instance_writer
to false
.
A model may find that option useful as a way to prevent mass-assignment from setting the attribute.
The generation of the reader instance method can be prevented by setting the option :instance_reader
to false
.
For convenience class_attribute
also defines an instance predicate which is the double negation of what the instance reader returns. In the examples above it would be called x?
.
When :instance_reader
is false
, the instance predicate returns a NoMethodError
just like the reader method.
If you do not want the instance predicate, pass instance_predicate: false
and it will not be defined.
Defined in active_support/core_ext/class/attribute.rb
cattr_reader
, cattr_writer
, and cattr_accessor
The macros cattr_reader
, cattr_writer
, and cattr_accessor
are analogous to their attr_*
counterparts but for classes. They initialize a class variable to nil
unless it already exists, and generate the corresponding class methods to access it:
Instance methods are created as well for convenience, they are just proxies to the class attribute. So, instances can change the class attribute, but cannot override it as it happens with class_attribute
(see above). For example given
we can access field_error_proc
in views.
The generation of the reader instance method can be prevented by setting :instance_reader
to false
and the generation of the writer instance method can be prevented by setting :instance_writer
to false
. Generation of both methods can be prevented by setting :instance_accessor
to false
. In all cases, the value must be exactly false
and not any false value.
A model may find it useful to set :instance_accessor
to false
as a way to prevent mass-assignment from setting the attribute.
Defined in active_support/core_ext/class/attribute_accessors.rb
.
subclasses
The subclasses
method returns the subclasses of the receiver:
The order in which these classes are returned is unspecified.
Defined in active_support/core_ext/class/subclasses.rb
.
descendants
The descendants
method returns all classes that are <
than its receiver:
The order in which these classes are returned is unspecified.
Defined in active_support/core_ext/class/subclasses.rb
.
String
Inserting data into HTML templates needs extra care. For example, you can't just interpolate @review.title
verbatim into an HTML page. For one thing, if the review title is "Flanagan & Matz rules!" the output won't be well-formed because an ampersand has to be escaped as "&". What's more, depending on the application, that may be a big security hole because users can inject malicious HTML setting a hand-crafted review title. Check out the section about cross-site scripting in the Security guide for further information about the risks.
Active Support has the concept of (html) safe strings. A safe string is one that is marked as being insertable into HTML as is. It is trusted, no matter whether it has been escaped or not.
Strings are considered to be unsafe by default:
You can obtain a safe string from a given one with the html_safe
method:
It is important to understand that html_safe
performs no escaping whatsoever, it is just an assertion:
It is your responsibility to ensure calling html_safe
on a particular string is fine.
If you append onto a safe string, either in-place with concat
/<<
, or with +
, the result is a safe string. Unsafe arguments are escaped:
Safe arguments are directly appended:
These methods should not be used in ordinary views. Unsafe values are automatically escaped:
To insert something verbatim use the raw
helper rather than calling html_safe
:
or, equivalently, use <%==
:
The raw
helper calls html_safe
for you:
Defined in active_support/core_ext/string/output_safety.rb
.
As a rule of thumb, except perhaps for concatenation as explained above, any method that may change a string gives you an unsafe string. These are downcase
, gsub
, strip
, chomp
, underscore
, etc.
In the case of in-place transformations like gsub!
the receiver itself becomes unsafe.
The safety bit is lost always, no matter whether the transformation actually changed something.
Calling to_s
on a safe string returns a safe string, but coercion with to_str
returns an unsafe string.
Calling dup
or clone
on safe strings yields safe strings.
squish
The method squish
strips leading and trailing whitespace, and substitutes runs of whitespace with a single space each:
There's also the destructive version String#squish!
.
Note that it handles both ASCII and Unicode whitespace like mongolian vowel separator (U+180E).
Defined in active_support/core_ext/string/filters.rb
.
truncate
The method truncate
returns a copy of its receiver truncated after a given length
:
Ellipsis can be customized with the :omission
option:
Note in particular that truncation takes into account the length of the omission string.
Pass a :separator
to truncate the string at a natural break:
The option :separator
can be a regexp:
In above examples "dear" gets cut first, but then :separator
prevents it.
Defined in active_support/core_ext/string/filters.rb
.
inquiry
The inquiry
method converts a string into a StringInquirer
object making equality checks prettier.
starts_with?
and ends_with?
Active Support defines 3rd person aliases of String#start_with?
and String#end_with?
:
Defined in active_support/core_ext/string/starts_ends_with.rb
.
strip_heredoc
The method strip_heredoc
strips indentation in heredocs.
For example in
the user would see the usage message aligned against the left margin.
Technically, it looks for the least indented line in the whole string, and removes that amount of leading whitespace.
Defined in active_support/core_ext/string/strip.rb
.
indent
Indents the lines in the receiver:
The second argument, indent_string
, specifies which indent string to use. The default is nil
, which tells the method to make an educated guess peeking at the first indented line, and fallback to a space if there is none.
While indent_string
is typically one space or tab, it may be any string.
The third argument, indent_empty_lines
, is a flag that says whether empty lines should be indented. Default is false.
The indent!
method performs indentation in-place.
Defined in active_support/core_ext/string/indent.rb
.
at(position)
Returns the character of the string at position position
:
Defined in active_support/core_ext/string/access.rb
.
from(position)
Returns the substring of the string starting at position position
:
Defined in active_support/core_ext/string/access.rb
.
to(position)
Returns the substring of the string up to position position
:
Defined in active_support/core_ext/string/access.rb
.
first(limit = 1)
The call str.first(n)
is equivalent to str.to(n-1)
if n
> 0, and returns an empty string for n
== 0.
Defined in active_support/core_ext/string/access.rb
.
last(limit = 1)
The call str.last(n)
is equivalent to str.from(-n)
if n
> 0, and returns an empty string for n
== 0.
Defined in active_support/core_ext/string/access.rb
.
pluralize
The method pluralize
returns the plural of its receiver:
As the previous example shows, Active Support knows some irregular plurals and uncountable nouns. Built-in rules can be extended in config/initializers/inflections.rb
. That file is generated by the rails
command and has instructions in comments.
pluralize
can also take an optional count
parameter. If count == 1
the singular form will be returned. For any other value of count
the plural form will be returned:
Active Record uses this method to compute the default table name that corresponds to a model:
Defined in active_support/core_ext/string/inflections.rb
.
singularize
The inverse of pluralize
:
Associations compute the name of the corresponding default associated class using this method:
Defined in active_support/core_ext/string/inflections.rb
.
camelize
The method camelize
returns its receiver in camel case:
As a rule of thumb you can think of this method as the one that transforms paths into Ruby class or module names, where slashes separate namespaces:
For example, Action Pack uses this method to load the class that provides a certain session store:
camelize
accepts an optional argument, it can be :upper
(default), or :lower
. With the latter the first letter becomes lowercase:
That may be handy to compute method names in a language that follows that convention, for example JavaScript.
As a rule of thumb you can think of camelize
as the inverse of underscore
, though there are cases where that does not hold: "SSLError".underscore.camelize
gives back "SslError"
. To support cases such as this, Active Support allows you to specify acronyms in config/initializers/inflections.rb
:
camelize
is aliased to camelcase
.
Defined in active_support/core_ext/string/inflections.rb
.
underscore
The method underscore
goes the other way around, from camel case to paths:
Also converts "::" back to "/":
and understands strings that start with lowercase:
underscore
accepts no argument though.
Rails class and module autoloading uses underscore
to infer the relative path without extension of a file that would define a given missing constant:
As a rule of thumb you can think of underscore
as the inverse of camelize
, though there are cases where that does not hold. For example, "SSLError".underscore.camelize
gives back "SslError"
.
Defined in active_support/core_ext/string/inflections.rb
.
titleize
The method titleize
capitalizes the words in the receiver:
titleize
is aliased to titlecase
.
Defined in active_support/core_ext/string/inflections.rb
.
dasherize
The method dasherize
replaces the underscores in the receiver with dashes:
The XML serializer of models uses this method to dasherize node names:
Defined in active_support/core_ext/string/inflections.rb
.
demodulize
Given a string with a qualified constant name, demodulize
returns the very constant name, that is, the rightmost part of it:
Active Record for example uses this method to compute the name of a counter cache column:
Defined in active_support/core_ext/string/inflections.rb
.
deconstantize
Given a string with a qualified constant reference expression, deconstantize
removes the rightmost segment, generally leaving the name of the constant's container:
Active Support for example uses this method in Module#qualified_const_set
:
Defined in active_support/core_ext/string/inflections.rb
.
parameterize
The method parameterize
normalizes its receiver in a way that can be used in pretty URLs.
In fact, the result string is wrapped in an instance of ActiveSupport::Multibyte::Chars
.
Defined in active_support/core_ext/string/inflections.rb
.
tableize
The method tableize
is underscore
followed by pluralize
.
As a rule of thumb, tableize
returns the table name that corresponds to a given model for simple cases. The actual implementation in Active Record is not straight tableize
indeed, because it also demodulizes the class name and checks a few options that may affect the returned string.
Defined in active_support/core_ext/string/inflections.rb
.
classify
The method classify
is the inverse of tableize
. It gives you the class name corresponding to a table name:
The method understands qualified table names:
Note that classify
returns a class name as a string. You can get the actual class object invoking constantize
on it, explained next.
Defined in active_support/core_ext/string/inflections.rb
.
constantize
The method constantize
resolves the constant reference expression in its receiver:
If the string evaluates to no known constant, or its content is not even a valid constant name, constantize
raises NameError
.
Constant name resolution by constantize
starts always at the top-level Object
even if there is no leading "::".
So, it is in general not equivalent to what Ruby would do in the same spot, had a real constant be evaluated.
Mailer test cases obtain the mailer being tested from the name of the test class using constantize
:
Defined in active_support/core_ext/string/inflections.rb
.
humanize
The method humanize
gives you a sensible name for display out of an attribute name. To do so it replaces underscores with spaces, removes any "_id" suffix, and capitalizes the first word:
The helper method full_messages
uses humanize
as a fallback to include attribute names:
Defined in active_support/core_ext/string/inflections.rb
.
foreign_key
The method foreign_key
gives a foreign key column name from a class name. To do so it demodulizes, underscores, and adds "_id":
Pass a false argument if you do not want the underscore in "_id":
Associations use this method to infer foreign keys, for example has_one
and has_many
do this:
Defined in active_support/core_ext/string/inflections.rb
.
to_date
, to_time
, to_datetime
The methods to_date
, to_time
, and to_datetime
are basically convenience wrappers around Date._parse
:
to_time
receives an optional argument :utc
or :local
, to indicate which time zone you want the time in:
Default is :utc
.
Please refer to the documentation of Date._parse
for further details.
The three of them return nil
for blank receivers.
Defined in active_support/core_ext/string/conversions.rb
.
Numeric
All numbers respond to these methods:
They return the corresponding amount of bytes, using a conversion factor of 1024:
Singular forms are aliased so you are able to say:
Defined in active_support/core_ext/numeric/bytes.rb
.
Enables the use of time calculations and declarations, like 45.minutes + 2.hours + 4.years
.
These methods use Time#advance for precise date calculations when using from_now, ago, etc. as well as adding or subtracting their results from a Time object. For example:
While these methods provide precise calculation when used as in the examples above, care should be taken to note that this is not true if the result of months',
years', etc is converted before use:
In such cases, Ruby's core Date and Time should be used for precision date and time arithmetic.
Defined in active_support/core_ext/numeric/time.rb
.
Enables the formatting of numbers in a variety of ways.
Produce a string representation of a number as a telephone number:
Produce a string representation of a number as currency:
Produce a string representation of a number as a percentage:
Produce a string representation of a number in delimited form:
Produce a string representation of a number rounded to a precision:
Produce a string representation of a number as a human-readable number of bytes:
Produce a string representation of a number in human-readable words:
Defined in active_support/core_ext/numeric/formatting.rb
.
Integer
multiple_of?
The method multiple_of?
tests whether an integer is multiple of the argument:
Defined in active_support/core_ext/integer/multiple.rb
.
ordinal
The method ordinal
returns the ordinal suffix string corresponding to the receiver integer:
Defined in active_support/core_ext/integer/inflections.rb
.
ordinalize
The method ordinalize
returns the ordinal string corresponding to the receiver integer. In comparison, note that the ordinal
method returns only the suffix string.
Defined in active_support/core_ext/integer/inflections.rb
.
BigDecimal
to_s
The method to_s
is aliased to to_formatted_s
. This provides a convenient way to display a BigDecimal value in floating-point notation:
to_formatted_s
Te method to_formatted_s
provides a default specifier of "F". This means that a simple call to to_formatted_s
or to_s
will result in floating point representation instead of engineering notation:
and that symbol specifiers are also supported:
Engineering notation is still supported:
Enumerable
sum
The method sum
adds the elements of an enumerable:
Addition only assumes the elements respond to +
:
The sum of an empty collection is zero by default, but this is customizable:
If a block is given, sum
becomes an iterator that yields the elements of the collection and sums the returned values:
The sum of an empty receiver can be customized in this form as well:
Defined in active_support/core_ext/enumerable.rb
.
index_by
The method index_by
generates a hash with the elements of an enumerable indexed by some key.
It iterates through the collection and passes each element to a block. The element will be keyed by the value returned by the block:
Keys should normally be unique. If the block returns the same value for different elements no collection is built for that key. The last item will win.
Defined in active_support/core_ext/enumerable.rb
.
many?
The method many?
is shorthand for collection.size > 1
:
If an optional block is given, many?
only takes into account those elements that return true:
Defined in active_support/core_ext/enumerable.rb
.
exclude?
The predicate exclude?
tests whether a given object does not belong to the collection. It is the negation of the built-in include?
:
Defined in active_support/core_ext/enumerable.rb
.
Array
Active Support augments the API of arrays to ease certain ways of accessing them. For example, to
returns the subarray of elements up to the one at the passed index:
Similarly, from
returns the tail from the element at the passed index to the end. If the index is greater than the length of the array, it returns an empty array.
The methods second
, third
, fourth
, and fifth
return the corresponding element (first
is built-in). Thanks to social wisdom and positive constructiveness all around, forty_two
is also available.
Defined in active_support/core_ext/array/access.rb
.
prepend
This method is an alias of Array#unshift
.
Defined in active_support/core_ext/array/prepend_and_append.rb
.
append
This method is an alias of Array#<<
.
Defined in active_support/core_ext/array/prepend_and_append.rb
.
When the last argument in a method call is a hash, except perhaps for a &block
argument, Ruby allows you to omit the brackets:
That syntactic sugar is used a lot in Rails to avoid positional arguments where there would be too many, offering instead interfaces that emulate named parameters. In particular it is very idiomatic to use a trailing hash for options.
If a method expects a variable number of arguments and uses *
in its declaration, however, such an options hash ends up being an item of the array of arguments, where it loses its role.
In those cases, you may give an options hash a distinguished treatment with extract_options!
. This method checks the type of the last item of an array. If it is a hash it pops it and returns it, otherwise it returns an empty hash.
Let's see for example the definition of the caches_action
controller macro:
This method receives an arbitrary number of action names, and an optional hash of options as last argument. With the call to extract_options!
you obtain the options hash and remove it from actions
in a simple and explicit way.
Defined in active_support/core_ext/array/extract_options.rb
.
to_sentence
The method to_sentence
turns an array into a string containing a sentence that enumerates its items:
This method accepts three options:
:two_words_connector
: What is used for arrays of length 2. Default is " and ".:words_connector
: What is used to join the elements of arrays with 3 or more elements, except for the last two. Default is ", ".:last_word_connector
: What is used to join the last items of an array with 3 or more elements. Default is ", and ".The defaults for these options can be localized, their keys are:
Option | I18n key |
---|---|
:two_words_connector | support.array.two_words_connector |
:words_connector | support.array.words_connector |
:last_word_connector | support.array.last_word_connector |
Defined in active_support/core_ext/array/conversions.rb
.
to_formatted_s
The method to_formatted_s
acts like to_s
by default.
If the array contains items that respond to id
, however, the symbol :db
may be passed as argument. That's typically used with collections of Active Record objects. Returned strings are:
Integers in the example above are supposed to come from the respective calls to id
.
Defined in active_support/core_ext/array/conversions.rb
.
to_xml
The method to_xml
returns a string containing an XML representation of its receiver:
To do so it sends to_xml
to every item in turn, and collects the results under a root node. All items must respond to to_xml
, an exception is raised otherwise.
By default, the name of the root element is the underscorized and dasherized plural of the name of the class of the first item, provided the rest of elements belong to that type (checked with is_a?
) and they are not hashes. In the example above that's "contributors".
If there's any element that does not belong to the type of the first one the root node becomes "objects":
If the receiver is an array of hashes the root element is by default also "objects":
If the collection is empty the root element is by default "nil-classes". That's a gotcha, for example the root element of the list of contributors above would not be "contributors" if the collection was empty, but "nil-classes". You may use the :root
option to ensure a consistent root element.
The name of children nodes is by default the name of the root node singularized. In the examples above we've seen "contributor" and "object". The option :children
allows you to set these node names.
The default XML builder is a fresh instance of Builder::XmlMarkup
. You can configure your own builder via the :builder
option. The method also accepts options like :dasherize
and friends, they are forwarded to the builder:
Defined in active_support/core_ext/array/conversions.rb
.
The method Array.wrap
wraps its argument in an array unless it is already an array (or array-like).
Specifically:
nil
an empty list is returned.to_ary
it is invoked, and if the value of to_ary
is not nil
, it is returned.This method is similar in purpose to Kernel#Array
, but there are some differences:
to_ary
the method is invoked. Kernel#Array
moves on to try to_a
if the returned value is nil
, but Array.wrap
returns nil
right away.to_ary
is neither nil
nor an Array
object, Kernel#Array
raises an exception, while Array.wrap
does not, it just returns the value.to_a
on the argument, though special-cases nil
to return an empty array.The last point is particularly worth comparing for some enumerables:
There's also a related idiom that uses the splat operator:
which in Ruby 1.8 returns [nil]
for nil
, and calls to Array(object)
otherwise. (Please if you know the exact behavior in 1.9 contact fxn.)
Thus, in this case the behavior is different for nil
, and the differences with Kernel#Array
explained above apply to the rest of object
s.
Defined in active_support/core_ext/array/wrap.rb
.
The method Array.deep_dup
duplicates itself and all objects inside recursively with Active Support method Object#deep_dup
. It works like Array#map
with sending deep_dup
method to each object inside.
Defined in active_support/core_ext/array/deep_dup.rb
.
in_groups_of(number, fill_with = nil)
The method in_groups_of
splits an array into consecutive groups of a certain size. It returns an array with the groups:
or yields them in turn if a block is passed:
The first example shows in_groups_of
fills the last group with as many nil
elements as needed to have the requested size. You can change this padding value using the second optional argument:
And you can tell the method not to fill the last group passing false
:
As a consequence false
can't be a used as a padding value.
Defined in active_support/core_ext/array/grouping.rb
.
in_groups(number, fill_with = nil)
The method in_groups
splits an array into a certain number of groups. The method returns an array with the groups:
or yields them in turn if a block is passed:
The examples above show that in_groups
fills some groups with a trailing nil
element as needed. A group can get at most one of these extra elements, the rightmost one if any. And the groups that have them are always the last ones.
You can change this padding value using the second optional argument:
And you can tell the method not to fill the smaller groups passing false
:
As a consequence false
can't be a used as a padding value.
Defined in active_support/core_ext/array/grouping.rb
.
split(value = nil)
The method split
divides an array by a separator and returns the resulting chunks.
If a block is passed the separators are those elements of the array for which the block returns true:
Otherwise, the value received as argument, which defaults to nil
, is the separator:
Observe in the previous example that consecutive separators result in empty arrays.
Defined in active_support/core_ext/array/grouping.rb
.
Hash
to_xml
The method to_xml
returns a string containing an XML representation of its receiver:
To do so, the method loops over the pairs and builds nodes that depend on the values. Given a pair key
, value
:
value
is a hash there's a recursive call with key
as :root
.value
is an array there's a recursive call with key
as :root
, and key
singularized as :children
.value
is a callable object it must expect one or two arguments. Depending on the arity, the callable is invoked with the options
hash as first argument with key
as :root
, and key
singularized as second argument. Its return value becomes a new node.value
responds to to_xml
the method is invoked with key
as :root
.key
as tag is created with a string representation of value
as text node. If value
is nil
an attribute "nil" set to "true" is added. Unless the option :skip_types
exists and is true, an attribute "type" is added as well according to the following mapping:By default the root node is "hash", but that's configurable via the :root
option.
The default XML builder is a fresh instance of Builder::XmlMarkup
. You can configure your own builder with the :builder
option. The method also accepts options like :dasherize
and friends, they are forwarded to the builder.
Defined in active_support/core_ext/hash/conversions.rb
.
Ruby has a built-in method Hash#merge
that merges two hashes:
Active Support defines a few more ways of merging hashes that may be convenient.
reverse_merge
and reverse_merge!
In case of collision the key in the hash of the argument wins in merge
. You can support option hashes with default values in a compact way with this idiom:
Active Support defines reverse_merge
in case you prefer this alternative notation:
And a bang version reverse_merge!
that performs the merge in place:
Take into account that reverse_merge!
may change the hash in the caller, which may or may not be a good idea.
Defined in active_support/core_ext/hash/reverse_merge.rb
.
reverse_update
The method reverse_update
is an alias for reverse_merge!
, explained above.
Note that reverse_update
has no bang.
Defined in active_support/core_ext/hash/reverse_merge.rb
.
deep_merge
and deep_merge!
As you can see in the previous example if a key is found in both hashes the value in the one in the argument wins.
Active Support defines Hash#deep_merge
. In a deep merge, if a key is found in both hashes and their values are hashes in turn, then their merge becomes the value in the resulting hash:
The method deep_merge!
performs a deep merge in place.
Defined in active_support/core_ext/hash/deep_merge.rb
.
The method Hash.deep_dup
duplicates itself and all keys and values inside recursively with Active Support method Object#deep_dup
. It works like Enumerator#each_with_object
with sending deep_dup
method to each pair inside.
Defined in active_support/core_ext/hash/deep_dup.rb
.
The method diff
returns a hash that represents a diff of the receiver and the argument with the following logic:
key
, value
that exist in both hashes do not belong to the diff hash.key
, but with different values, the pair in the receiver wins.An important property of this diff hash is that you can retrieve the original hash by applying diff
twice:
Diffing hashes may be useful for error messages related to expected option hashes for example.
Defined in active_support/core_ext/hash/diff.rb
.
except
and except!
The method except
returns a hash with the keys in the argument list removed, if present:
If the receiver responds to convert_key
, the method is called on each of the arguments. This allows except
to play nice with hashes with indifferent access for instance:
There's also the bang variant except!
that removes keys in the very receiver.
Defined in active_support/core_ext/hash/except.rb
.
transform_keys
and transform_keys!
The method transform_keys
accepts a block and returns a hash that has applied the block operations to each of the keys in the receiver:
The result in case of collision is undefined:
This method may be useful for example to build specialized conversions. For instance stringify_keys
and symbolize_keys
use transform_keys
to perform their key conversions:
There's also the bang variant transform_keys!
that applies the block operations to keys in the very receiver.
Besides that, one can use deep_transform_keys
and deep_transform_keys!
to perform the block operation on all the keys in the given hash and all the hashes nested into it. An example of the result is:
Defined in active_support/core_ext/hash/keys.rb
.
stringify_keys
and stringify_keys!
The method stringify_keys
returns a hash that has a stringified version of the keys in the receiver. It does so by sending to_s
to them:
The result in case of collision is undefined:
This method may be useful for example to easily accept both symbols and strings as options. For instance ActionView::Helpers::FormHelper
defines:
The second line can safely access the "type" key, and let the user to pass either :type
or "type".
There's also the bang variant stringify_keys!
that stringifies keys in the very receiver.
Besides that, one can use deep_stringify_keys
and deep_stringify_keys!
to stringify all the keys in the given hash and all the hashes nested into it. An example of the result is:
Defined in active_support/core_ext/hash/keys.rb
.
symbolize_keys
and symbolize_keys!
The method symbolize_keys
returns a hash that has a symbolized version of the keys in the receiver, where possible. It does so by sending to_sym
to them:
Note in the previous example only one key was symbolized.
The result in case of collision is undefined:
This method may be useful for example to easily accept both symbols and strings as options. For instance ActionController::UrlRewriter
defines
The second line can safely access the :params
key, and let the user to pass either :params
or "params".
There's also the bang variant symbolize_keys!
that symbolizes keys in the very receiver.
Besides that, one can use deep_symbolize_keys
and deep_symbolize_keys!
to symbolize all the keys in the given hash and all the hashes nested into it. An example of the result is:
Defined in active_support/core_ext/hash/keys.rb
.
to_options
and to_options!
The methods to_options
and to_options!
are respectively aliases of symbolize_keys
and symbolize_keys!
.
Defined in active_support/core_ext/hash/keys.rb
.
assert_valid_keys
The method assert_valid_keys
receives an arbitrary number of arguments, and checks whether the receiver has any key outside that white list. If it does ArgumentError
is raised.
Active Record does not accept unknown options when building associations, for example. It implements that control via assert_valid_keys
.
Defined in active_support/core_ext/hash/keys.rb
.
Ruby has built-in support for taking slices out of strings and arrays. Active Support extends slicing to hashes:
If the receiver responds to convert_key
keys are normalized:
Slicing may come in handy for sanitizing option hashes with a white list of keys.
There's also slice!
which in addition to perform a slice in place returns what's removed:
Defined in active_support/core_ext/hash/slice.rb
.
The method extract!
removes and returns the key/value pairs matching the given keys.
The method extract!
returns the same subclass of Hash, that the receiver is.
Defined in active_support/core_ext/hash/slice.rb
.
The method with_indifferent_access
returns an ActiveSupport::HashWithIndifferentAccess
out of its receiver:
Defined in active_support/core_ext/hash/indifferent_access.rb
.
Regexp
multiline?
The method multiline?
says whether a regexp has the /m
flag set, that is, whether the dot matches newlines.
Rails uses this method in a single place, also in the routing code. Multiline regexps are disallowed for route requirements and this flag eases enforcing that constraint.
Defined in active_support/core_ext/regexp.rb
.
Range
to_s
Active Support extends the method Range#to_s
so that it understands an optional format argument. As of this writing the only supported non-default format is :db
:
As the example depicts, the :db
format generates a BETWEEN
SQL clause. That is used by Active Record in its support for range values in conditions.
Defined in active_support/core_ext/range/conversions.rb
.
include?
The methods Range#include?
and Range#===
say whether some value falls between the ends of a given instance:
Active Support extends these methods so that the argument may be another range in turn. In that case we test whether the ends of the argument range belong to the receiver themselves:
Defined in active_support/core_ext/range/include_range.rb
.
overlaps?
The method Range#overlaps?
says whether any two given ranges have non-void intersection:
Defined in active_support/core_ext/range/overlaps.rb
.
Proc
bind
As you surely know Ruby has an UnboundMethod
class whose instances are methods that belong to the limbo of methods without a self. The method Module#instance_method
returns an unbound method for example:
An unbound method is not callable as is, you need to bind it first to an object with bind
:
Active Support defines Proc#bind
with an analogous purpose:
As you see that's callable and bound to the argument, the return value is indeed a Method
.
To do so Proc#bind
actually creates a method under the hood. If you ever see a method with a weird name like __bind_1256598120_237302
in a stack trace you know now where it comes from.
Action Pack uses this trick in rescue_from
for example, which accepts the name of a method and also a proc as callbacks for a given rescued exception. It has to call them in either case, so a bound method is returned by handler_for_rescue
, thus simplifying the code in the caller:
Defined in active_support/core_ext/proc.rb
.
Date
All the following methods are defined in active_support/core_ext/date/calculations.rb
.
The following calculation methods have edge cases in October 1582, since days 5..14 just do not exist. This guide does not document their behavior around those days for brevity, but it is enough to say that they do what you would expect. That is, Date.new(1582, 10, 4).tomorrow
returns Date.new(1582, 10, 15)
and so on. Please check test/core_ext/date_ext_test.rb
in the Active Support test suite for expected behavior.
Date.current
Active Support defines Date.current
to be today in the current time zone. That's like Date.today
, except that it honors the user time zone, if defined. It also defines Date.yesterday
and Date.tomorrow
, and the instance predicates past?
, today?
, and future?
, all of them relative to Date.current
.
When making Date comparisons using methods which honor the user time zone, make sure to use Date.current
and not Date.today
. There are cases where the user time zone might be in the future compared to the system time zone, which Date.today
uses by default. This means Date.today
may equal Date.yesterday
.
prev_year
, next_year
In Ruby 1.9 prev_year
and next_year
return a date with the same day/month in the last or next year:
If date is the 29th of February of a leap year, you obtain the 28th:
prev_year
is aliased to last_year
.
prev_month
, next_month
In Ruby 1.9 prev_month
and next_month
return the date with the same day in the last or next month:
If such a day does not exist, the last day of the corresponding month is returned:
prev_month
is aliased to last_month
.
prev_quarter
, next_quarter
Same as prev_month
and next_month
. It returns the date with the same day in the previous or next quarter:
If such a day does not exist, the last day of the corresponding month is returned:
prev_quarter
is aliased to last_quarter
.
beginning_of_week
, end_of_week
The methods beginning_of_week
and end_of_week
return the dates for the beginning and end of the week, respectively. Weeks are assumed to start on Monday, but that can be changed passing an argument, setting thread local Date.beginning_of_week
or config.beginning_of_week
.
beginning_of_week
is aliased to at_beginning_of_week
and end_of_week
is aliased to at_end_of_week
.
monday
, sunday
The methods monday
and sunday
return the dates for the previous Monday and next Sunday, respectively.
prev_week
, next_week
The method next_week
receives a symbol with a day name in English (default is the thread local Date.beginning_of_week
, or config.beginning_of_week
, or :monday
) and it returns the date corresponding to that day.
The method prev_week
is analogous:
prev_week
is aliased to last_week
.
Both next_week
and prev_week
work as expected when Date.beginning_of_week
or config.beginning_of_week
are set.
beginning_of_month
, end_of_month
The methods beginning_of_month
and end_of_month
return the dates for the beginning and end of the month:
beginning_of_month
is aliased to at_beginning_of_month
, and end_of_month
is aliased to at_end_of_month
.
beginning_of_quarter
, end_of_quarter
The methods beginning_of_quarter
and end_of_quarter
return the dates for the beginning and end of the quarter of the receiver's calendar year:
beginning_of_quarter
is aliased to at_beginning_of_quarter
, and end_of_quarter
is aliased to at_end_of_quarter
.
beginning_of_year
, end_of_year
The methods beginning_of_year
and end_of_year
return the dates for the beginning and end of the year:
beginning_of_year
is aliased to at_beginning_of_year
, and end_of_year
is aliased to at_end_of_year
.
years_ago
, years_since
The method years_ago
receives a number of years and returns the same date those many years ago:
years_since
moves forward in time:
If such a day does not exist, the last day of the corresponding month is returned:
months_ago
, months_since
The methods months_ago
and months_since
work analogously for months:
If such a day does not exist, the last day of the corresponding month is returned:
weeks_ago
The method weeks_ago
works analogously for weeks:
advance
The most generic way to jump to other days is advance
. This method receives a hash with keys :years
, :months
, :weeks
, :days
, and returns a date advanced as much as the present keys indicate:
Note in the previous example that increments may be negative.
To perform the computation the method first increments years, then months, then weeks, and finally days. This order is important towards the end of months. Say for example we are at the end of February of 2010, and we want to move one month and one day forward.
The method advance
advances first one month, and then one day, the result is:
While if it did it the other way around the result would be different:
The method change
allows you to get a new date which is the same as the receiver except for the given year, month, or day:
This method is not tolerant to non-existing dates, if the change is invalid ArgumentError
is raised:
Durations can be added to and subtracted from dates:
They translate to calls to since
or advance
. For example here we get the correct jump in the calendar reform:
The following methods return a Time
object if possible, otherwise a DateTime
. If set, they honor the user time zone.
beginning_of_day
, end_of_day
The method beginning_of_day
returns a timestamp at the beginning of the day (00:00:00):
The method end_of_day
returns a timestamp at the end of the day (23:59:59):
beginning_of_day
is aliased to at_beginning_of_day
, midnight
, at_midnight
.
beginning_of_hour
, end_of_hour
The method beginning_of_hour
returns a timestamp at the beginning of the hour (hh:00:00):
The method end_of_hour
returns a timestamp at the end of the hour (hh:59:59):
beginning_of_hour
is aliased to at_beginning_of_hour
.
beginning_of_minute
, end_of_minute
The method beginning_of_minute
returns a timestamp at the beginning of the minute (hh:mm:00):
The method end_of_minute
returns a timestamp at the end of the minute (hh:mm:59):
beginning_of_minute
is aliased to at_beginning_of_minute
.
beginning_of_hour
, end_of_hour
, beginning_of_minute
and end_of_minute
are implemented for Time
and DateTime
but not Date
as it does not make sense to request the beginning or end of an hour or minute on a Date
instance.
ago
, since
The method ago
receives a number of seconds as argument and returns a timestamp those many seconds ago from midnight:
Similarly, since
moves forward:
DateTime
DateTime
is not aware of DST rules and so some of these methods have edge cases when a DST change is going on. For example seconds_since_midnight
might not return the real amount in such a day.
All the following methods are defined in active_support/core_ext/date_time/calculations.rb
.
The class DateTime
is a subclass of Date
so by loading active_support/core_ext/date/calculations.rb
you inherit these methods and their aliases, except that they will always return datetimes:
The following methods are reimplemented so you do not need to load active_support/core_ext/date/calculations.rb
for these ones:
On the other hand, advance
and change
are also defined and support more options, they are documented below.
The following methods are only implemented in active_support/core_ext/date_time/calculations.rb
as they only make sense when used with a DateTime
instance:
DateTime.current
Active Support defines DateTime.current
to be like Time.now.to_datetime
, except that it honors the user time zone, if defined. It also defines DateTime.yesterday
and DateTime.tomorrow
, and the instance predicates past?
, and future?
relative to DateTime.current
.
seconds_since_midnight
The method seconds_since_midnight
returns the number of seconds since midnight:
utc
The method utc
gives you the same datetime in the receiver expressed in UTC.
This method is also aliased as getutc
.
utc?
The predicate utc?
says whether the receiver has UTC as its time zone:
advance
The most generic way to jump to another datetime is advance
. This method receives a hash with keys :years
, :months
, :weeks
, :days
, :hours
, :minutes
, and :seconds
, and returns a datetime advanced as much as the present keys indicate.
This method first computes the destination date passing :years
, :months
, :weeks
, and :days
to Date#advance
documented above. After that, it adjusts the time calling since
with the number of seconds to advance. This order is relevant, a different ordering would give different datetimes in some edge-cases. The example in Date#advance
applies, and we can extend it to show order relevance related to the time bits.
If we first move the date bits (that have also a relative order of processing, as documented before), and then the time bits we get for example the following computation:
but if we computed them the other way around, the result would be different:
Since DateTime
is not DST-aware you can end up in a non-existing point in time with no warning or error telling you so.
The method change
allows you to get a new datetime which is the same as the receiver except for the given options, which may include :year
, :month
, :day
, :hour
, :min
, :sec
, :offset
, :start
:
If hours are zeroed, then minutes and seconds are too (unless they have given values):
Similarly, if minutes are zeroed, then seconds are too (unless it has given a value):
This method is not tolerant to non-existing dates, if the change is invalid ArgumentError
is raised:
Durations can be added to and subtracted from datetimes:
They translate to calls to since
or advance
. For example here we get the correct jump in the calendar reform:
Time
All the following methods are defined in active_support/core_ext/time/calculations.rb
.
Active Support adds to Time
many of the methods available for DateTime
:
They are analogous. Please refer to their documentation above and take into account the following differences:
change
accepts an additional :usec
option.Time
understands DST, so you get correct DST calculations as insince
or ago
jump to a time that can't be expressed with Time
a DateTime
object is returned instead.Time.current
Active Support defines Time.current
to be today in the current time zone. That's like Time.now
, except that it honors the user time zone, if defined. It also defines Time.yesterday
and Time.tomorrow
, and the instance predicates past?
, today?
, and future?
, all of them relative to Time.current
.
When making Time comparisons using methods which honor the user time zone, make sure to use Time.current
and not Time.now
. There are cases where the user time zone might be in the future compared to the system time zone, which Time.today
uses by default. This means Time.now
may equal Time.yesterday
.
all_day
, all_week
, all_month
, all_quarter
and all_year
The method all_day
returns a range representing the whole day of the current time.
Analogously, all_week
, all_month
, all_quarter
and all_year
all serve the purpose of generating time ranges.
Active Support defines Time.current
to be Time.zone.now
if there's a user time zone defined, with fallback to Time.now
:
Analogously to DateTime
, the predicates past?
, and future?
are relative to Time.current
.
If the time to be constructed lies beyond the range supported by Time
in the runtime platform, usecs are discarded and a DateTime
object is returned instead.
Durations can be added to and subtracted from time objects:
They translate to calls to since
or advance
. For example here we get the correct jump in the calendar reform:
File
atomic_write
With the class method File.atomic_write
you can write to a file in a way that will prevent any reader from seeing half-written content.
The name of the file is passed as an argument, and the method yields a file handle opened for writing. Once the block is done atomic_write
closes the file handle and completes its job.
For example, Action Pack uses this method to write asset cache files like all.css
:
To accomplish this atomic_write
creates a temporary file. That's the file the code in the block actually writes to. On completion, the temporary file is renamed, which is an atomic operation on POSIX systems. If the target file exists atomic_write
overwrites it and keeps owners and permissions. However there are a few cases where atomic_write
cannot change the file ownership or permissions, this error is caught and skipped over trusting in the user/filesystem to ensure the file is accessible to the processes that need it.
Due to the chmod operation atomic_write
performs, if the target file has an ACL set on it this ACL will be recalculated/modified.
Note you can't append with atomic_write
.
The auxiliary file is written in a standard directory for temporary files, but you can pass a directory of your choice as second argument.
Defined in active_support/core_ext/file/atomic.rb
.
Marshal
load
Active Support adds constant autoloading support to load
.
For example, the file cache store deserializes this way:
If the cached data refers to a constant that is unknown at that point, the autoloading mechanism is triggered and if it succeeds the deserialization is retried transparently.
If the argument is an IO
it needs to respond to rewind
to be able to retry. Regular files respond to rewind
.
Defined in active_support/core_ext/marshal.rb
.
Logger
around_[level]
Takes two arguments, a before_message
and after_message
and calls the current level method on the Logger
instance, passing in the before_message
, then the specified message, then the after_message
:
silence
Silences every log level lesser to the specified one for the duration of the given block. Log level orders are: debug, info, error and fatal.
datetime_format=
Modifies the datetime format output by the formatter class associated with this logger. If the formatter class does not have a datetime_format
method then this is ignored.
Defined in active_support/core_ext/logger.rb
.
NameError
Active Support adds missing_name?
to NameError
, which tests whether the exception was raised because of the name passed as argument.
The name may be given as a symbol or string. A symbol is tested against the bare constant name, a string is against the fully-qualified constant name.
A symbol can represent a fully-qualified constant name as in :"ActiveRecord::Base"
, so the behavior for symbols is defined for convenience, not because it has to be that way technically.
For example, when an action of PostsController
is called Rails tries optimistically to use PostsHelper
. It is OK that the helper module does not exist, so if an exception for that constant name is raised it should be silenced. But it could be the case that posts_helper.rb
raises a NameError
due to an actual unknown constant. That should be reraised. The method missing_name?
provides a way to distinguish both cases:
Defined in active_support/core_ext/name_error.rb
.
LoadError
Active Support adds is_missing?
to LoadError
, and also assigns that class to the constant MissingSourceFile
for backwards compatibility.
Given a path name is_missing?
tests whether the exception was raised due to that particular file (except perhaps for the ".rb" extension).
For example, when an action of PostsController
is called Rails tries to load posts_helper.rb
, but that file may not exist. That's fine, the helper module is not mandatory so Rails silences a load error. But it could be the case that the helper module does exist and in turn requires another library that is missing. In that case Rails must reraise the exception. The method is_missing?
provides a way to distinguish both cases:
Defined in active_support/core_ext/load_error.rb
.
Internationalization is a complex problem. Natural languages differ in so many ways (e.g. in pluralization rules) that it is hard to provide tools for solving all problems at once. For that reason the Rails I18n API focuses on:
As part of this solution, every static string in the Rails framework — e.g. Active Record validation messages, time and date formats — has been internationalized, so localization of a Rails application means "over-riding" these defaults.
Thus, the Ruby I18n gem is split into two parts:
As a user you should always only access the public methods on the I18n module, but it is useful to know about the capabilities of the backend.
It is possible (or even desirable) to swap the shipped Simple backend with a more powerful one, which would store translation data in a relational database, GetText dictionary, or similar. See section Using different backends below.
The most important methods of the I18n API are:
These have the aliases #t and #l so you can use them like this:
There are also attribute readers and writers for the following attributes:
So, let's internationalize a simple Rails application from the ground up in the next chapters!
There are just a few simple steps to get up and running with I18n support for your application.
Following the convention over configuration philosophy, Rails will set up your application with reasonable defaults. If you need different settings, you can overwrite them easily.
Rails adds all .rb
and .yml
files from the config/locales
directory to your translations load path, automatically.
The default en.yml
locale in this directory contains a sample pair of translation strings:
This means, that in the :en
locale, the key hello will map to the Hello world string. Every string inside Rails is internationalized in this way, see for instance Active Model validation messages in the activemodel/lib/active_model/locale/en.yml
file or time and date formats in the activesupport/lib/active_support/locale/en.yml
file. You can use YAML or standard Ruby Hashes to store translations in the default (Simple) backend.
The I18n library will use English as a default locale, i.e. if you don't set a different locale, :en
will be used for looking up translations.
The i18n library takes a pragmatic approach to locale keys (after some discussion), including only the locale ("language") part, like :en
, :pl
, not the region part, like :en-US
or :en-GB
, which are traditionally used for separating "languages" and "regional setting" or "dialects". Many international applications use only the "language" element of a locale such as :cs
, :th
or :es
(for Czech, Thai and Spanish). However, there are also regional differences within different language groups that may be important. For instance, in the :en-US
locale you would have $ as a currency symbol, while in :en-GB
, you would have £. Nothing stops you from separating regional and other settings in this way: you just have to provide full "English - United Kingdom" locale in a :en-GB
dictionary. Various Rails I18n plugins such as Globalize3 may help you implement it.
The translations load path (I18n.load_path
) is just a Ruby Array of paths to your translation files that will be loaded automatically and available in your application. You can pick whatever directory and translation file naming scheme makes sense for you.
The backend will lazy-load these translations when a translation is looked up for the first time. This makes it possible to just swap the backend with something else even after translations have already been announced.
The default application.rb
files has instructions on how to add locales from another directory and how to set a different default locale. Just uncomment and edit the specific lines.
For the sake of completeness, let's mention that if you do not want to use the application.rb
file for some reason, you can always wire up things manually, too.
To tell the I18n library where it can find your custom translation files you can specify the load path anywhere in your application - just make sure it gets run before any translations are actually looked up. You might also want to change the default locale. The simplest thing possible is to put the following into an initializer:
If you want to translate your Rails application to a single language other than English (the default locale), you can set I18n.default_locale to your locale in application.rb
or an initializer as shown above, and it will persist through the requests.
However, you would probably like to provide support for more locales in your application. In such case, you need to set and pass the locale between requests.
You may be tempted to store the chosen locale in a session or a cookie, however do not do this. The locale should be transparent and a part of the URL. This way you won't break people's basic assumptions about the web itself: if you send a URL to a friend, they should see the same page and content as you. A fancy word for this would be that you're being RESTful. Read more about the RESTful approach in Stefan Tilkov's articles. Sometimes there are exceptions to this rule and those are discussed below.
The setting part is easy. You can set the locale in a before_action
in the ApplicationController
like this:
This requires you to pass the locale as a URL query parameter as in http://example.com/books?locale=pt
. (This is, for example, Google's approach.) So http://localhost:3000?locale=pt
will load the Portuguese localization, whereas http://localhost:3000?locale=de
would load the German localization, and so on. You may skip the next section and head over to the Internationalize your application section, if you want to try things out by manually placing the locale in the URL and reloading the page.
Of course, you probably don't want to manually include the locale in every URL all over your application, or want the URLs look differently, e.g. the usual http://example.com/pt/books
versus http://example.com/en/books
. Let's discuss the different options you have.
One option you have is to set the locale from the domain name where your application runs. For example, we want www.example.com
to load the English (or default) locale, and www.example.es
to load the Spanish locale. Thus the top-level domain name is used for locale setting. This has several advantages:
You can implement it like this in your ApplicationController
:
We can also set the locale from the subdomain in a very similar way:
If your application includes a locale switching menu, you would then have something like this in it:
assuming you would set APP_CONFIG[:deutsch_website_url]
to some value like http://www.application.de
.
This solution has aforementioned advantages, however, you may not be able or may not want to provide different localizations ("language versions") on different domains. The most obvious solution would be to include locale code in the URL params (or request path).
The most usual way of setting (and passing) the locale would be to include it in URL params, as we did in the I18n.locale = params[:locale]
before_action in the first example. We would like to have URLs like www.example.com/books?locale=ja
or www.example.com/ja/books
in this case.
This approach has almost the same set of advantages as setting the locale from the domain name: namely that it's RESTful and in accord with the rest of the World Wide Web. It does require a little bit more work to implement, though.
Getting the locale from params
and setting it accordingly is not hard; including it in every URL and thus passing it through the requests is. To include an explicit option in every URL (e.g. link_to(books_url(locale: I18n.locale))
) would be tedious and probably impossible, of course.
Rails contains infrastructure for "centralizing dynamic decisions about the URLs" in its ApplicationController#default_url_options
and helper methods dependent on it (by implementing/overriding this method).
We can include something like this in our ApplicationController
then:
Every helper method dependent on url_for
(e.g. helpers for named routes like root_path
or root_url
, resource routes like books_path
or books_url
, etc.) will now automatically include the locale in the query string, like this: http://localhost:3001/?locale=ja
.
You may be satisfied with this. It does impact the readability of URLs, though, when the locale "hangs" at the end of every URL in your application. Moreover, from the architectural standpoint, locale is usually hierarchically above the other parts of the application domain: and URLs should reflect this.
You probably want URLs to look like this: www.example.com/en/books
(which loads the English locale) and www.example.com/nl/books
(which loads the Dutch locale). This is achievable with the "over-riding default_url_options
" strategy from above: you just have to set up your routes with scoping
option in this way:
Now, when you call the books_path
method you should get "/en/books"
(for the default locale). An URL like http://localhost:3001/nl/books
should load the Dutch locale, then, and following calls to books_path
should return "/nl/books"
(because the locale changed).
If you don't want to force the use of a locale in your routes you can use an optional path scope (denoted by the parentheses) like so:
With this approach you will not get a Routing Error
when accessing your resources such as http://localhost:3001/books
without a locale. This is useful for when you want to use the default locale when one is not specified.
Of course, you need to take special care of the root URL (usually "homepage" or "dashboard") of your application. An URL like http://localhost:3001/nl
will not work automatically, because the root to: "books#index"
declaration in your routes.rb
doesn't take locale into account. (And rightly so: there's only one "root" URL.)
You would probably need to map URLs like these:
Do take special care about the order of your routes, so this route declaration does not "eat" other ones. (You may want to add it directly before the root :to
declaration.)
Have a look at two plugins which simplify work with routes in this way: Sven Fuchs's routing_filter and Raul Murciano's translate_routes.
In specific cases, it would make sense to set the locale from client-supplied information, i.e. not from the URL. This information may come for example from the users' preferred language (set in their browser), can be based on the users' geographical location inferred from their IP, or users can provide it simply by choosing the locale in your application interface and saving it to their profile. This approach is more suitable for web-based applications or services, not for websites — see the box about sessions, cookies and RESTful architecture above.
Accept-Language
One source of client supplied information would be an Accept-Language
HTTP header. People may set this in their browser or other clients (such as curl).
A trivial implementation of using an Accept-Language
header would be:
Of course, in a production environment you would need much more robust code, and could use a plugin such as Iain Hecker's http_accept_language or even Rack middleware such as Ryan Tomayko's locale.
Another way of choosing the locale from client information would be to use a database for mapping the client IP to the region, such as GeoIP Lite Country. The mechanics of the code would be very similar to the code above — you would need to query the database for the user's IP, and look up your preferred locale for the country/region/city returned.
You can also provide users of your application with means to set (and possibly over-ride) the locale in your application interface, as well. Again, mechanics for this approach would be very similar to the code above — you'd probably let users choose a locale from a dropdown list and save it to their profile in the database. Then you'd set the locale to this value.
OK! Now you've initialized I18n support for your Ruby on Rails application and told it which locale to use and how to preserve it between requests. With that in place, you're now ready for the really interesting stuff.
Let's internationalize our application, i.e. abstract every locale-specific parts, and then localize it, i.e. provide necessary translations for these abstracts.
You most probably have something like this in one of your applications:
Obviously there are two strings that are localized to English. In order to internationalize this code, replace these strings with calls to Rails' #t
helper with a key that makes sense for the translation:
When you now render this view, it will show an error message which tells you that the translations for the keys :hello_world
and :hello_flash
are missing.
Rails adds a t
(translate
) helper method to your views so that you do not need to spell out I18n.t
all the time. Additionally this helper will catch missing translations and wrap the resulting error message into a
.
So let's add the missing translations into the dictionary files (i.e. do the "localization" part):
There you go. Because you haven't changed the default_locale, I18n will use English. Your application now shows:
And when you change the URL to pass the pirate locale (http://localhost:3000?locale=pirate
), you'll get:
You need to restart the server when you add new locale files.
You may use YAML (.yml
) or plain Ruby (.rb
) files for storing your translations in SimpleStore. YAML is the preferred option among Rails developers. However, it has one big disadvantage. YAML is very sensitive to whitespace and special characters, so the application may not load your dictionary properly. Ruby files will crash your application on first request, so you may easily find what's wrong. (If you encounter any "weird issues" with YAML dictionaries, try putting the relevant portion of your dictionary into a Ruby file.)
You can use variables in the translation messages and pass their values from the view.
OK! Now let's add a timestamp to the view, so we can demo the date/time localization feature as well. To localize the time format you pass the Time object to I18n.l
or (preferably) use Rails' #l
helper. You can pick a format by passing the :format
option — by default the :default
format is used.
And in our pirate translations file let's add a time format (it's already there in Rails' defaults for English):
So that would give you:
Right now you might need to add some more date/time formats in order to make the I18n backend work as expected (at least for the 'pirate' locale). Of course, there's a great chance that somebody already did all the work by translating Rails' defaults for your locale. See the rails-i18n repository at GitHub for an archive of various locale files. When you put such file(s) in config/locales/
directory, they will automatically be ready for use.
Rails 4.0 allows you to define inflection rules (such as rules for singularization and pluralization) for locales other than English. In config/initializers/inflections.rb
, you can define these rules for multiple locales. The initializer contains a default example for specifying additional rules for English; follow that format for other locales as you see fit.
Rails 2.3 introduces another convenient localization feature: localized views (templates). Let's say you have a BooksController in your application. Your index action renders content in app/views/books/index.html.erb
template. When you put a localized variant of this template: index.es.html.erb
in the same directory, Rails will render content in this template, when the locale is set to :es
. When the locale is set to the default locale, the generic index.html.erb
view will be used. (Future Rails versions may well bring this automagic localization to assets in public
, etc.)
You can make use of this feature, e.g. when working with a large amount of static content, which would be clumsy to put inside YAML or Ruby dictionaries. Bear in mind, though, that any change you would like to do later to the template must be propagated to all of them.
When you are using the default SimpleStore shipped with the i18n library, dictionaries are stored in plain-text files on the disc. Putting translations for all parts of your application in one file per locale could be hard to manage. You can store these files in a hierarchy which makes sense to you.
For example, your config/locales
directory could look like this:
This way, you can separate model and model attribute names from text inside views, and all of this from the "defaults" (e.g. date and time formats). Other stores for the i18n library could provide different means of such separation.
The default locale loading mechanism in Rails does not load locale files in nested dictionaries, like we have here. So, for this to work, we must explicitly tell Rails to look further:
Do check the Rails i18n Wiki for list of tools available for managing translations.
You should have good understanding of using the i18n library now, knowing all necessary aspects of internationalizing a basic Rails application. In the following chapters, we'll cover it's features in more depth.
Covered are features like these:
Translations are looked up by keys which can be both Symbols or Strings, so these calls are equivalent:
The translate
method also takes a :scope
option which can contain one or more additional keys that will be used to specify a “namespace” or scope for a translation key:
This looks up the :record_invalid
message in the Active Record error messages.
Additionally, both the key and scopes can be specified as dot-separated keys as in:
Thus the following calls are equivalent:
When a :default
option is given, its value will be returned if the translation is missing:
If the :default
value is a Symbol, it will be used as a key and translated. One can provide multiple values as default. The first one that results in a value will be returned.
E.g., the following first tries to translate the key :missing
and then the key :also_missing.
As both do not yield a result, the string "Not here" will be returned:
To look up multiple translations at once, an array of keys can be passed:
Also, a key can translate to a (potentially nested) hash of grouped translations. E.g., one can receive all Active Record error messages as a Hash with:
Rails implements a convenient way to look up the locale inside views. When you have the following dictionary:
you can look up the books.index.title
value inside app/views/books/index.html.erb
template like this (note the dot):
In many cases you want to abstract your translations so that variables can be interpolated into the translation. For this reason the I18n API provides an interpolation feature.
All options besides :default
and :scope
that are passed to #translate
will be interpolated to the translation:
If a translation uses :default
or :scope
as an interpolation variable, an I18n::ReservedInterpolationKey
exception is raised. If a translation expects an interpolation variable, but this has not been passed to #translate
, an I18n::MissingInterpolationArgument
exception is raised.
In English there are only one singular and one plural form for a given string, e.g. "1 message" and "2 messages". Other languages (Arabic, Japanese, Russian and many more) have different grammars that have additional or fewer plural forms. Thus, the I18n API provides a flexible pluralization feature.
The :count
interpolation variable has a special role in that it both is interpolated to the translation and used to pick a pluralization from the translations according to the pluralization rules defined by CLDR:
The algorithm for pluralizations in :en
is as simple as:
I.e. the translation denoted as :one
is regarded as singular, the other is used as plural (including the count being zero).
If the lookup for the key does not return a Hash suitable for pluralization, an 18n::InvalidPluralizationData
exception is raised.
The locale can be either set pseudo-globally to I18n.locale
(which uses Thread.current
like, e.g., Time.zone
) or can be passed as an option to #translate
and #localize
.
If no locale is passed, I18n.locale
is used:
Explicitly passing a locale:
The I18n.locale
defaults to I18n.default_locale
which defaults to :en
. The default locale can be set like this:
Keys with a '_html' suffix and keys named 'html' are marked as HTML safe. When you use them in views the HTML will not be escaped.
The Simple backend shipped with Active Support allows you to store translations in both plain Ruby and YAML format.2
For example a Ruby Hash providing translations can look like this:
The equivalent YAML file would look like this:
As you see, in both cases the top level key is the locale. :foo
is a namespace key and :bar
is the key for the translation "baz".
Here is a "real" example from the Active Support en.yml
translations YAML file:
So, all of the following equivalent lookups will return the :short
date format "%b %d"
:
Generally we recommend using YAML as a format for storing translations. There are cases, though, where you want to store Ruby lambdas as part of your locale data, e.g. for special date formats.
You can use the methods Model.model_name.human
and Model.human_attribute_name(attribute)
to transparently look up translations for your model and attribute names.
For example when you add the following translations:
Then User.model_name.human
will return "Dude" and User.human_attribute_name("login")
will return "Handle".
Active Record validation error messages can also be translated easily. Active Record gives you a couple of namespaces where you can place your message translations in order to provide different messages and translation for certain models, attributes, and/or validations. It also transparently takes single table inheritance into account.
This gives you quite powerful means to flexibly adjust your messages to your application's needs.
Consider a User model with a validation for the name attribute like this:
The key for the error message in this case is :blank
. Active Record will look up this key in the namespaces:
Thus, in our example it will try the following keys in this order and return the first result:
When your models are additionally using inheritance then the messages are looked up in the inheritance chain.
For example, you might have an Admin model inheriting from User:
Then Active Record will look for messages in this order:
This way you can provide special translations for various error messages at different points in your models inheritance chain and in the attributes, models, or default scopes.
The translated model name, translated attribute name, and value are always available for interpolation.
So, for example, instead of the default error message "can not be blank"
you could use the attribute name like this : "Please fill in your %{attribute}"
.
count
, where available, can be used for pluralization if present:validation | with option | message | interpolation |
---|---|---|---|
confirmation | - | :confirmation | - |
acceptance | - | :accepted | - |
presence | - | :blank | - |
absence | - | :present | - |
length | :within, :in | :too_short | count |
length | :within, :in | :too_long | count |
length | :is | :wrong_length | count |
length | :minimum | :too_short | count |
length | :maximum | :too_long | count |
uniqueness | - | :taken | - |
format | - | :invalid | - |
inclusion | - | :inclusion | - |
exclusion | - | :exclusion | - |
associated | - | :invalid | - |
numericality | - | :not_a_number | - |
numericality | :greater_than | :greater_than | count |
numericality | :greater_than_or_equal_to | :greater_than_or_equal_to | count |
numericality | :equal_to | :equal_to | count |
numericality | :less_than | :less_than | count |
numericality | :less_than_or_equal_to | :less_than_or_equal_to | count |
numericality | :only_integer | :not_an_integer | - |
numericality | :odd | :odd | - |
numericality | :even | :even | - |
error_messages_for
HelperIf you are using the Active Record error_messages_for
helper, you will want to add translations for it.
Rails ships with the following translations:
In order to use this helper, you need to install DynamicForm gem by adding this line to your Gemfile: gem 'dynamic_form'
.
If you don't pass a subject to the mail
method, Action Mailer will try to find it in your translations. The performed lookup will use the pattern <mailer_scope>.<action_name>.subject
to construct the key.
Rails uses fixed strings and other localizations, such as format strings and other format information in a couple of helpers. Here's a brief overview.
distance_of_time_in_words
translates and pluralizes its result and interpolates the number of seconds, minutes, hours, and so on. See datetime.distance_in_words translations.datetime_select
and select_month
use translated month names for populating the resulting select tag. See date.month_names for translations. datetime_select
also looks up the order option from date.order (unless you pass the option explicitly). All date selection helpers translate the prompt using the translations in the datetime.prompts scope if applicable.number_to_currency
, number_with_precision
, number_to_percentage
, number_with_delimiter
, and number_to_human_size
helpers use the number format settings located in the number scope.model_name.human
and human_attribute_name
use translations for model names and attribute names if available in the activerecord.models scope. They also support translations for inherited class names (e.g. for use with STI) as explained above in "Error message scopes".ActiveModel::Errors#generate_message
(which is used by Active Model validations but may also be used manually) uses model_name.human
and human_attribute_name
(see above). It also translates the error message and supports translations for inherited class names as explained above in "Error message scopes".ActiveModel::Errors#full_messages
prepends the attribute name to the error message using a separator that will be looked up from errors.format (and which defaults to "%{attribute} %{message}"
).Array#to_sentence
uses format settings as given in the support.array scope.For several reasons the Simple backend shipped with Active Support only does the "simplest thing that could possibly work" for Ruby on Rails3 ... which means that it is only guaranteed to work for English and, as a side effect, languages that are very similar to English. Also, the simple backend is only capable of reading translations but can not dynamically store them to any format.
That does not mean you're stuck with these limitations, though. The Ruby I18n gem makes it very easy to exchange the Simple backend implementation with something else that fits better for your needs. E.g. you could exchange it with Globalize's Static backend:
You can also use the Chain backend to chain multiple backends together. This is useful when you want to use standard translations with a Simple backend but store custom application translations in a database or other backends. For example, you could use the Active Record backend and fall back to the (default) Simple backend:
The I18n API defines the following exceptions that will be raised by backends when the corresponding unexpected conditions occur:
The I18n API will catch all of these exceptions when they are thrown in the backend and pass them to the default_exception_handler method. This method will re-raise all exceptions except for MissingTranslationData
exceptions. When a MissingTranslationData
exception has been caught, it will return the exception’s error message string containing the missing key/scope.
The reason for this is that during development you'd usually want your views to still render even though a translation is missing.
In other contexts you might want to change this behavior, though. E.g. the default exception handling does not allow to catch missing translations during automated tests easily. For this purpose a different exception handler can be specified. The specified exception handler must be a method on the I18n module or a class with #call
method:
This would re-raise only the MissingTranslationData
exception, passing all other input to the default exception handler.
However, if you are using I18n::Backend::Pluralization
this handler will also raise I18n::MissingTranslationData: translation missing: en.i18n.plural.rule
exception that should normally be ignored to fall back to the default pluralization rule for English locale. To avoid this you may use additional check for translation key:
Another example where the default behavior is less desirable is the Rails TranslationHelper which provides the method #t
(as well as #translate
). When a MissingTranslationData
exception occurs in this context, the helper wraps the message into a span with the CSS class translation_missing
.
To do so, the helper forces I18n#translate
to raise exceptions no matter what exception handler is defined by setting the :raise
option:
At this point you should have a good overview about how I18n support in Ruby on Rails works and are ready to start translating your project.
If you find anything missing or wrong in this guide, please file a ticket on our issue tracker. If you want to discuss certain portions or have questions, please sign up to our mailing list.
I18n support in Ruby on Rails was introduced in the release 2.2 and is still evolving. The project follows the good Ruby on Rails development tradition of evolving solutions in plugins and real applications first, and only then cherry-picking the best-of-breed of most widely useful features for inclusion in the core.
Thus we encourage everybody to experiment with new ideas and features in plugins or other libraries and make them available to the community. (Don't forget to announce your work on our mailing list)
If you find your own locale (language) missing from our example translations data repository for Ruby on Rails, please fork the repository, add your data and send a pull request.
If you found this guide useful, please consider recommending its authors on workingwithrails.
1 Or, to quote Wikipedia "Internationalization is the process of designing a software application so that it can be adapted to various languages and regions without engineering changes. Localization is the process of adapting software for a specific region or language by adding locale-specific components and translating text."
2 Other backends might allow or require to use other formats, e.g. a GetText backend might allow to read GetText files.
3 One of these reasons is that we don't want to imply any unnecessary load for applications that do not need any I18n capabilities, so we need to keep the I18n library as simple as possible for English. Another reason is that it is virtually impossible to implement a one-fits-all solution for all problems related to I18n for all existing languages. So a solution that allows us to exchange the entire implementation easily is appropriate anyway. This also makes it much easier to experiment with custom features and extensions.
Action Mailer allows you to send emails from your application using mailer classes and views. Mailers work very similarly to controllers. They inherit from ActionMailer::Base
and live in app/mailers
, and they have associated views that appear in app/views
.
This section will provide a step-by-step guide to creating a mailer and its views.
As you can see, you can generate mailers just like you use other generators with Rails. Mailers are conceptually similar to controllers, and so we get a mailer, a directory for views, and a test.
If you didn't want to use a generator, you could create your own file inside of app/mailers, just make sure that it inherits from ActionMailer::Base
:
Mailers are very similar to Rails controllers. They also have methods called "actions" and use views to structure the content. Where a controller generates content like HTML to send back to the client, a Mailer creates a message to be delivered via email.
app/mailers/user_mailer.rb
contains an empty mailer:
Let's add a method called welcome_email
, that will send an email to the user's registered email address:
Here is a quick explanation of the items presented in the preceding method. For a full list of all available options, please have a look further down at the Complete List of Action Mailer user-settable attributes section.
default Hash
- This is a hash of default values for any email you send from this mailer. In this case we are setting the :from
header to a value for all messages in this class. This can be overridden on a per-email basis.mail
- The actual email message, we are passing the :to
and :subject
headers in.Just like controllers, any instance variables we define in the method become available for use in the views.
Create a file called welcome_email.html.erb
in app/views/user_mailer/
. This will be the template used for the email, formatted in HTML:
Let's also make a text part for this email. Not all clients prefer HTML emails, and so sending both is best practice. To do this, create a file called welcome_email.text.erb
in app/views/user_mailer/
:
When you call the mail
method now, Action Mailer will detect the two templates (text and HTML) and automatically generate a multipart/alternative
email.
Mailers are really just another way to render a view. Instead of rendering a view and sending out the HTTP protocol, they are just sending it out through the Email protocols instead. Due to this, it makes sense to just have your controller tell the Mailer to send an email when a user is successfully created.
Setting this up is painfully simple.
First, let's create a simple User
scaffold:
Now that we have a user model to play with, we will just edit the app/controllers/users_controller.rb
make it instruct the UserMailer to deliver an email to the newly created user by editing the create action and inserting a call to UserMailer.welcome_email
right after the user is successfully saved:
The method welcome_email
returns a Mail::Message
object which can then just be told deliver
to send itself out.
Action Mailer handles the auto encoding of multibyte characters inside of headers and bodies.
For more complex examples such as defining alternate character sets or self-encoding text first, please refer to the Mail library.
There are just three methods that you need to send pretty much any email message:
headers
- Specifies any header on the email you want. You can pass a hash of header field names and value pairs, or you can call headers[:field_name] = 'value'
.attachments
- Allows you to add attachments to your email. For example, attachments['file-name.jpg'] = File.read('file-name.jpg')
.mail
- Sends the actual email itself. You can pass in headers as a hash to the mail method as a parameter, mail will then create an email, either plain text, or multipart, depending on what email templates you have defined.Action Mailer makes it very easy to add attachments.
mail
method will be triggered, it will send a multipart email with an attachment, properly nested with the top level being multipart/mixed
and the first part being a multipart/alternative
containing the plain text and HTML email messages. Mail will automatically Base64 encode an attachment. If you want something different, encode your content and pass in the encoded content and encoding in a Hash
to the attachments
method.
If you specify an encoding, Mail will assume that your content is already encoded and not try to Base64 encode it.
Action Mailer 3.0 makes inline attachments, which involved a lot of hacking in pre 3.0 versions, much simpler and trivial as they should be.
#inline
on the attachments method within your Mailer: attachments
as a hash and specify which attachment you want to show, calling url
on it and then passing the result into the image_tag
method: image_tag
you can pass in an options hash after the attachment URL as you could for any other image: It is possible to send email to one or more recipients in one email (e.g., informing all admins of a new signup) by setting the list of emails to the :to
key. The list of emails can be an array of email addresses or a single string with the addresses separated by commas.
The same format can be used to set carbon copy (Cc:) and blind carbon copy (Bcc:) recipients, by using the :cc
and :bcc
keys respectively.
Sometimes you wish to show the name of the person instead of just their email address when they receive the email. The trick to doing that is to format the email address in the format "Full Name <email>"
.
Mailer views are located in the app/views/name_of_mailer_class
directory. The specific mailer view is known to the class because its name is the same as the mailer method. In our example from above, our mailer view for the welcome_email
method will be in app/views/user_mailer/welcome_email.html.erb
for the HTML version and welcome_email.text.erb
for the plain text version.
To change the default mailer view for your action you do something like:
In this case it will look for templates at app/views/notifications
with name another
. You can also specify an array of paths for template_path
, and they will be searched in order.
If you want more flexibility you can also pass a block and render specific templates or even render inline or text without using a template file:
This will render the template 'another_template.html.erb' for the HTML part and use the rendered text for the text part. The render command is the same one used inside of Action Controller, so you can use all the same options, such as :text
, :inline
etc.
Just like controller views, you can also have mailer layouts. The layout name needs to be the same as your mailer, such as user_mailer.html.erb
and user_mailer.text.erb
to be automatically recognized by your mailer as a layout.
In order to use a different file, call layout
in your mailer:
Just like with controller views, use yield
to render the view inside the layout.
You can also pass in a layout: 'layout_name'
option to the render call inside the format block to specify different layouts for different actions:
Will render the HTML part using the my_layout.html.erb
file and the text part with the usual user_mailer.text.erb
file if it exists.
Unlike controllers, the mailer instance doesn't have any context about the incoming request so you'll need to provide the :host
parameter yourself.
As the :host
usually is consistent across the application you can configure it globally in config/application.rb
:
url_for
You need to pass the only_path: false
option when using url_for
. This will ensure that absolute URLs are generated because the url_for
view helper will, by default, generate relative URLs when a :host
option isn't explicitly provided.
If you did not configure the :host
option globally make sure to pass it to url_for
.
When you explicitly pass the :host
Rails will always generate absolute URLs, so there is no need to pass only_path: false
.
Email clients have no web context and so paths have no base URL to form complete web addresses. Thus, you should always use the "_url" variant of named route helpers.
If you did not configure the :host
option globally make sure to pass it to the url helper.
Action Mailer will automatically send multipart emails if you have different templates for the same action. So, for our UserMailer example, if you have welcome_email.text.erb
and welcome_email.html.erb
in app/views/user_mailer
, Action Mailer will automatically send a multipart email with the HTML and text versions setup as different parts.
The order of the parts getting inserted is determined by the :parts_order
inside of the ActionMailer::Base.default
method.
If you wish to override the default delivery options (e.g. SMTP credentials) while delivering emails, you can do this using delivery_method_options
in the mailer action.
There may be cases in which you want to skip the template rendering step and supply the email body as a string. You can achieve this using the :body
option. In such cases don't forget to add the :content_type
option. Rails will default to text/plain
otherwise.
Receiving and parsing emails with Action Mailer can be a rather complex endeavor. Before your email reaches your Rails app, you would have had to configure your system to somehow forward emails to your app, which needs to be listening for that. So, to receive emails in your Rails app you'll need to:
receive
method in your mailer./path/to/app/bin/rails runner 'UserMailer.receive(STDIN.read)'
.Once a method called receive
is defined in any mailer, Action Mailer will parse the raw incoming email into an email object, decode it, instantiate a new mailer, and pass the email object to the mailer receive
instance method. Here's an example:
Action Mailer allows for you to specify a before_action
, after_action
and around_action
.
before_action
to populate the mail object with defaults, delivery_method_options or insert default headers and attachments.after_action
to do similar setup as a before_action
but using instance variables set in your mailer action.Action Mailer now just inherits from AbstractController
, so you have access to the same generic helpers as you do in Action Controller.
The following configuration options are best made in one of the environment files (environment.rb, production.rb, etc...)
Configuration | Description |
---|---|
logger | Generates information on the mailing run if available. Can be set to nil for no logging. Compatible with both Ruby's own Logger and Log4r loggers. |
smtp_settings | Allows detailed configuration for :smtp delivery method:
|
sendmail_settings | Allows you to override options for the :sendmail delivery method.
|
raise_delivery_errors | Whether or not errors should be raised if the email fails to be delivered. This only works if the external email server is configured for immediate delivery. |
delivery_method | Defines a delivery method. Possible values are :smtp (default), :sendmail , :file and :test . |
perform_deliveries | Determines whether deliveries are actually carried out when the deliver method is invoked on the Mail message. By default they are, but this can be turned off to help functional testing. |
deliveries | Keeps an array of all the emails sent out through the Action Mailer with delivery_method :test. Most useful for unit and functional testing. |
default_options | Allows you to set default values for the mail method options (:from , :reply_to , etc.). |
For a complete writeup of possible configurations see the Action Mailer section in our Configuring Rails Applications guide.
An example would be adding the following to your appropriate config/environments/$RAILS_ENV.rb
file:
As Action Mailer now uses the Mail gem, this becomes as simple as adding to your config/environments/$RAILS_ENV.rb
file:
You can find detailed instructions on how to test your mailers in the testing guide.
There are situations where you need to edit an email before it's delivered. Fortunately Action Mailer provides hooks to intercept every email. You can register an interceptor to make modifications to mail messages right before they are handed to the delivery agents.
Before the interceptor can do its job you need to register it with the Action Mailer framework. You can do this in an initializer file config/initializers/sandbox_email_interceptor.rb
The example above uses a custom environment called "staging" for a production like server but for testing purposes. You can read Creating Rails environments for more information about custom Rails environments.
Rails makes it super easy to write your tests. It starts by producing skeleton test code while you are creating your models and controllers.
By simply running your Rails tests you can ensure your code adheres to the desired functionality even after some major code refactoring.
Rails tests can also simulate browser requests and thus you can test your application's response without having to test it through your browser.
Testing support was woven into the Rails fabric from the beginning. It wasn't an "oh! let's bolt on support for running tests because they're new and cool" epiphany. Just about every Rails application interacts heavily with a database and, as a result, your tests will need a database to interact with as well. To write efficient tests, you'll need to understand how to set up this database and populate it with sample data.
By default, every Rails application has three environments: development, test, and production. The database for each one of them is configured in config/database.yml
.
A dedicated test database allows you to set up and interact with test data in isolation. Tests can mangle test data with confidence, that won't touch the data in the development or production databases.
Rails creates a test
folder for you as soon as you create a Rails project using rails new
application_name. If you list the contents of this folder then you shall see:
The models
directory is meant to hold tests for your models, the controllers
directory is meant to hold tests for your controllers and the integration
directory is meant to hold tests that involve any number of controllers interacting.
Fixtures are a way of organizing test data; they reside in the fixtures
folder.
The test_helper.rb
file holds the default configuration for your tests.
For good tests, you'll need to give some thought to setting up test data. In Rails, you can handle this by defining and customizing fixtures.
Fixtures is a fancy word for sample data. Fixtures allow you to populate your testing database with predefined data before your tests run. Fixtures are database independent written in YAML. There is one file per model.
You'll find fixtures under your test/fixtures
directory. When you run rails generate model
to create a new model fixture stubs will be automatically created and placed in this directory.
YAML-formatted fixtures are a very human-friendly way to describe your sample data. These types of fixtures have the .yml file extension (as in users.yml
).
Here's a sample YAML fixture file:
Each fixture is given a name followed by an indented list of colon-separated key/value pairs. Records are typically separated by a blank space. You can place comments in a fixture file by using the # character in the first column. Keys which resemble YAML keywords such as 'yes' and 'no' are quoted so that the YAML Parser correctly interprets them.
If you are working with associations, you can simply define a reference node between two different fixtures. Here's an example with a belongs_to/has_many association:
ERB allows you to embed Ruby code within templates. The YAML fixture format is pre-processed with ERB when Rails loads fixtures. This allows you to use Ruby to help you generate some sample data. For example, the following code generates a thousand users:
Rails by default automatically loads all fixtures from the test/fixtures
folder for your models and controllers test. Loading involves three steps:
Fixtures are instances of Active Record. As mentioned in point #3 above, you can access the object directly because it is automatically setup as a local variable of the test case. For example:
In Rails, models tests are what you write to test your models.
For this guide we will be using Rails scaffolding. It will create the model, a migration, controller and views for the new resource in a single operation. It will also create a full test suite following Rails best practices. I will be using examples from this generated code and will be supplementing it with additional examples where necessary.
For more information on Rails scaffolding, refer to Getting Started with Rails
When you use rails generate scaffold
, for a resource among other things it creates a test stub in the test/models
folder:
The default test stub in test/models/post_test.rb
looks like this:
A line by line examination of this file will help get you oriented to Rails testing code and terminology.
As you know by now, test_helper.rb
specifies the default configuration to run our tests. This is included with all the tests, so any methods added to this file are available to all your tests.
The PostTest
class defines a test case because it inherits from ActiveSupport::TestCase
. PostTest
thus has all the methods available from ActiveSupport::TestCase
. You'll see those methods a little later in this guide.
Any method defined within a class inherited from MiniTest::Unit::TestCase
(which is the superclass of ActiveSupport::TestCase
) that begins with test
(case sensitive) is simply called a test. So, test_password
, test_valid_password
and testValidPassword
all are legal test names and are run automatically when the test case is run.
Rails adds a test
method that takes a test name and a block. It generates a normal MiniTest::Unit
test with method names prefixed with test_
. So,
acts as if you had written
only the test
macro allows a more readable test name. You can still use regular method definitions though.
The method name is generated by replacing spaces with underscores. The result does not need to be a valid Ruby identifier though, the name may contain punctuation characters etc. That's because in Ruby technically any string may be a method name. Odd ones need define_method
and send
calls, but formally there's no restriction.
This line of code is called an assertion. An assertion is a line of code that evaluates an object (or expression) for expected results. For example, an assertion can check:
Every test contains one or more assertions. Only when all the assertions are successful will the test pass.
Before you can run your tests, you need to ensure that the test database structure is current. For this you can use the following rake commands:
The rake db:migrate
above runs any pending migrations on the development environment and updates db/schema.rb
. The rake db:test:load
recreates the test database from the current db/schema.rb
. On subsequent attempts, it is a good idea to first run db:test:prepare
, as it first checks for pending migrations and warns you appropriately.
db:test:prepare
will fail with an error if db/schema.rb
doesn't exist.
Tasks | Description |
---|---|
rake db:test:clone | Recreate the test database from the current environment's database schema |
rake db:test:clone_structure | Recreate the test database from the development structure |
rake db:test:load | Recreate the test database from the current schema.rb |
rake db:test:prepare | Check for pending migrations and load the test schema |
rake db:test:purge | Empty the test database. |
You can see all these rake tasks and their descriptions by running rake --tasks --describe
Running a test is as simple as invoking the file containing the test cases through rake test
command.
You can also run a particular test method from the test case by running the test and providing the test method name
.
This will run all test methods from the test case. Note that test_helper.rb
is in the test
directory, hence this directory needs to be added to the load path using the -I
switch.
The .
(dot) above indicates a passing test. When a test fails you see an F
; when a test throws an error you see an E
in its place. The last line of the output is the summary.
To see how a test failure is reported, you can add a failing test to the post_test.rb
test case.
Let us run this newly added test.
In the output, F
denotes a failure. You can see the corresponding trace shown under 1)
along with the name of the failing test. The next few lines contain the stack trace followed by a message which mentions the actual value and the expected value by the assertion. The default assertion messages provide just enough information to help pinpoint the error. To make the assertion failure message more readable, every assertion provides an optional message parameter, as shown here:
Running this test shows the friendlier assertion message:
Now to get this test to pass we can add a model level validation for the title field.
Now the test should pass. Let us verify by running the test again:
Now, if you noticed, we first wrote a test which fails for a desired functionality, then we wrote some code which adds the functionality and finally we ensured that our test passes. This approach to software development is referred to as Test-Driven Development (TDD).
Many Rails developers practice Test-Driven Development (TDD). This is an excellent way to build up a test suite that exercises every part of your application. TDD is beyond the scope of this guide, but one place to start is with 15 TDD steps to create a Rails application.
To see how an error gets reported, here's a test containing an error:
Now you can see even more output in the console from running the tests:
Notice the 'E' in the output. It denotes a test with error.
The execution of each test method stops as soon as any error or an assertion failure is encountered, and the test suite continues with the next method. All test methods are executed in alphabetical order.
Ideally, you would like to include a test for everything which could possibly break. It's a good practice to have at least one test for each of your validations and at least one test for every method in your model.
By now you've caught a glimpse of some of the assertions that are available. Assertions are the worker bees of testing. They are the ones that actually perform the checks to ensure that things are going as planned.
There are a bunch of different types of assertions you can use. Here's an extract of the assertions you can use with minitest
, the default testing library used by Rails. The [msg]
parameter is an optional string message you can specify to make your test failure messages clearer. It's not required.
Assertion | Purpose |
---|---|
assert(test, [msg]) | Ensures that test is true. |
assert_not(test, [msg]) | Ensures that test is false. |
assert_equal(expected, actual, [msg]) | Ensures that expected == actual is true. |
assert_not_equal(expected, actual, [msg]) | Ensures that expected != actual is true. |
assert_same(expected, actual, [msg]) | Ensures that expected.equal?(actual) is true. |
assert_not_same(expected, actual, [msg]) | Ensures that expected.equal?(actual) is false. |
assert_nil(obj, [msg]) | Ensures that obj.nil? is true. |
assert_not_nil(obj, [msg]) | Ensures that obj.nil? is false. |
assert_match(regexp, string, [msg]) | Ensures that a string matches the regular expression. |
assert_no_match(regexp, string, [msg]) | Ensures that a string doesn't match the regular expression. |
assert_in_delta(expecting, actual, [delta], [msg]) | Ensures that the numbers expected and actual are within delta of each other. |
assert_not_in_delta(expecting, actual, [delta], [msg]) | Ensures that the numbers expected and actual are not within delta of each other. |
assert_throws(symbol, [msg]) { block } | Ensures that the given block throws the symbol. |
assert_raises(exception1, exception2, ...) { block } | Ensures that the given block raises one of the given exceptions. |
assert_nothing_raised(exception1, exception2, ...) { block } | Ensures that the given block doesn't raise one of the given exceptions. |
assert_instance_of(class, obj, [msg]) | Ensures that obj is an instance of class . |
assert_not_instance_of(class, obj, [msg]) | Ensures that obj is not an instance of class . |
assert_kind_of(class, obj, [msg]) | Ensures that obj is or descends from class . |
assert_not_kind_of(class, obj, [msg]) | Ensures that obj is not an instance of class and is not descending from it. |
assert_respond_to(obj, symbol, [msg]) | Ensures that obj responds to symbol . |
assert_not_respond_to(obj, symbol, [msg]) | Ensures that obj does not respond to symbol . |
assert_operator(obj1, operator, [obj2], [msg]) | Ensures that obj1.operator(obj2) is true. |
assert_not_operator(obj1, operator, [obj2], [msg]) | Ensures that obj1.operator(obj2) is false. |
assert_send(array, [msg]) | Ensures that executing the method listed in array[1] on the object in array[0] with the parameters of array[2 and up] is true. This one is weird eh? |
flunk([msg]) | Ensures failure. This is useful to explicitly mark a test that isn't finished yet. |
Because of the modular nature of the testing framework, it is possible to create your own assertions. In fact, that's exactly what Rails does. It includes some specialized assertions to make your life easier.
Creating your own assertions is an advanced topic that we won't cover in this tutorial.
Rails adds some custom assertions of its own to the test/unit
framework:
Assertion | Purpose |
---|---|
assert_difference(expressions, difference = 1, message = nil) {...} | Test numeric difference between the return value of an expression as a result of what is evaluated in the yielded block. |
assert_no_difference(expressions, message = nil, &block) | Asserts that the numeric result of evaluating an expression is not changed before and after invoking the passed in block. |
assert_recognizes(expected_options, path, extras={}, message=nil) | Asserts that the routing of the given path was handled correctly and that the parsed options (given in the expected_options hash) match path. Basically, it asserts that Rails recognizes the route given by expected_options. |
assert_generates(expected_path, options, defaults={}, extras = {}, message=nil) | Asserts that the provided options can be used to generate the provided path. This is the inverse of assert_recognizes. The extras parameter is used to tell the request the names and values of additional request parameters that would be in a query string. The message parameter allows you to specify a custom error message for assertion failures. |
assert_response(type, message = nil) | Asserts that the response comes with a specific status code. You can specify :success to indicate 200-299, :redirect to indicate 300-399, :missing to indicate 404, or :error to match the 500-599 range |
assert_redirected_to(options = {}, message=nil) | Assert that the redirection options passed in match those of the redirect called in the latest action. This match can be partial, such that assert_redirected_to(controller: "weblog") will also match the redirection of redirect_to(controller: "weblog", action: "show") and so on. |
assert_template(expected = nil, message=nil) | Asserts that the request was rendered with the appropriate template file. |
You'll see the usage of some of these assertions in the next chapter.
In Rails, testing the various actions of a single controller is called writing functional tests for that controller. Controllers handle the incoming web requests to your application and eventually respond with a rendered view.
You should test for things such as:
Now that we have used Rails scaffold generator for our Post
resource, it has already created the controller code and tests. You can take look at the file posts_controller_test.rb
in the test/controllers
directory.
Let me take you through one such test, test_should_get_index
from the file posts_controller_test.rb
.
In the test_should_get_index
test, Rails simulates a request on the action called index
, making sure the request was successful and also ensuring that it assigns a valid posts
instance variable.
The get
method kicks off the web request and populates the results into the response. It accepts 4 arguments:
Example: Calling the :show
action, passing an id
of 12 as the params
and setting a user_id
of 5 in the session:
Another example: Calling the :view
action, passing an id
of 12 as the params
, this time with no session, but with a flash message.
If you try running test_should_create_post
test from posts_controller_test.rb
it will fail on account of the newly added model level validation and rightly so.
Let us modify test_should_create_post
test in posts_controller_test.rb
so that all our test pass:
Now you can try running all the tests and they should pass.
If you're familiar with the HTTP protocol, you'll know that get
is a type of request. There are 6 request types supported in Rails functional tests:
get
post
patch
put
head
delete
All of request types are methods that you can use, however, you'll probably end up using the first two more often than the others.
Functional tests do not verify whether the specified request type should be accepted by the action. Request types in this context exist to make your tests more descriptive.
After a request has been made using one of the 6 methods (get
, post
, etc.) and processed, you will have 4 Hash objects ready for use:
assigns
- Any objects that are stored as instance variables in actions for use in views.cookies
- Any cookies that are set.flash
- Any objects living in the flash.session
- Any object living in session variables.As is the case with normal Hash objects, you can access the values by referencing the keys by string. You can also reference them by symbol name, except for assigns
. For example:
You also have access to three instance variables in your functional tests:
@controller
- The controller processing the request@request
- The request@response
- The responseHeaders and cgi variables can be set directly on the @request
instance variable:
If you want to make sure that the response rendered the correct template and layout, you can use the assert_template
method:
Note that you cannot test for template and layout at the same time, with one call to assert_template
method. Also, for the layout
test, you can give a regular expression instead of a string, but using the string, makes things clearer. On the other hand, you have to include the "layouts" directory name even if you save your layout file in this standard layout directory. Hence,
will not work.
If your view renders any partial, when asserting for the layout, you have to assert for the partial at the same time. Otherwise, assertion will fail.
Hence:
is the correct way to assert for the layout when the view renders a partial with name _form
. Omitting the :partial
key in your assert_template
call will complain.
Here's another example that uses flash
, assert_redirected_to
, and assert_difference
:
Testing the response to your request by asserting the presence of key HTML elements and their content is a useful way to test the views of your application. The assert_select
assertion allows you to do this by using a simple yet powerful syntax.
You may find references to assert_tag
in other documentation, but this is now deprecated in favor of assert_select
.
There are two forms of assert_select
:
assert_select(selector, [equality], [message])
ensures that the equality condition is met on the selected elements through the selector. The selector may be a CSS selector expression (String), an expression with substitution values, or an HTML::Selector
object.
assert_select(element, selector, [equality], [message])
ensures that the equality condition is met on all the selected elements through the selector starting from the element (instance of HTML::Node
) and its descendants.
For example, you could verify the contents on the title element in your response with:
You can also use nested assert_select
blocks. In this case the inner assert_select
runs the assertion on the complete collection of elements selected by the outer assert_select
block:
Alternatively the collection of elements selected by the outer assert_select
may be iterated through so that assert_select
may be called separately for each element. Suppose for example that the response contains two ordered lists, each with four list elements then the following tests will both pass.
The assert_select
assertion is quite powerful. For more advanced usage, refer to its documentation.
There are more assertions that are primarily used in testing views:
Assertion | Purpose |
---|---|
assert_select_email | Allows you to make assertions on the body of an e-mail. |
assert_select_encoded | Allows you to make assertions on encoded HTML. It does this by un-encoding the contents of each element and then calling the block with all the un-encoded elements. |
css_select(selector) or css_select(element, selector) | Returns an array of all the elements selected by the selector. In the second variant it first matches the base element and tries to match the selector expression on any of its children. If there are no matches both variants return an empty array. |
Here's an example of using assert_select_email
:
Integration tests are used to test the interaction among any number of controllers. They are generally used to test important work flows within your application.
Unlike Unit and Functional tests, integration tests have to be explicitly created under the 'test/integration' folder within your application. Rails provides a generator to create an integration test skeleton for you.
Here's what a freshly-generated integration test looks like:
Integration tests inherit from ActionDispatch::IntegrationTest
. This makes available some additional helpers to use in your integration tests. Also you need to explicitly include the fixtures to be made available to the test.
In addition to the standard testing helpers, there are some additional helpers available to integration tests:
Helper | Purpose |
---|---|
https? | Returns true if the session is mimicking a secure HTTPS request. |
https! | Allows you to mimic a secure HTTPS request. |
host! | Allows you to set the host name to use in the next request. |
redirect? | Returns true if the last request was a redirect. |
follow_redirect! | Follows a single redirect response. |
request_via_redirect(http_method, path, [parameters], [headers]) | Allows you to make an HTTP request and follow any subsequent redirects. |
post_via_redirect(path, [parameters], [headers]) | Allows you to make an HTTP POST request and follow any subsequent redirects. |
get_via_redirect(path, [parameters], [headers]) | Allows you to make an HTTP GET request and follow any subsequent redirects. |
patch_via_redirect(path, [parameters], [headers]) | Allows you to make an HTTP PATCH request and follow any subsequent redirects. |
put_via_redirect(path, [parameters], [headers]) | Allows you to make an HTTP PUT request and follow any subsequent redirects. |
delete_via_redirect(path, [parameters], [headers]) | Allows you to make an HTTP DELETE request and follow any subsequent redirects. |
open_session | Opens a new session instance. |
A simple integration test that exercises multiple controllers:
As you can see the integration test involves multiple controllers and exercises the entire stack from database to dispatcher. In addition you can have multiple session instances open simultaneously in a test and extend those instances with assertion methods to create a very powerful testing DSL (domain-specific language) just for your application.
Here's an example of multiple sessions and custom DSL in an integration test
You don't need to set up and run your tests by hand on a test-by-test basis. Rails comes with a number of commands to help in testing. The table below lists all commands that come along in the default Rakefile when you initiate a Rails project.
Tasks | Description |
---|---|
rake test | Runs all unit, functional and integration tests. You can also simply run rake as Rails will run all the tests by default |
rake test:controllers | Runs all the controller tests from test/controllers |
rake test:functionals | Runs all the functional tests from test/controllers , test/mailers , and test/functional |
rake test:helpers | Runs all the helper tests from test/helpers |
rake test:integration | Runs all the integration tests from test/integration |
rake test:mailers | Runs all the mailer tests from test/mailers |
rake test:models | Runs all the model tests from test/models |
rake test:units | Runs all the unit tests from test/models , test/helpers , and test/unit |
rake test:all | Runs all tests quickly by merging all types and not resetting db |
rake test:all:db | Runs all tests quickly by merging all types and resetting db |
There're also some test commands which you can initiate by running rake tasks:
Tasks | Description |
---|---|
rake test | Runs all unit, functional and integration tests. You can also simply run rake as the test target is the default. |
rake test:recent | Tests recent changes |
rake test:uncommitted | Runs all the tests which are uncommitted. Supports Subversion and Git |
MiniTest
Ruby ships with a boat load of libraries. Ruby 1.8 provides Test::Unit
, a framework for unit testing in Ruby. All the basic assertions discussed above are actually defined in Test::Unit::Assertions
. The class ActiveSupport::TestCase
which we have been using in our unit and functional tests extends Test::Unit::TestCase
, allowing us to use all of the basic assertions in our tests.
Ruby 1.9 introduced MiniTest
, an updated version of Test::Unit
which provides a backwards compatible API for Test::Unit
. You could also use MiniTest
in Ruby 1.8 by installing the minitest
gem.
For more information on Test::Unit
, refer to test/unit Documentation For more information on MiniTest
, refer to Minitest
If you would like to run a block of code before the start of each test and another block of code after the end of each test you have two special callbacks for your rescue. Let's take note of this by looking at an example for our functional test in Posts
controller:
Above, the setup
method is called before each test and so @post
is available for each of the tests. Rails implements setup
and teardown
as ActiveSupport::Callbacks
. Which essentially means you need not only use setup
and teardown
as methods in your tests. You could specify them by using:
Let's see the earlier example by specifying setup
callback by specifying a method name as a symbol:
Like everything else in your Rails application, it is recommended that you test your routes. An example test for a route in the default show
action of Posts
controller above should look like:
Testing mailer classes requires some specific tools to do a thorough job.
Your mailer classes — like every other part of your Rails application — should be tested to ensure that it is working as expected.
The goals of testing your mailer classes are to ensure that:
There are two aspects of testing your mailer, the unit tests and the functional tests. In the unit tests, you run the mailer in isolation with tightly controlled inputs and compare the output to a known value (a fixture.) In the functional tests you don't so much test the minute details produced by the mailer; instead, we test that our controllers and models are using the mailer in the right way. You test to prove that the right email was sent at the right time.
In order to test that your mailer is working as expected, you can use unit tests to compare the actual results of the mailer with pre-written examples of what should be produced.
For the purposes of unit testing a mailer, fixtures are used to provide an example of how the output should look. Because these are example emails, and not Active Record data like the other fixtures, they are kept in their own subdirectory apart from the other fixtures. The name of the directory within test/fixtures
directly corresponds to the name of the mailer. So, for a mailer named UserMailer
, the fixtures should reside in test/fixtures/user_mailer
directory.
When you generated your mailer, the generator creates stub fixtures for each of the mailers actions. If you didn't use the generator you'll have to make those files yourself.
Here's a unit test to test a mailer named UserMailer
whose action invite
is used to send an invitation to a friend. It is an adapted version of the base test created by the generator for an invite
action.
In the test we send the email and store the returned object in the email
variable. We then ensure that it was sent (the first assert), then, in the second batch of assertions, we ensure that the email does indeed contain what we expect. The helper read_fixture
is used to read in the content from this file.
Here's the content of the invite
fixture:
This is the right time to understand a little more about writing tests for your mailers. The line ActionMailer::Base.delivery_method = :test
in config/environments/test.rb
sets the delivery method to test mode so that email will not actually be delivered (useful to avoid spamming your users while testing) but instead it will be appended to an array (ActionMailer::Base.deliveries
).
The ActionMailer::Base.deliveries
array is only reset automatically in ActionMailer::TestCase
tests. If you want to have a clean slate outside Action Mailer tests, you can reset it manually with: ActionMailer::Base.deliveries.clear
Functional testing for mailers involves more than just checking that the email body, recipients and so forth are correct. In functional mail tests you call the mail deliver methods and check that the appropriate emails have been appended to the delivery list. It is fairly safe to assume that the deliver methods themselves do their job. You are probably more interested in whether your own business logic is sending emails when you expect them to go out. For example, you can check that the invite friend operation is sending an email appropriately:
In order to test helpers, all you need to do is check that the output of the helper method matches what you'd expect. Tests related to the helpers are located under the test/helpers
directory. Rails provides a generator which generates both the helper and the test file:
The generated test file contains the following code:
A helper is just a simple module where you can define methods which are available into your views. To test the output of the helper's methods, you just have to use a mixin like this:
Moreover, since the test class extends from ActionView::TestCase
, you have access to Rails' helper methods such as link_to
or pluralize
.
The built-in test/unit
based testing is not the only way to test Rails applications. Rails developers have come up with a wide variety of other approaches and aids for testing, including:
test/unit
with additional helpers, macros, and assertions.
Web application frameworks are made to help developers build web applications. Some of them also help you with securing the web application. In fact one framework is not more secure than another: If you use it correctly, you will be able to build secure apps with many frameworks. Ruby on Rails has some clever helper methods, for example against SQL injection, so that this is hardly a problem. It's nice to see that all of the Rails applications I audited had a good level of security.
In general there is no such thing as plug-n-play security. Security depends on the people using the framework, and sometimes on the development method. And it depends on all layers of a web application environment: The back-end storage, the web server and the web application itself (and possibly other layers or applications).
The Gartner Group however estimates that 75% of attacks are at the web application layer, and found out "that out of 300 audited sites, 97% are vulnerable to attack". This is because web applications are relatively easy to attack, as they are simple to understand and manipulate, even by the lay person.
The threats against web applications include user account hijacking, bypass of access control, reading or modifying sensitive data, or presenting fraudulent content. Or an attacker might be able to install a Trojan horse program or unsolicited e-mail sending software, aim at financial enrichment or cause brand name damage by modifying company resources. In order to prevent attacks, minimize their impact and remove points of attack, first of all, you have to fully understand the attack methods in order to find the correct countermeasures. That is what this guide aims at.
In order to develop secure web applications you have to keep up to date on all layers and know your enemies. To keep up to date subscribe to security mailing lists, read security blogs and make updating and security checks a habit (check the Additional Resources chapter). I do it manually because that's how you find the nasty logical security problems.
A good place to start looking at security is with sessions, which can be vulnerable to particular attacks.
HTTP is a stateless protocol. Sessions make it stateful.
Most applications need to keep track of certain state of a particular user. This could be the contents of a shopping basket or the user id of the currently logged in user. Without the idea of sessions, the user would have to identify, and probably authenticate, on every request. Rails will create a new session automatically if a new user accesses the application. It will load an existing session if the user has already used the application.
A session usually consists of a hash of values and a session id, usually a 32-character string, to identify the hash. Every cookie sent to the client's browser includes the session id. And the other way round: the browser will send it to the server on every request from the client. In Rails you can save and retrieve values using the session method:
The session id is a 32 byte long MD5 hash value.
A session id consists of the hash value of a random string. The random string is the current time, a random number between 0 and 1, the process id number of the Ruby interpreter (also basically a random number) and a constant string. Currently it is not feasible to brute-force Rails' session ids. To date MD5 is uncompromised, but there have been collisions, so it is theoretically possible to create another input text with the same hash value. But this has had no security impact to date.
Stealing a user's session id lets an attacker use the web application in the victim's name.
Many web applications have an authentication system: a user provides a user name and password, the web application checks them and stores the corresponding user id in the session hash. From now on, the session is valid. On every request the application will load the user, identified by the user id in the session, without the need for new authentication. The session id in the cookie identifies the session.
Hence, the cookie serves as temporary authentication for the web application. Everyone who seizes a cookie from someone else, may use the web application as this user – with possibly severe consequences. Here are some ways to hijack a session, and their countermeasures:
The main objective of most attackers is to make money. The underground prices for stolen bank login accounts range from $10–$1000 (depending on the available amount of funds), $0.40–$20 for credit card numbers, $1–$8 for online auction site accounts and $4–$30 for email passwords, according to the Symantec Global Internet Security Threat Report.
Here are some general guidelines on sessions.
Rails provides several storage mechanisms for the session hashes. The most important is ActionDispatch::Session::CookieStore
.
Rails 2 introduced a new default session storage, CookieStore. CookieStore saves the session hash directly in a cookie on the client-side. The server retrieves the session hash from the cookie and eliminates the need for a session id. That will greatly increase the speed of the application, but it is a controversial storage option and you have to think about the security implications of it:
That means the security of this storage depends on this secret (and on the digest algorithm, which defaults to SHA1, for compatibility). So don't use a trivial secret, i.e. a word from a dictionary, or one which is shorter than 30 characters.
config.secret_key_base
is used for specifying a key which allows sessions for the application to be verified against a known secure key to prevent tampering. Applications get config.secret_key_base
initialized to a random key in config/initializers/secret_token.rb
, e.g.:
Older versions of Rails use CookieStore, which uses secret_token
instead of secret_key_base
that is used by EncryptedCookieStore. Read the upgrade documentation for more information.
If you have received an application where the secret was exposed (e.g. an application whose source was shared), strongly consider changing the secret.
Another sort of attack you have to be aware of when using CookieStore
is the replay attack.
It works like this:
Including a nonce (a random value) in the session solves replay attacks. A nonce is valid only once, and the server has to keep track of all the valid nonces. It gets even more complicated if you have several application servers (mongrels). Storing nonces in a database table would defeat the entire purpose of CookieStore (avoiding accessing the database).
The best solution against it is not to store this kind of data in a session, but in the database. In this case store the credit in the database and the logged_in_user_id in the session.
Apart from stealing a user's session id, the attacker may fix a session id known to them. This is called session fixation.
This attack focuses on fixing a user's session id known to the attacker, and forcing the user's browser into using this id. It is therefore not necessary for the attacker to steal the session id afterwards. Here is how this attack works:
<script>document.cookie="_session_id=16d5b78abb28e3d6206b60f22a03c8d9";</script>
. Read more about XSS and injection later on.One line of code will protect you from session fixation.
The most effective countermeasure is to issue a new session identifier and declare the old one invalid after a successful login. That way, an attacker cannot use the fixed session identifier. This is a good countermeasure against session hijacking, as well. Here is how to create a new session in Rails:
If you use the popular RestfulAuthentication plugin for user management, add reset_session to the SessionsController#create action. Note that this removes any value from the session, you have to transfer them to the new session.
Another countermeasure is to save user-specific properties in the session, verify them every time a request comes in, and deny access, if the information does not match. Such properties could be the remote IP address or the user agent (the web browser name), though the latter is less user-specific. When saving the IP address, you have to bear in mind that there are Internet service providers or large organizations that put their users behind proxies. These might change over the course of a session, so these users will not be able to use your application, or only in a limited way.
Sessions that never expire extend the time-frame for attacks such as cross-site reference forgery (CSRF), session hijacking and session fixation.
One possibility is to set the expiry time-stamp of the cookie with the session id. However the client can edit cookies that are stored in the web browser so expiring sessions on the server is safer. Here is an example of how to expire sessions in a database table. Call Session.sweep("20 minutes")
to expire sessions that were used longer than 20 minutes ago.
The section about session fixation introduced the problem of maintained sessions. An attacker maintaining a session every five minutes can keep the session alive forever, although you are expiring sessions. A simple solution for this would be to add a created_at column to the sessions table. Now you can delete sessions that were created a long time ago. Use this line in the sweep method above:
This attack method works by including malicious code or a link in a page that accesses a web application that the user is believed to have authenticated. If the session for that web application has not timed out, an attacker may execute unauthorized commands.
In the session chapter you have learned that most Rails applications use cookie-based sessions. Either they store the session id in the cookie and have a server-side session hash, or the entire session hash is on the client-side. In either case the browser will automatically send along the cookie on every request to a domain, if it can find a cookie for that domain. The controversial point is, that it will also send the cookie, if the request comes from a site of a different domain. Let's start with an example:

It is important to notice that the actual crafted image or link doesn't necessarily have to be situated in the web application's domain, it can be anywhere – in a forum, blog post or email.
CSRF appears very rarely in CVE (Common Vulnerabilities and Exposures) — less than 0.1% in 2006 — but it really is a 'sleeping giant' [Grossman]. This is in stark contrast to the results in my (and others) security contract work – CSRF is an important security issue.
First, as is required by the W3C, use GET and POST appropriately. Secondly, a security token in non-GET requests will protect your application from CSRF.
The HTTP protocol basically provides two main types of requests - GET and POST (and more, but they are not supported by most browsers). The World Wide Web Consortium (W3C) provides a checklist for choosing HTTP GET or POST:
Use GET if:
Use POST if:
If your web application is RESTful, you might be used to additional HTTP verbs, such as PATCH, PUT or DELETE. Most of today's web browsers, however do not support them - only GET and POST. Rails uses a hidden _method
field to handle this barrier.
POST requests can be sent automatically, too. Here is an example for a link which displays www.harmless.com as destination in the browser's status bar. In fact it dynamically creates a new form that sends a POST request.
Or the attacker places the code into the onmouseover event handler of an image:
There are many other possibilities, including Ajax to attack the victim in the background. The solution to this is including a security token in non-GET requests which check on the server-side. In Rails 2 or higher, this is a one-liner in the application controller:
This will automatically include a security token, calculated from the current session and the server-side secret, in all forms and Ajax requests generated by Rails. You won't need the secret, if you use CookieStorage as session storage. If the security token doesn't match what was expected, the session will be reset. Note: In Rails versions prior to 3.0.4, this raised an ActionController::InvalidAuthenticityToken
error.
It is common to use persistent cookies to store user information, with cookies.permanent
for example. In this case, the cookies will not be cleared and the out of the box CSRF protection will not be effective. If you are using a different cookie store than the session for this information, you must handle what to do with it yourself:
The above method can be placed in the ApplicationController
and will be called when a CSRF token is not present on a non-GET request.
Note that cross-site scripting (XSS) vulnerabilities bypass all CSRF protections. XSS gives the attacker access to all elements on a page, so they can read the CSRF security token from a form or directly submit the form. Read more about XSS later.
Another class of security vulnerabilities surrounds the use of redirection and files in web applications.
Redirection in a web application is an underestimated cracker tool: Not only can the attacker forward the user to a trap web site, they may also create a self-contained attack.
Whenever the user is allowed to pass (parts of) the URL for redirection, it is possibly vulnerable. The most obvious attack would be to redirect users to a fake web application which looks and feels exactly as the original one. This so-called phishing attack works by sending an unsuspicious link in an email to the users, injecting the link by XSS in the web application or putting the link into an external site. It is unsuspicious, because the link starts with the URL to the web application and the URL to the malicious site is hidden in the redirection parameter: http://www.example.com/site/redirect?to= www.attacker.com. Here is an example of a legacy action:
This will redirect the user to the main action if they tried to access a legacy action. The intention was to preserve the URL parameters to the legacy action and pass them to the main action. However, it can be exploited by attacker if they included a host key in the URL:
If it is at the end of the URL it will hardly be noticed and redirects the user to the attacker.com host. A simple countermeasure would be to include only the expected parameters in a legacy action (again a whitelist approach, as opposed to removing unexpected parameters). And if you redirect to an URL, check it with a whitelist or a regular expression.
Another redirection and self-contained XSS attack works in Firefox and Opera by the use of the data protocol. This protocol displays its contents directly in the browser and can be anything from HTML or JavaScript to entire images:
data:text/html;base64,PHNjcmlwdD5hbGVydCgnWFNTJyk8L3NjcmlwdD4K
This example is a Base64 encoded JavaScript which displays a simple message box. In a redirection URL, an attacker could redirect to this URL with the malicious code in it. As a countermeasure, do not allow the user to supply (parts of) the URL to be redirected to.
Make sure file uploads don't overwrite important files, and process media files asynchronously.
Many web applications allow users to upload files. File names, which the user may choose (partly), should always be filtered as an attacker could use a malicious file name to overwrite any file on the server. If you store file uploads at /var/www/uploads, and the user enters a file name like “../../../etc/passwd”, it may overwrite an important file. Of course, the Ruby interpreter would need the appropriate permissions to do so – one more reason to run web servers, database servers and other programs as a less privileged Unix user.
When filtering user input file names, don't try to remove malicious parts. Think of a situation where the web application removes all “../” in a file name and an attacker uses a string such as “....//” - the result will be “../”. It is best to use a whitelist approach, which checks for the validity of a file name with a set of accepted characters. This is opposed to a blacklist approach which attempts to remove not allowed characters. In case it isn't a valid file name, reject it (or replace not accepted characters), but don't remove them. Here is the file name sanitizer from the attachment_fu plugin
A significant disadvantage of synchronous processing of file uploads (as the attachment_fu plugin may do with images), is its vulnerability to denial-of-service attacks. An attacker can synchronously start image file uploads from many computers which increases the server load and may eventually crash or stall the server.
The solution to this is best to process media files asynchronously: Save the media file and schedule a processing request in the database. A second process will handle the processing of the file in the background.
Source code in uploaded files may be executed when placed in specific directories. Do not place file uploads in Rails' /public directory if it is Apache's home directory.
The popular Apache web server has an option called DocumentRoot. This is the home directory of the web site, everything in this directory tree will be served by the web server. If there are files with a certain file name extension, the code in it will be executed when requested (might require some options to be set). Examples for this are PHP and CGI files. Now think of a situation where an attacker uploads a file “file.cgi” with code in it, which will be executed when someone downloads the file.
If your Apache DocumentRoot points to Rails' /public directory, do not put file uploads in it, store files at least one level downwards.
Make sure users cannot download arbitrary files.
Just as you have to filter file names for uploads, you have to do so for downloads. The send_file() method sends files from the server to the client. If you use a file name, that the user entered, without filtering, any file can be downloaded:
Simply pass a file name like “../../../etc/passwd” to download the server's login information. A simple solution against this, is to check that the requested file is in the expected directory:
Another (additional) approach is to store the file names in the database and name the files on the disk after the ids in the database. This is also a good approach to avoid possible code in an uploaded file to be executed. The attachment_fu plugin does this in a similar way.
Intranet and administration interfaces are popular attack targets, because they allow privileged access. Although this would require several extra-security measures, the opposite is the case in the real world.
In 2007 there was the first tailor-made trojan which stole information from an Intranet, namely the "Monster for employers" web site of Monster.com, an online recruitment web application. Tailor-made Trojans are very rare, so far, and the risk is quite low, but it is certainly a possibility and an example of how the security of the client host is important, too. However, the highest threat to Intranet and Admin applications are XSS and CSRF.
XSS If your application re-displays malicious user input from the extranet, the application will be vulnerable to XSS. User names, comments, spam reports, order addresses are just a few uncommon examples, where there can be XSS.
Having one single place in the admin interface or Intranet, where the input has not been sanitized, makes the entire application vulnerable. Possible exploits include stealing the privileged administrator's cookie, injecting an iframe to steal the administrator's password or installing malicious software through browser security holes to take over the administrator's computer.
Refer to the Injection section for countermeasures against XSS. It is recommended to use the SafeErb plugin also in an Intranet or administration interface.
CSRF Cross-Site Reference Forgery (CSRF) is a gigantic attack method, it allows the attacker to do everything the administrator or Intranet user may do. As you have already seen above how CSRF works, here are a few examples of what attackers can do in the Intranet or admin interface.
A real-world example is a router reconfiguration by CSRF. The attackers sent a malicious e-mail, with CSRF in it, to Mexican users. The e-mail claimed there was an e-card waiting for them, but it also contained an image tag that resulted in a HTTP-GET request to reconfigure the user's router (which is a popular model in Mexico). The request changed the DNS-settings so that requests to a Mexico-based banking site would be mapped to the attacker's site. Everyone who accessed the banking site through that router saw the attacker's fake web site and had their credentials stolen.
Another example changed Google Adsense's e-mail address and password by. If the victim was logged into Google Adsense, the administration interface for Google advertisements campaigns, an attacker could change their credentials.
Another popular attack is to spam your web application, your blog or forum to propagate malicious XSS. Of course, the attacker has to know the URL structure, but most Rails URLs are quite straightforward or they will be easy to find out, if it is an open-source application's admin interface. The attacker may even do 1,000 lucky guesses by just including malicious IMG-tags which try every possible combination.
For countermeasures against CSRF in administration interfaces and Intranet applications, refer to the countermeasures in the CSRF section.
The common admin interface works like this: it's located at www.example.com/admin, may be accessed only if the admin flag is set in the User model, re-displays user input and allows the admin to delete/add/edit whatever data desired. Here are some thoughts about this:
Almost every web application has to deal with authorization and authentication. Instead of rolling your own, it is advisable to use common plug-ins. But keep them up-to-date, too. A few additional precautions can make your application even more secure.
There are a number of authentication plug-ins for Rails available. Good ones, such as the popular devise and authlogic, store only encrypted passwords, not plain-text passwords. In Rails 3.1 you can use the built-in has_secure_password
method which has similar features.
Every new user gets an activation code to activate their account when they get an e-mail with a link in it. After activating the account, the activation_code columns will be set to NULL in the database. If someone requested an URL like these, they would be logged in as the first activated user found in the database (and chances are that this is the administrator):
This is possible because on some servers, this way the parameter id, as in params[:id], would be nil. However, here is the finder from the activation action:
If the parameter was nil, the resulting SQL query will be
And thus it found the first user in the database, returned it and logged them in. You can find out more about it in my blog post. It is advisable to update your plug-ins from time to time. Moreover, you can review your application to find more flaws like this.
Brute-force attacks on accounts are trial and error attacks on the login credentials. Fend them off with more generic error messages and possibly require to enter a CAPTCHA.
A list of user names for your web application may be misused to brute-force the corresponding passwords, because most people don't use sophisticated passwords. Most passwords are a combination of dictionary words and possibly numbers. So armed with a list of user names and a dictionary, an automatic program may find the correct password in a matter of minutes.
Because of this, most web applications will display a generic error message “user name or password not correct”, if one of these are not correct. If it said “the user name you entered has not been found”, an attacker could automatically compile a list of user names.
However, what most web application designers neglect, are the forgot-password pages. These pages often admit that the entered user name or e-mail address has (not) been found. This allows an attacker to compile a list of user names and brute-force the accounts.
In order to mitigate such attacks, display a generic error message on forgot-password pages, too. Moreover, you can require to enter a CAPTCHA after a number of failed logins from a certain IP address. Note, however, that this is not a bullet-proof solution against automatic programs, because these programs may change their IP address exactly as often. However, it raises the barrier of an attack.
Many web applications make it easy to hijack user accounts. Why not be different and make it more difficult?.
Think of a situation where an attacker has stolen a user's session cookie and thus may co-use the application. If it is easy to change the password, the attacker will hijack the account with a few clicks. Or if the change-password form is vulnerable to CSRF, the attacker will be able to change the victim's password by luring them to a web page where there is a crafted IMG-tag which does the CSRF. As a countermeasure, make change-password forms safe against CSRF, of course. And require the user to enter the old password when changing it.
However, the attacker may also take over the account by changing the e-mail address. After they change it, they will go to the forgotten-password page and the (possibly new) password will be mailed to the attacker's e-mail address. As a countermeasure require the user to enter the password when changing the e-mail address, too.
Depending on your web application, there may be more ways to hijack the user's account. In many cases CSRF and XSS will help to do so. For example, as in a CSRF vulnerability in Google Mail. In this proof-of-concept attack, the victim would have been lured to a web site controlled by the attacker. On that site is a crafted IMG-tag which results in a HTTP GET request that changes the filter settings of Google Mail. If the victim was logged in to Google Mail, the attacker would change the filters to forward all e-mails to their e-mail address. This is nearly as harmful as hijacking the entire account. As a countermeasure, review your application logic and eliminate all XSS and CSRF vulnerabilities.
A CAPTCHA is a challenge-response test to determine that the response is not generated by a computer. It is often used to protect comment forms from automatic spam bots by asking the user to type the letters of a distorted image. The idea of a negative CAPTCHA is not for a user to prove that they are human, but reveal that a robot is a robot.
But not only spam robots (bots) are a problem, but also automatic login bots. A popular CAPTCHA API is reCAPTCHA which displays two distorted images of words from old books. It also adds an angled line, rather than a distorted background and high levels of warping on the text as earlier CAPTCHAs did, because the latter were broken. As a bonus, using reCAPTCHA helps to digitize old books. ReCAPTCHA is also a Rails plug-in with the same name as the API.
You will get two keys from the API, a public and a private key, which you have to put into your Rails environment. After that you can use the recaptcha_tags method in the view, and the verify_recaptcha method in the controller. Verify_recaptcha will return false if the validation fails. The problem with CAPTCHAs is, they are annoying. Additionally, some visually impaired users have found certain kinds of distorted CAPTCHAs difficult to read. The idea of negative CAPTCHAs is not to ask a user to proof that they are human, but reveal that a spam robot is a bot.
Most bots are really dumb, they crawl the web and put their spam into every form's field they can find. Negative CAPTCHAs take advantage of that and include a "honeypot" field in the form which will be hidden from the human user by CSS or JavaScript.
Here are some ideas how to hide honeypot fields by JavaScript and/or CSS:
The most simple negative CAPTCHA is one hidden honeypot field. On the server side, you will check the value of the field: If it contains any text, it must be a bot. Then, you can either ignore the post or return a positive result, but not saving the post to the database. This way the bot will be satisfied and moves on. You can do this with annoying users, too.
You can find more sophisticated negative CAPTCHAs in Ned Batchelder's blog post
Note that this protects you only from automatic bots, targeted tailor-made bots cannot be stopped by this. So negative CAPTCHAs might not be good to protect login forms.
Tell Rails not to put passwords in the log files.
By default, Rails logs all requests being made to the web application. But log files can be a huge security issue, as they may contain login credentials, credit card numbers et cetera. When designing a web application security concept, you should also think about what will happen if an attacker got (full) access to the web server. Encrypting secrets and passwords in the database will be quite useless, if the log files list them in clear text. You can filter certain request parameters from your log files by appending them to config.filter_parameters
in the application configuration. These parameters will be marked [FILTERED] in the log.
Do you find it hard to remember all your passwords? Don't write them down, but use the initial letters of each word in an easy to remember sentence.
Bruce Schneier, a security technologist, has analyzed 34,000 real-world user names and passwords from the MySpace phishing attack mentioned below. It turns out that most of the passwords are quite easy to crack. The 20 most common passwords are:
password1, abc123, myspace1, password, blink182, qwerty1, ****you, 123abc, baseball1, football1, 123456, soccer, monkey1, liverpool1, princess1, jordan23, slipknot1, superman1, iloveyou1, and monkey.
It is interesting that only 4% of these passwords were dictionary words and the great majority is actually alphanumeric. However, password cracker dictionaries contain a large number of today's passwords, and they try out all kinds of (alphanumerical) combinations. If an attacker knows your user name and you use a weak password, your account will be easily cracked.
A good password is a long alphanumeric combination of mixed cases. As this is quite hard to remember, it is advisable to enter only the first letters of a sentence that you can easily remember. For example "The quick brown fox jumps over the lazy dog" will be "Tqbfjotld". Note that this is just an example, you should not use well known phrases like these, as they might appear in cracker dictionaries, too.
A common pitfall in Ruby's regular expressions is to match the string's beginning and end by ^ and $, instead of \A and \z.
Ruby uses a slightly different approach than many other languages to match the end and the beginning of a string. That is why even many Ruby and Rails books make this wrong. So how is this a security threat? Say you wanted to loosely validate a URL field and you used a simple regular expression like this:
This may work fine in some languages. However, in Ruby ^ and $ match the line beginning and line end. And thus a URL like this passes the filter without problems:
This URL passes the filter because the regular expression matches – the second line, the rest does not matter. Now imagine we had a view that showed the URL like this:
The link looks innocent to visitors, but when it's clicked, it will execute the JavaScript function "exploit_code" or any other JavaScript the attacker provides.
To fix the regular expression, \A and \z should be used instead of ^ and $, like so:
Since this is a frequent mistake, the format validator (validates_format_of) now raises an exception if the provided regular expression starts with ^ or ends with $. If you do need to use ^ and $ instead of \A and \z (which is rare), you can set the :multiline option to true, like so:
Note that this only protects you against the most common mistake when using the format validator - you always need to keep in mind that ^ and $ match the line beginning and line end in Ruby, and not the beginning and end of a string.
Changing a single parameter may give the user unauthorized access. Remember that every parameter may be changed, no matter how much you hide or obfuscate it.
The most common parameter that a user might tamper with, is the id parameter, as in http://www.domain.com/project/1
, whereas 1 is the id. It will be available in params in the controller. There, you will most likely do something like this:
This is alright for some web applications, but certainly not if the user is not authorized to view all projects. If the user changes the id to 42, and they are not allowed to see that information, they will have access to it anyway. Instead, query the user's access rights, too:
Depending on your web application, there will be many more parameters the user can tamper with. As a rule of thumb, no user input data is secure, until proven otherwise, and every parameter from the user is potentially manipulated.
Don't be fooled by security by obfuscation and JavaScript security. The Web Developer Toolbar for Mozilla Firefox lets you review and change every form's hidden fields. JavaScript can be used to validate user input data, but certainly not to prevent attackers from sending malicious requests with unexpected values. The Live Http Headers plugin for Mozilla Firefox logs every request and may repeat and change them. That is an easy way to bypass any JavaScript validations. And there are even client-side proxies that allow you to intercept any request and response from and to the Internet.
Injection is a class of attacks that introduce malicious code or parameters into a web application in order to run it within its security context. Prominent examples of injection are cross-site scripting (XSS) and SQL injection.
Injection is very tricky, because the same code or parameter can be malicious in one context, but totally harmless in another. A context can be a scripting, query or programming language, the shell or a Ruby/Rails method. The following sections will cover all important contexts where injection attacks may happen. The first section, however, covers an architectural decision in connection with Injection.
When sanitizing, protecting or verifying something, whitelists over blacklists.
A blacklist can be a list of bad e-mail addresses, non-public actions or bad HTML tags. This is opposed to a whitelist which lists the good e-mail addresses, public actions, good HTML tags and so on. Although sometimes it is not possible to create a whitelist (in a SPAM filter, for example), prefer to use whitelist approaches:
Whitelists are also a good approach against the human factor of forgetting something in the blacklist.
Thanks to clever methods, this is hardly a problem in most Rails applications. However, this is a very devastating and common attack in web applications, so it is important to understand the problem.
SQL injection attacks aim at influencing database queries by manipulating web application parameters. A popular goal of SQL injection attacks is to bypass authorization. Another goal is to carry out data manipulation or reading arbitrary data. Here is an example of how not to use user input data in a query:
This could be in a search action and the user may enter a project's name that they want to find. If a malicious user enters ' OR 1 --, the resulting SQL query will be:
The two dashes start a comment ignoring everything after it. So the query returns all records from the projects table including those blind to the user. This is because the condition is true for all records.
Usually a web application includes access control. The user enters their login credentials and the web application tries to find the matching record in the users table. The application grants access when it finds a record. However, an attacker may possibly bypass this check with SQL injection. The following shows a typical database query in Rails to find the first record in the users table which matches the login credentials parameters supplied by the user.
If an attacker enters ' OR '1'='1 as the name, and ' OR '2'>'1 as the password, the resulting SQL query will be:
This will simply find the first record in the database, and grants access to this user.
The UNION statement connects two SQL queries and returns the data in one set. An attacker can use it to read arbitrary data from the database. Let's take the example from above:
And now let's inject another query using the UNION statement:
This will result in the following SQL query:
The result won't be a list of projects (because there is no project with an empty name), but a list of user names and their password. So hopefully you encrypted the passwords in the database! The only problem for the attacker is, that the number of columns has to be the same in both queries. That's why the second query includes a list of ones (1), which will be always the value 1, in order to match the number of columns in the first query.
Also, the second query renames some columns with the AS statement so that the web application displays the values from the user table. Be sure to update your Rails to at least 2.1.1.
Ruby on Rails has a built-in filter for special SQL characters, which will escape ' , " , NULL character and line breaks. Using Model.find(id)
or Model.find_by_some thing(something)
automatically applies this countermeasure. But in SQL fragments, especially in conditions fragments (where("...")
), the connection.execute()
or Model.find_by_sql()
methods, it has to be applied manually.
Instead of passing a string to the conditions option, you can pass an array to sanitize tainted strings like this:
As you can see, the first part of the array is an SQL fragment with question marks. The sanitized versions of the variables in the second part of the array replace the question marks. Or you can pass a hash for the same result:
The array or hash form is only available in model instances. You can try sanitize_sql()
elsewhere. Make it a habit to think about the security consequences when using an external string in SQL.
The most widespread, and one of the most devastating security vulnerabilities in web applications is XSS. This malicious attack injects client-side executable code. Rails provides helper methods to fend these attacks off.
An entry point is a vulnerable URL and its parameters where an attacker can start an attack.
The most common entry points are message posts, user comments, and guest books, but project titles, document names and search result pages have also been vulnerable - just about everywhere where the user can input data. But the input does not necessarily have to come from input boxes on web sites, it can be in any URL parameter – obvious, hidden or internal. Remember that the user may intercept any traffic. Applications, such as the Live HTTP Headers Firefox plugin, or client-site proxies make it easy to change requests.
XSS attacks work like this: An attacker injects some code, the web application saves it and displays it on a page, later presented to a victim. Most XSS examples simply display an alert box, but it is more powerful than that. XSS can steal the cookie, hijack the session, redirect the victim to a fake website, display advertisements for the benefit of the attacker, change elements on the web site to get confidential information or install malicious software through security holes in the web browser.
During the second half of 2007, there were 88 vulnerabilities reported in Mozilla browsers, 22 in Safari, 18 in IE, and 12 in Opera. The Symantec Global Internet Security threat report also documented 239 browser plug-in vulnerabilities in the last six months of 2007. Mpack is a very active and up-to-date attack framework which exploits these vulnerabilities. For criminal hackers, it is very attractive to exploit an SQL-Injection vulnerability in a web application framework and insert malicious code in every textual table column. In April 2008 more than 510,000 sites were hacked like this, among them the British government, United Nations, and many more high targets.
A relatively new, and unusual, form of entry points are banner advertisements. In earlier 2008, malicious code appeared in banner ads on popular sites, such as MySpace and Excite, according to Trend Micro.
The most common XSS language is of course the most popular client-side scripting language JavaScript, often in combination with HTML. Escaping user input is essential.
Here is the most straightforward test to check for XSS:
This JavaScript code will simply display an alert box. The next examples do exactly the same, only in very uncommon places:
These examples don't do any harm so far, so let's see how an attacker can steal the user's cookie (and thus hijack the user's session). In JavaScript you can use the document.cookie property to read and write the document's cookie. JavaScript enforces the same origin policy, that means a script from one domain cannot access cookies of another domain. The document.cookie property holds the cookie of the originating web server. However, you can read and write this property, if you embed the code directly in the HTML document (as it happens with XSS). Inject this anywhere in your web application to see your own cookie on the result page:
For an attacker, of course, this is not useful, as the victim will see their own cookie. The next example will try to load an image from the URL http://www.attacker.com/ plus the cookie. Of course this URL does not exist, so the browser displays nothing. But the attacker can review their web server's access log files to see the victim's cookie.
The log files on www.attacker.com will read like this:
You can mitigate these attacks (in the obvious way) by adding the httpOnly flag to cookies, so that document.cookie may not be read by JavaScript. Http only cookies can be used from IE v6.SP1, Firefox v2.0.0.5 and Opera 9.5. Safari is still considering, it ignores the option. But other, older browsers (such as WebTV and IE 5.5 on Mac) can actually cause the page to fail to load. Be warned that cookies will still be visible using Ajax, though.
With web page defacement an attacker can do a lot of things, for example, present false information or lure the victim on the attackers web site to steal the cookie, login credentials or other sensitive data. The most popular way is to include code from external sources by iframes:
This loads arbitrary HTML and/or JavaScript from an external source and embeds it as part of the site. This iframe is taken from an actual attack on legitimate Italian sites using the Mpack attack framework. Mpack tries to install malicious software through security holes in the web browser – very successfully, 50% of the attacks succeed.
A more specialized attack could overlap the entire web site or display a login form, which looks the same as the site's original, but transmits the user name and password to the attacker's site. Or it could use CSS and/or JavaScript to hide a legitimate link in the web application, and display another one at its place which redirects to a fake web site.
Reflected injection attacks are those where the payload is not stored to present it to the victim later on, but included in the URL. Especially search forms fail to escape the search string. The following link presented a page which stated that "George Bush appointed a 9 year old boy to be the chairperson...":
It is very important to filter malicious input, but it is also important to escape the output of the web application.
Especially for XSS, it is important to do whitelist input filtering instead of blacklist. Whitelist filtering states the values allowed as opposed to the values not allowed. Blacklists are never complete.
Imagine a blacklist deletes “script” from the user input. Now the attacker injects “<scrscriptipt>”, and after the filter, “<script>” remains. Earlier versions of Rails used a blacklist approach for the strip_tags(), strip_links() and sanitize() method. So this kind of injection was possible:
This returned "some<script>alert('hello')</script>", which makes an attack work. That's why I vote for a whitelist approach, using the updated Rails 2 method sanitize():
This allows only the given tags and does a good job, even against all kinds of tricks and malformed tags.
As a second step, it is good practice to escape all output of the application, especially when re-displaying user input, which hasn't been input-filtered (as in the search form example earlier on). Use escapeHTML()
(or its alias h()
) method to replace the HTML input characters &, ", <, > by their uninterpreted representations in HTML (&
, "
, <
;, and >
). However, it can easily happen that the programmer forgets to use it, so it is recommended to use the SafeErb plugin. SafeErb reminds you to escape strings from external sources.
Network traffic is mostly based on the limited Western alphabet, so new character encodings, such as Unicode, emerged, to transmit characters in other languages. But, this is also a threat to web applications, as malicious code can be hidden in different encodings that the web browser might be able to process, but the web application might not. Here is an attack vector in UTF-8 encoding:
This example pops up a message box. It will be recognized by the above sanitize() filter, though. A great tool to obfuscate and encode strings, and thus “get to know your enemy”, is the Hackvertor. Rails' sanitize() method does a good job to fend off encoding attacks.
In order to understand today's attacks on web applications, it's best to take a look at some real-world attack vectors.
The following is an excerpt from the Js.Yamanner@m Yahoo! Mail worm. It appeared on June 11, 2006 and was the first webmail interface worm:
The worms exploits a hole in Yahoo's HTML/JavaScript filter, which usually filters all target and onload attributes from tags (because there can be JavaScript). The filter is applied only once, however, so the onload attribute with the worm code stays in place. This is a good example why blacklist filters are never complete and why it is hard to allow HTML/JavaScript in a web application.
Another proof-of-concept webmail worm is Nduja, a cross-domain worm for four Italian webmail services. Find more details on Rosario Valotta's paper. Both webmail worms have the goal to harvest email addresses, something a criminal hacker could make money with.
In December 2006, 34,000 actual user names and passwords were stolen in a MySpace phishing attack. The idea of the attack was to create a profile page named “login_home_index_html”, so the URL looked very convincing. Specially-crafted HTML and CSS was used to hide the genuine MySpace content from the page and instead display its own login form.
The MySpace Samy worm will be discussed in the CSS Injection section.
CSS Injection is actually JavaScript injection, because some browsers (IE, some versions of Safari and others) allow JavaScript in CSS. Think twice about allowing custom CSS in your web application.
CSS Injection is explained best by a well-known worm, the MySpace Samy worm. This worm automatically sent a friend request to Samy (the attacker) simply by visiting his profile. Within several hours he had over 1 million friend requests, but it creates too much traffic on MySpace, so that the site goes offline. The following is a technical explanation of the worm.
MySpace blocks many tags, however it allows CSS. So the worm's author put JavaScript into CSS like this:
So the payload is in the style attribute. But there are no quotes allowed in the payload, because single and double quotes have already been used. But JavaScript has a handy eval() function which executes any string as code.
The eval() function is a nightmare for blacklist input filters, as it allows the style attribute to hide the word “innerHTML”:
The next problem was MySpace filtering the word “javascript”, so the author used “java<NEWLINE>script" to get around this:
Another problem for the worm's author were CSRF security tokens. Without them he couldn't send a friend request over POST. He got around it by sending a GET to the page right before adding a user and parsing the result for the CSRF token.
In the end, he got a 4 KB worm, which he injected into his profile page.
The moz-binding CSS property proved to be another way to introduce JavaScript in CSS in Gecko-based browsers (Firefox, for example).
This example, again, showed that a blacklist filter is never complete. However, as custom CSS in web applications is a quite rare feature, I am not aware of a whitelist CSS filter. If you want to allow custom colors or images, you can allow the user to choose them and build the CSS in the web application. Use Rails' sanitize()
method as a model for a whitelist CSS filter, if you really need one.
If you want to provide text formatting other than HTML (due to security), use a mark-up language which is converted to HTML on the server-side. RedCloth is such a language for Ruby, but without precautions, it is also vulnerable to XSS.
For example, RedCloth translates _test_
to test, which makes the text italic. However, up to the current version 3.0.4, it is still vulnerable to XSS. Get the all-new version 4 that removed serious bugs. However, even that version has some security bugs, so the countermeasures still apply. Here is an example for version 3.0.4:
Use the :filter_html option to remove HTML which was not created by the Textile processor.
However, this does not filter all HTML, a few tags will be left (by design), for example <a>:
It is recommended to use RedCloth in combination with a whitelist input filter, as described in the countermeasures against XSS section.
The same security precautions have to be taken for Ajax actions as for “normal” ones. There is at least one exception, however: The output has to be escaped in the controller already, if the action doesn't render a view.
If you use the in_place_editor plugin, or actions that return a string, rather than rendering a view, you have to escape the return value in the action. Otherwise, if the return value contains a XSS string, the malicious code will be executed upon return to the browser. Escape any input value using the h() method.
Use user-supplied command line parameters with caution.
If your application has to execute commands in the underlying operating system, there are several methods in Ruby: exec(command), syscall(command), system(command) and command
. You will have to be especially careful with these functions if the user may enter the whole command, or a part of it. This is because in most shells, you can execute another command at the end of the first one, concatenating them with a semicolon (;) or a vertical bar (|).
A countermeasure is to use the system(command, parameters)
method which passes command line parameters safely.
HTTP headers are dynamically generated and under certain circumstances user input may be injected. This can lead to false redirection, XSS or HTTP response splitting.
HTTP request headers have a Referer, User-Agent (client software), and Cookie field, among others. Response headers for example have a status code, Cookie and Location (redirection target URL) field. All of them are user-supplied and may be manipulated with more or less effort. Remember to escape these header fields, too. For example when you display the user agent in an administration area.
Besides that, it is important to know what you are doing when building response headers partly based on user input. For example you want to redirect the user back to a specific page. To do that you introduced a “referer“ field in a form to redirect to the given address:
What happens is that Rails puts the string into the Location header field and sends a 302 (redirect) status to the browser. The first thing a malicious user would do, is this:
And due to a bug in (Ruby and) Rails up to version 2.1.2 (excluding it), a hacker may inject arbitrary header fields; for example like this:
Note that "%0d%0a" is URL-encoded for "\r\n" which is a carriage-return and line-feed (CRLF) in Ruby. So the resulting HTTP header for the second example will be the following because the second Location header field overwrites the first.
So attack vectors for Header Injection are based on the injection of CRLF characters in a header field. And what could an attacker do with a false redirection? They could redirect to a phishing site that looks the same as yours, but ask to login again (and sends the login credentials to the attacker). Or they could install malicious software through browser security holes on that site. Rails 2.1.2 escapes these characters for the Location field in the redirect_to
method. Make sure you do it yourself when you build other header fields with user input.
If Header Injection was possible, Response Splitting might be, too. In HTTP, the header block is followed by two CRLFs and the actual data (usually HTML). The idea of Response Splitting is to inject two CRLFs into a header field, followed by another response with malicious HTML. The response will be:
Under certain circumstances this would present the malicious HTML to the victim. However, this only seems to work with Keep-Alive connections (and many browsers are using one-time connections). But you can't rely on this. In any case this is a serious bug, and you should update your Rails to version 2.0.5 or 2.1.2 to eliminate Header Injection (and thus response splitting) risks.
Every HTTP response from your Rails application receives the following default security headers.
You can configure default headers in config/application.rb
.
Or you can remove them.
Here is the list of common headers:
It is beyond the scope of this guide to inform you on how to secure your application code and environments. However, please secure your database configuration, e.g. config/database.yml
, and your server-side secret, e.g. stored in config/initializers/secret_token.rb
. You may want to further restrict access, using environment-specific versions of these files and any others that may contain sensitive information.
The security landscape shifts and it is important to keep up to date, because missing a new vulnerability can be catastrophic. You can find additional resources about (Rails) security here:
One common task is to inspect the contents of a variable. In Rails, you can do this with three methods:
debug
to_yaml
inspect
debug
The debug
helper will return a <pre> tag that renders the object using the YAML format. This will generate human-readable data from any object. For example, if you have this code in a view:
You'll see something like this:
to_yaml
Displaying an instance variable, or any other object or method, in YAML format can be achieved this way:
The to_yaml
method converts the method to YAML format leaving it more readable, and then the simple_format
helper is used to render each line as in the console. This is how debug
method does its magic.
As a result of this, you will have something like this in your view:
inspect
Another useful method for displaying object values is inspect
, especially when working with arrays or hashes. This will print the object value as a string. For example:
Will be rendered as follows:
It can also be useful to save information to log files at runtime. Rails maintains a separate log file for each runtime environment.
Rails makes use of the ActiveSupport::Logger
class to write log information. You can also substitute another logger such as Log4r
if you wish.
You can specify an alternative logger in your environment.rb
or any environment file:
Or in the Initializer
section, add any of the following
By default, each log is created under Rails.root/log/
and the log file name is environment_name.log
.
When something is logged it's printed into the corresponding log if the log level of the message is equal or higher than the configured log level. If you want to know the current log level you can call the Rails.logger.level
method.
The available log levels are: :debug
, :info
, :warn
, :error
, :fatal
, and :unknown
, corresponding to the log level numbers from 0 up to 5 respectively. To change the default log level, use
This is useful when you want to log under development or staging, but you don't want to flood your production log with unnecessary information.
The default Rails log level is info
in production mode and debug
in development and test mode.
To write in the current log use the logger.(debug|info|warn|error|fatal)
method from within a controller, model or mailer:
Here's an example of a method instrumented with extra logging:
Here's an example of the log generated when this controller action is executed:
Adding extra logging like this makes it easy to search for unexpected or unusual behavior in your logs. If you add extra logging, be sure to make sensible use of log levels to avoid filling your production logs with useless trivia.
When running multi-user, multi-account applications, it’s often useful to be able to filter the logs using some custom rules. TaggedLogging
in Active Support helps in doing exactly that by stamping log lines with subdomains, request ids, and anything else to aid debugging such applications.
debugger
gemWhen your code is behaving in unexpected ways, you can try printing to logs or the console to diagnose the problem. Unfortunately, there are times when this sort of error tracking is not effective in finding the root cause of a problem. When you actually need to journey into your running source code, the debugger is your best companion.
The debugger can also help you if you want to learn about the Rails source code but don't know where to start. Just debug any request to your application and use this guide to learn how to move from the code you have written deeper into Rails code.
You can use the debugger
gem to set breakpoints and step through live code in Rails. To install it, just run:
Rails has had built-in support for debugging since Rails 2.0. Inside any Rails application you can invoke the debugger by calling the debugger
method.
Here's an example:
If you see this message in the console or logs:
Make sure you have started your web server with the option --debugger
:
In development mode, you can dynamically require \'debugger\'
instead of restarting the server, even if it was started without --debugger
.
As soon as your application calls the debugger
method, the debugger will be started in a debugger shell inside the terminal window where you launched your application server, and you will be placed at the debugger's prompt (rdb:n)
. The n is the thread number. The prompt will also show you the next line of code that is waiting to run.
If you got there by a browser request, the browser tab containing the request will be hung until the debugger has finished and the trace has finished processing the entire request.
For example:
Now it's time to explore and dig into your application. A good place to start is by asking the debugger for help. Type: help
To view the help menu for any command use help <command-name>
at the debugger prompt. For example: help var
The next command to learn is one of the most useful: list
. You can abbreviate any debugging command by supplying just enough letters to distinguish them from other commands, so you can also use l
for the list
command.
This command shows you where you are in the code by printing 10 lines centered around the current line; the current line in this particular case is line 6 and is marked by =>
.
If you repeat the list
command, this time using just l
, the next ten lines of the file will be printed out.
And so on until the end of the current file. When the end of file is reached, the list
command will start again from the beginning of the file and continue again up to the end, treating the file as a circular buffer.
On the other hand, to see the previous ten lines you should type list-
(or l-
)
This way you can move inside the file, being able to see the code above and over the line you added the debugger
. Finally, to see where you are in the code again you can type list=
When you start debugging your application, you will be placed in different contexts as you go through the different parts of the stack.
The debugger creates a context when a stopping point or an event is reached. The context has information about the suspended program which enables a debugger to inspect the frame stack, evaluate variables from the perspective of the debugged program, and contains information about the place where the debugged program is stopped.
At any time you can call the backtrace
command (or its alias where
) to print the backtrace of the application. This can be very helpful to know how you got where you are. If you ever wondered about how you got somewhere in your code, then backtrace
will supply the answer.
You move anywhere you want in this trace (thus changing the context) by using the frame _n_
command, where n is the specified frame number.
The available variables are the same as if you were running the code line by line. After all, that's what debugging is.
Moving up and down the stack frame: You can use up [n]
(u
for abbreviated) and down [n]
commands in order to change the context n frames up or down the stack respectively. n defaults to one. Up in this case is towards higher-numbered stack frames, and down is towards lower-numbered stack frames.
The debugger can list, stop, resume and switch between running threads by using the command thread
(or the abbreviated th
). This command has a handful of options:
thread
shows the current thread.thread list
is used to list all threads and their statuses. The plus + character and the number indicates the current thread of execution.thread stop _n_
stop thread n.thread resume _n_
resumes thread n.thread switch _n_
switches the current thread context to n.This command is very helpful, among other occasions, when you are debugging concurrent threads and need to verify that there are no race conditions in your code.
Any expression can be evaluated in the current context. To evaluate an expression, just type it!
This example shows how you can print the instance_variables defined within the current context:
As you may have figured out, all of the variables that you can access from a controller are displayed. This list is dynamically updated as you execute code. For example, run the next line using next
(you'll learn more about this command later in this guide).
And then ask again for the instance_variables:
Now @posts
is included in the instance variables, because the line defining it was executed.
You can also step into irb mode with the command irb
(of course!). This way an irb session will be started within the context you invoked it. But be warned: this is an experimental feature.
The var
method is the most convenient way to show variables and their values:
This is a great way to inspect the values of the current context variables. For example:
You can also inspect for an object method this way:
The commands p
(print) and pp
(pretty print) can be used to evaluate Ruby expressions and display the value of variables to the console.
You can use also display
to start watching variables. This is a good way of tracking the values of a variable while the execution goes on.
The variables inside the displaying list will be printed with their values after you move in the stack. To stop displaying a variable use undisplay _n_
where n is the variable number (1 in the last example).
Now you should know where you are in the running trace and be able to print the available variables. But lets continue and move on with the application execution.
Use step
(abbreviated s
) to continue running your program until the next logical stopping point and return control to the debugger.
You can also use step+ n
and step- n
to move forward or backward n
steps respectively.
You may also use next
which is similar to step, but function or method calls that appear within the line of code are executed without stopping. As with step, you may use plus sign to move n steps.
The difference between next
and step
is that step
stops at the next line of code executed, doing just a single step, while next
moves to the next line without descending inside methods.
For example, consider this block of code with an included debugger
statement:
You can use the debugger while using rails console
. Just remember to require "debugger"
before calling the debugger
method.
With the code stopped, take a look around:
You are at the end of the line, but... was this line executed? You can inspect the instance variables.
@recent_comments
hasn't been defined yet, so it's clear that this line hasn't been executed yet. Use the next
command to move on in the code:
Now you can see that the @comments
relationship was loaded and @recent_comments defined because the line was executed.
If you want to go deeper into the stack trace you can move single steps
, through your calling methods and into Rails code. This is one of the best ways to find bugs in your code, or perhaps in Ruby or Rails.
A breakpoint makes your application stop whenever a certain point in the program is reached. The debugger shell is invoked in that line.
You can add breakpoints dynamically with the command break
(or just b
). There are 3 possible ways of adding breakpoints manually:
break line
: set breakpoint in the line in the current source file.break file:line [if expression]
: set breakpoint in the line number inside the file. If an expression is given it must evaluated to true to fire up the debugger.break class(.|\#)method [if expression]
: set breakpoint in method (. and # for class and instance method respectively) defined in class. The expression works the same way as with file:line.Use info breakpoints _n_
or info break _n_
to list breakpoints. If you supply a number, it lists that breakpoint. Otherwise it lists all breakpoints.
To delete breakpoints: use the command delete _n_
to remove the breakpoint number n. If no number is specified, it deletes all breakpoints that are currently active..
You can also enable or disable breakpoints:
enable breakpoints
: allow a list breakpoints or all of them if no list is specified, to stop your program. This is the default state when you create a breakpoint.disable breakpoints
: the breakpoints will have no effect on your program.The command catch exception-name
(or just cat exception-name
) can be used to intercept an exception of type exception-name when there would otherwise be is no handler for it.
To list all active catchpoints use catch
.
There are two ways to resume execution of an application that is stopped in the debugger:
continue
[line-specification] (or c
): resume program execution, at the address where your script last stopped; any breakpoints set at that address are bypassed. The optional argument line-specification allows you to specify a line number to set a one-time breakpoint which is deleted when that breakpoint is reached.finish
[frame-number] (or fin
): execute until the selected stack frame returns. If no frame number is given, the application will run until the currently selected frame returns. The currently selected frame starts out the most-recent frame or 0 if no frame positioning (e.g up, down or frame) has been performed. If a frame number is given it will run until the specified frame returns.Two commands allow you to open code from the debugger into an editor:
edit [file:line]
: edit file using the editor specified by the EDITOR environment variable. A specific line can also be given.tmate _n_
(abbreviated tm
): open the current file in TextMate. It uses n-th frame if n is specified.To exit the debugger, use the quit
command (abbreviated q
), or its alias exit
.
A simple quit tries to terminate all threads in effect. Therefore your server will be stopped and you will have to start it again.
The debugger
gem can automatically show the code you're stepping through and reload it when you change it in an editor. Here are a few of the available options:
set reload
: Reload source code when changed.set autolist
: Execute list
command on every breakpoint.set listsize _n_
: Set number of source lines to list by default to n.set forcestep
: Make sure the next
and step
commands always move to a new lineYou can see the full list by using help set
. Use help set _subcommand_
to learn about a particular set
command.
You can save these settings in an .rdebugrc
file in your home directory. The debugger reads these global settings when it starts.
Here's a good start for an .rdebugrc
:
A Ruby application (on Rails or not), can leak memory - either in the Ruby code or at the C code level.
In this section, you will learn how to find and fix such leaks by using tool such as Valgrind.
Valgrind is a Linux-only application for detecting C-based memory leaks and race conditions.
There are Valgrind tools that can automatically detect many memory management and threading bugs, and profile your programs in detail. For example, a C extension in the interpreter calls malloc()
but is doesn't properly call free()
, this memory won't be available until the app terminates.
For further information on how to install Valgrind and use with Ruby, refer to Valgrind and Ruby by Evan Weaver.
There are some Rails plugins to help you to find errors and debug your application. Here is a list of useful plugins for debugging:
Rails offers four standard spots to place initialization code:
config/application.rb
In the rare event that your application needs to run some code before Rails itself is loaded, put it above the call to require 'rails/all'
in config/application.rb
.
In general, the work of configuring Rails means configuring the components of Rails, as well as configuring Rails itself. The configuration file config/application.rb
and environment-specific configuration files (such as config/environments/production.rb
) allow you to specify the various settings that you want to pass down to all of the components.
For example, the default config/application.rb
file includes this setting:
This is a setting for Rails itself. If you want to pass settings to individual Rails components, you can do so via the same config
object in config/application.rb
:
Rails will use that particular setting to configure Active Record.
These configuration methods are to be called on a Rails::Railtie
object, such as a subclass of Rails::Engine
or Rails::Application
.
config.after_initialize
takes a block which will be run after Rails has finished initializing the application. That includes the initialization of the framework itself, engines, and all the application's initializers in config/initializers
. Note that this block will be run for rake tasks. Useful for configuring values set up by other initializers: config.asset_host
sets the host for the assets. Useful when CDNs are used for hosting assets, or when you want to work around the concurrency constraints builtin in browsers using different domain aliases. Shorter version of config.action_controller.asset_host
.config.autoload_once_paths
accepts an array of paths from which Rails will autoload constants that won't be wiped per request. Relevant if config.cache_classes
is false, which is the case in development mode by default. Otherwise, all autoloading happens only once. All elements of this array must also be in autoload_paths
. Default is an empty array.config.autoload_paths
accepts an array of paths from which Rails will autoload constants. Default is all directories under app
.config.cache_classes
controls whether or not application classes and modules should be reloaded on each request. Defaults to false in development mode, and true in test and production modes. Can also be enabled with threadsafe!
.config.action_view.cache_template_loading
controls whether or not templates should be reloaded on each request. Defaults to whatever is set for config.cache_classes
.config.cache_store
configures which cache store to use for Rails caching. Options include one of the symbols :memory_store
, :file_store
, :mem_cache_store
, :null_store
, or an object that implements the cache API. Defaults to :file_store
if the directory tmp/cache
exists, and to :memory_store
otherwise.config.colorize_logging
specifies whether or not to use ANSI color codes when logging information. Defaults to true.config.consider_all_requests_local
is a flag. If true then any error will cause detailed debugging information to be dumped in the HTTP response, and the Rails::Info
controller will show the application runtime context in /rails/info/properties
. True by default in development and test environments, and false in production mode. For finer-grained control, set this to false and implement local_request?
in controllers to specify which requests should provide debugging information on errors.config.console
allows you to set class that will be used as console you run rails console
. It's best to run it in console
block: config.dependency_loading
is a flag that allows you to disable constant autoloading setting it to false. It only has effect if config.cache_classes
is true, which it is by default in production mode. This flag is set to false by config.threadsafe!
.config.eager_load
when true, eager loads all registered config.eager_load_namespaces
. This includes your application, engines, Rails frameworks and any other registered namespace.config.eager_load_namespaces
registers namespaces that are eager loaded when config.eager_load
is true. All namespaces in the list must respond to the eager_load!
method.config.eager_load_paths
accepts an array of paths from which Rails will eager load on boot if cache classes is enabled. Defaults to every folder in the app
directory of the application.config.encoding
sets up the application-wide encoding. Defaults to UTF-8.config.exceptions_app
sets the exceptions application invoked by the ShowException middleware when an exception happens. Defaults to ActionDispatch::PublicExceptions.new(Rails.public_path)
.config.file_watcher
the class used to detect file updates in the filesystem when config.reload_classes_only_on_change
is true. Must conform to ActiveSupport::FileUpdateChecker
API.config.filter_parameters
used for filtering out the parameters that you don't want shown in the logs, such as passwords or credit card numbers.config.force_ssl
forces all requests to be under HTTPS protocol by using ActionDispatch::SSL
middleware.config.log_formatter
defines the formatter of the Rails logger. This option defaults to a instance of ActiveSupport::Logger::SimpleFormatter
for all modes except production, where it defaults to Logger::Formatter
.config.log_level
defines the verbosity of the Rails logger. This option defaults to :debug
for all modes except production, where it defaults to :info
.config.log_tags
accepts a list of methods that respond to request
object. This makes it easy to tag log lines with debug information like subdomain and request id — both very helpful in debugging multi-user production applications.config.logger
accepts a logger conforming to the interface of Log4r or the default Ruby Logger
class. Defaults to an instance of ActiveSupport::Logger
, with auto flushing off in production mode.config.middleware
allows you to configure the application's middleware. This is covered in depth in the Configuring Middleware section below.config.reload_classes_only_on_change
enables or disables reloading of classes only when tracked files change. By default tracks everything on autoload paths and is set to true. If config.cache_classes
is true, this option is ignored.config.secret_key_base
used for specifying a key which allows sessions for the application to be verified against a known secure key to prevent tampering. Applications get config.secret_key_base
initialized to a random key in config/initializers/secret_token.rb
.config.serve_static_assets
configures Rails itself to serve static assets. Defaults to true, but in the production environment is turned off as the server software (e.g. Nginx or Apache) used to run the application should serve static assets instead. Unlike the default setting set this to true when running (absolutely not recommended!) or testing your app in production mode using WEBrick. Otherwise you won´t be able use page caching and requests for files that exist regularly under the public directory will anyway hit your Rails app.config.session_store
is usually set up in config/initializers/session_store.rb
and specifies what class to use to store the session. Possible values are :cookie_store
which is the default, :mem_cache_store
, and :disabled
. The last one tells Rails not to deal with sessions. Custom session stores can also be specified: ActionDispatch::Session::MyCustomStore
. config.time_zone
sets the default time zone for the application and enables time zone awareness for Active Record.config.beginning_of_week
sets the default beginning of week for the application. Accepts a valid week day symbol (e.g. :monday
).config.whiny_nils
enables or disables warnings when a certain set of methods are invoked on nil
and it does not respond to them. Defaults to true in development and test environments.config.assets.enabled
a flag that controls whether the asset pipeline is enabled. It is explicitly initialized in config/application.rb
.config.assets.compress
a flag that enables the compression of compiled assets. It is explicitly set to true in config/production.rb
.config.assets.css_compressor
defines the CSS compressor to use. It is set by default by sass-rails
. The unique alternative value at the moment is :yui
, which uses the yui-compressor
gem.config.assets.js_compressor
defines the JavaScript compressor to use. Possible values are :closure
, :uglifier
and :yui
which require the use of the closure-compiler
, uglifier
or yui-compressor
gems respectively.config.assets.paths
contains the paths which are used to look for assets. Appending paths to this configuration option will cause those paths to be used in the search for assets.config.assets.precompile
allows you to specify additional assets (other than application.css
and application.js
) which are to be precompiled when rake assets:precompile
is run.config.assets.prefix
defines the prefix where assets are served from. Defaults to /assets
.config.assets.digest
enables the use of MD5 fingerprints in asset names. Set to true
by default in production.rb
.config.assets.debug
disables the concatenation and compression of assets. Set to true
by default in development.rb
.config.assets.cache_store
defines the cache store that Sprockets will use. The default is the Rails file store.config.assets.version
is an option string that is used in MD5 hash generation. This can be changed to force all files to be recompiled.config.assets.compile
is a boolean that can be used to turn on live Sprockets compilation in production.config.assets.logger
accepts a logger conforming to the interface of Log4r or the default Ruby Logger
class. Defaults to the same configured at config.logger
. Setting config.assets.logger
to false will turn off served assets logging.Rails allows you to alter what generators are used with the config.generators
method. This method takes a block:
The full set of methods that can be used in this block are as follows:
assets
allows to create assets on generating a scaffold. Defaults to true
.force_plural
allows pluralized model names. Defaults to false
.helper
defines whether or not to generate helpers. Defaults to true
.integration_tool
defines which integration tool to use. Defaults to nil
.javascripts
turns on the hook for JavaScript files in generators. Used in Rails for when the scaffold
generator is run. Defaults to true
.javascript_engine
configures the engine to be used (for eg. coffee) when generating assets. Defaults to nil
.orm
defines which orm to use. Defaults to false
and will use Active Record by default.resource_controller
defines which generator to use for generating a controller when using rails generate resource
. Defaults to :controller
.scaffold_controller
different from resource_controller
, defines which generator to use for generating a scaffolded controller when using rails generate scaffold
. Defaults to :scaffold_controller
.stylesheets
turns on the hook for stylesheets in generators. Used in Rails for when the scaffold
generator is run, but this hook can be used in other generates as well. Defaults to true
.stylesheet_engine
configures the stylesheet engine (for eg. sass) to be used when generating assets. Defaults to :css
.test_framework
defines which test framework to use. Defaults to false
and will use Test::Unit by default.template_engine
defines which template engine to use, such as ERB or Haml. Defaults to :erb
.Every Rails application comes with a standard set of middleware which it uses in this order in the development environment:
ActionDispatch::SSL
forces every request to be under HTTPS protocol. Will be available if config.force_ssl
is set to true
. Options passed to this can be configured by using config.ssl_options
.ActionDispatch::Static
is used to serve static assets. Disabled if config.serve_static_assets
is false
.Rack::Lock
wraps the app in mutex so it can only be called by a single thread at a time. Only enabled when config.cache_classes
is false
.ActiveSupport::Cache::Strategy::LocalCache
serves as a basic memory backed cache. This cache is not thread safe and is intended only for serving as a temporary memory cache for a single thread.Rack::Runtime
sets an X-Runtime
header, containing the time (in seconds) taken to execute the request.Rails::Rack::Logger
notifies the logs that the request has began. After request is complete, flushes all the logs.ActionDispatch::ShowExceptions
rescues any exception returned by the application and renders nice exception pages if the request is local or if config.consider_all_requests_local
is set to true
. If config.action_dispatch.show_exceptions
is set to false
, exceptions will be raised regardless.ActionDispatch::RequestId
makes a unique X-Request-Id header available to the response and enables the ActionDispatch::Request#uuid
method.ActionDispatch::RemoteIp
checks for IP spoofing attacks and gets valid client_ip
from request headers. Configurable with the config.action_dispatch.ip_spoofing_check
, and config.action_dispatch.trusted_proxies
options.Rack::Sendfile
intercepts responses whose body is being served from a file and replaces it with a server specific X-Sendfile header. Configurable with config.action_dispatch.x_sendfile_header
.ActionDispatch::Callbacks
runs the prepare callbacks before serving the request.ActiveRecord::ConnectionAdapters::ConnectionManagement
cleans active connections after each request, unless the rack.test
key in the request environment is set to true
.ActiveRecord::QueryCache
caches all SELECT queries generated in a request. If any INSERT or UPDATE takes place then the cache is cleaned.ActionDispatch::Cookies
sets cookies for the request.ActionDispatch::Session::CookieStore
is responsible for storing the session in cookies. An alternate middleware can be used for this by changing the config.action_controller.session_store
to an alternate value. Additionally, options passed to this can be configured by using config.action_controller.session_options
.ActionDispatch::Flash
sets up the flash
keys. Only available if config.action_controller.session_store
is set to a value.ActionDispatch::ParamsParser
parses out parameters from the request into params
.Rack::MethodOverride
allows the method to be overridden if params[:_method]
is set. This is the middleware which supports the PATCH, PUT, and DELETE HTTP method types.ActionDispatch::Head
converts HEAD requests to GET requests and serves them as so.Besides these usual middleware, you can add your own by using the config.middleware.use
method:
This will put the Magical::Unicorns
middleware on the end of the stack. You can use insert_before
if you wish to add a middleware before another.
There's also insert_after
which will insert a middleware after another:
Middlewares can also be completely swapped out and replaced with others:
They can also be removed from the stack completely:
All these configuration options are delegated to the I18n
library.
config.i18n.available_locales
whitelists the available locales for the app. Defaults to all locale keys found in locale files, usually only :en
on a new application.config.i18n.default_locale
sets the default locale of an application used for i18n. Defaults to :en
.config.i18n.enforce_available_locales
ensures that all locales passed through i18n must be declared in the available_locales
list, raising an I18n::InvalidLocale
exception when setting an unavailable locale. Defaults to true
. It is recommended not to disable this option unless strongly required, since this works as a security measure against setting any invalid locale from user input.config.i18n.load_path
sets the path Rails uses to look for locale files. Defaults to config/locales/*.{yml,rb}
.config.active_record
includes a variety of configuration options:
config.active_record.logger
accepts a logger conforming to the interface of Log4r or the default Ruby Logger class, which is then passed on to any new database connections made. You can retrieve this logger by calling logger
on either an Active Record model class or an Active Record model instance. Set to nil
to disable logging.config.active_record.primary_key_prefix_type
lets you adjust the naming for primary key columns. By default, Rails assumes that primary key columns are named id
(and this configuration option doesn't need to be set.) There are two other choices: ** :table_name
would make the primary key for the Customer class customerid
** :table_name_with_underscore
would make the primary key for the Customer class customer_id
config.active_record.table_name_prefix
lets you set a global string to be prepended to table names. If you set this to northwest_
, then the Customer class will look for northwest_customers
as its table. The default is an empty string.config.active_record.table_name_suffix
lets you set a global string to be appended to table names. If you set this to _northwest
, then the Customer class will look for customers_northwest
as its table. The default is an empty string.config.active_record.pluralize_table_names
specifies whether Rails will look for singular or plural table names in the database. If set to true (the default), then the Customer class will use the customers
table. If set to false, then the Customer class will use the customer
table.config.active_record.default_timezone
determines whether to use Time.local
(if set to :local
) or Time.utc
(if set to :utc
) when pulling dates and times from the database. The default is :utc
for Rails, although Active Record defaults to :local
when used outside of Rails.config.active_record.schema_format
controls the format for dumping the database schema to a file. The options are :ruby
(the default) for a database-independent version that depends on migrations, or :sql
for a set of (potentially database-dependent) SQL statements.config.active_record.timestamped_migrations
controls whether migrations are numbered with serial integers or with timestamps. The default is true, to use timestamps, which are preferred if there are multiple developers working on the same application.config.active_record.lock_optimistically
controls whether Active Record will use optimistic locking and is true by default.config.active_record.cache_timestamp_format
controls the format of the timestamp value in the cache key. Default is :number
.The MySQL adapter adds one additional configuration option:
ActiveRecord::ConnectionAdapters::MysqlAdapter.emulate_booleans
controls whether Active Record will consider all tinyint(1)
columns in a MySQL database to be booleans and is true by default.The schema dumper adds one additional configuration option:
ActiveRecord::SchemaDumper.ignore_tables
accepts an array of tables that should not be included in any generated schema file. This setting is ignored unless config.active_record.schema_format == :ruby
.config.action_controller
includes a number of configuration settings:
config.action_controller.asset_host
sets the host for the assets. Useful when CDNs are used for hosting assets rather than the application server itself.config.action_controller.perform_caching
configures whether the application should perform caching or not. Set to false in development mode, true in production.config.action_controller.default_static_extension
configures the extension used for cached pages. Defaults to .html
.config.action_controller.default_charset
specifies the default character set for all renders. The default is "utf-8".config.action_controller.logger
accepts a logger conforming to the interface of Log4r or the default Ruby Logger class, which is then used to log information from Action Controller. Set to nil
to disable logging.config.action_controller.request_forgery_protection_token
sets the token parameter name for RequestForgery. Calling protect_from_forgery
sets it to :authenticity_token
by default.config.action_controller.allow_forgery_protection
enables or disables CSRF protection. By default this is false
in test mode and true
in all other modes.config.action_controller.relative_url_root
can be used to tell Rails that you are deploying to a subdirectory. The default is ENV['RAILS_RELATIVE_URL_ROOT']
.config.action_controller.permit_all_parameters
sets all the parameters for mass assignment to be permitted by default. The default value is false
.config.action_controller.action_on_unpermitted_parameters
enables logging or raising an exception if parameters that are not explicitly permitted are found. Set to :log
or :raise
to enable. The default value is :log
in development and test environments, and false
in all other environments.config.action_dispatch.session_store
sets the name of the store for session data. The default is :cookie_store
; other valid options include :active_record_store
, :mem_cache_store
or the name of your own custom class.config.action_dispatch.default_headers
is a hash with HTTP headers that are set by default in each response. By default, this is defined as: config.action_dispatch.tld_length
sets the TLD (top-level domain) length for the application. Defaults to 1
.ActionDispatch::Callbacks.before
takes a block of code to run before the request.ActionDispatch::Callbacks.to_prepare
takes a block to run after ActionDispatch::Callbacks.before
, but before the request. Runs for every request in development
mode, but only once for production
or environments with cache_classes
set to true
.ActionDispatch::Callbacks.after
takes a block of code to run after the request.config.action_view
includes a small number of configuration settings:
config.action_view.field_error_proc
provides an HTML generator for displaying errors that come from Active Record. The default is config.action_view.default_form_builder
tells Rails which form builder to use by default. The default is ActionView::Helpers::FormBuilder
. If you want your form builder class to be loaded after initialization (so it's reloaded on each request in development), you can pass it as a String
config.action_view.logger
accepts a logger conforming to the interface of Log4r or the default Ruby Logger class, which is then used to log information from Action View. Set to nil
to disable logging.config.action_view.erb_trim_mode
gives the trim mode to be used by ERB. It defaults to '-'
. See the ERB documentation for more information.config.action_view.embed_authenticity_token_in_remote_forms
allows you to set the default behavior for authenticity_token
in forms with :remote => true
. By default it's set to false, which means that remote forms will not include authenticity_token
, which is helpful when you're fragment-caching the form. Remote forms get the authenticity from the meta
tag, so embedding is unnecessary unless you support browsers without JavaScript. In such case you can either pass :authenticity_token => true
as a form option or set this config setting to true
config.action_view.prefix_partial_path_with_controller_namespace
determines whether or not partials are looked up from a subdirectory in templates rendered from namespaced controllers. For example, consider a controller named Admin::PostsController
which renders this template: true
, which uses the partial at /admin/posts/_post.erb
. Setting the value to false
would render /posts/_post.erb
, which is the same behavior as rendering from a non-namespaced controller such as PostsController
. There are a number of settings available on config.action_mailer
:
config.action_mailer.logger
accepts a logger conforming to the interface of Log4r or the default Ruby Logger class, which is then used to log information from Action Mailer. Set to nil
to disable logging.config.action_mailer.smtp_settings
allows detailed configuration for the :smtp
delivery method. It accepts a hash of options, which can include any of these options: :address
- Allows you to use a remote mail server. Just change it from its default "localhost" setting.:port
- On the off chance that your mail server doesn't run on port 25, you can change it.:domain
- If you need to specify a HELO domain, you can do it here.:user_name
- If your mail server requires authentication, set the username in this setting.:password
- If your mail server requires authentication, set the password in this setting.:authentication
- If your mail server requires authentication, you need to specify the authentication type here. This is a symbol and one of :plain
, :login
, :cram_md5
.config.action_mailer.sendmail_settings
allows detailed configuration for the sendmail
delivery method. It accepts a hash of options, which can include any of these options: :location
- The location of the sendmail executable. Defaults to /usr/sbin/sendmail
.:arguments
- The command line arguments. Defaults to -i -t
.config.action_mailer.raise_delivery_errors
specifies whether to raise an error if email delivery cannot be completed. It defaults to true.config.action_mailer.delivery_method
defines the delivery method. The allowed values are :smtp
(default), :sendmail
, and :test
.config.action_mailer.perform_deliveries
specifies whether mail will actually be delivered and is true by default. It can be convenient to set it to false for testing.config.action_mailer.default_options
configures Action Mailer defaults. Use to set options like from
or reply_to
for every mailer. These default to: config.action_mailer.observers
registers observers which will be notified when mail is delivered. config.action_mailer.interceptors
registers interceptors which will be called before mail is sent. There are a few configuration options available in Active Support:
config.active_support.bare
enables or disables the loading of active_support/all
when booting Rails. Defaults to nil
, which means active_support/all
is loaded.config.active_support.escape_html_entities_in_json
enables or disables the escaping of HTML entities in JSON serialization. Defaults to false
.config.active_support.use_standard_json_time_format
enables or disables serializing dates to ISO 8601 format. Defaults to true
.ActiveSupport::Logger.silencer
is set to false
to disable the ability to silence logging in a block. The default is true
.ActiveSupport::Cache::Store.logger
specifies the logger to use within cache store operations.ActiveSupport::Deprecation.behavior
alternative setter to config.active_support.deprecation
which configures the behavior of deprecation warnings for Rails.ActiveSupport::Deprecation.silence
takes a block in which all deprecation warnings are silenced.ActiveSupport::Deprecation.silenced
sets whether or not to display deprecation warnings.ActiveSupport::Logger.silencer
is set to false
to disable the ability to silence logging in a block. The default is true
.Just about every Rails application will interact with a database. The database to use is specified in a configuration file called config/database.yml
. If you open this file in a new Rails application, you'll see a default database configured to use SQLite3. The file contains sections for three different environments in which Rails can run by default:
development
environment is used on your development/local computer as you interact manually with the application.test
environment is used when running automated tests.production
environment is used when you deploy your application for the world to use.You don't have to update the database configurations manually. If you look at the options of the application generator, you will see that one of the options is named --database
. This option allows you to choose an adapter from a list of the most used relational databases. You can even run the generator repeatedly: cd .. && rails new blog --database=mysql
. When you confirm the overwriting of the config/database.yml
file, your application will be configured for MySQL instead of SQLite. Detailed examples of the common database connections are below.
Rails comes with built-in support for SQLite3, which is a lightweight serverless database application. While a busy production environment may overload SQLite, it works well for development and testing. Rails defaults to using an SQLite database when creating a new project, but you can always change it later.
Here's the section of the default configuration file (config/database.yml
) with connection information for the development environment:
Rails uses an SQLite3 database for data storage by default because it is a zero configuration database that just works. Rails also supports MySQL and PostgreSQL "out of the box", and has plugins for many database systems. If you are using a database in a production environment Rails most likely has an adapter for it.
If you choose to use MySQL instead of the shipped SQLite3 database, your config/database.yml
will look a little different. Here's the development section:
If your development computer's MySQL installation includes a root user with an empty password, this configuration should work for you. Otherwise, change the username and password in the development
section as appropriate.
If you choose to use PostgreSQL, your config/database.yml
will be customized to use PostgreSQL databases:
Prepared Statements can be disabled thus:
If you choose to use SQLite3 and are using JRuby, your config/database.yml
will look a little different. Here's the development section:
If you choose to use MySQL and are using JRuby, your config/database.yml
will look a little different. Here's the development section:
If you choose to use PostgreSQL and are using JRuby, your config/database.yml
will look a little different. Here's the development section:
Change the username and password in the development
section as appropriate.
By default Rails ships with three environments: "development", "test", and "production". While these are sufficient for most use cases, there are circumstances when you want more environments.
Imagine you have a server which mirrors the production environment but is only used for testing. Such a server is commonly called a "staging server". To define an environment called "staging" for this server just by create a file called config/environments/staging.rb
. Please use the contents of any existing file in config/environments
as a starting point and make the necessary changes from there.
That environment is no different than the default ones, start a server with rails server -e staging
, a console with rails console staging
, Rails.env.staging?
works, etc.
Some parts of Rails can also be configured externally by supplying environment variables. The following environment variables are recognized by various parts of Rails:
ENV["RAILS_ENV"]
defines the Rails environment (production, development, test, and so on) that Rails will run under.ENV["RAILS_RELATIVE_URL_ROOT"]
is used by the routing code to recognize URLs when you deploy your application to a subdirectory.ENV["RAILS_CACHE_ID"]
and ENV["RAILS_APP_VERSION"]
are used to generate expanded cache keys in Rails' caching code. This allows you to have multiple separate caches from the same application.After loading the framework and any gems in your application, Rails turns to loading initializers. An initializer is any Ruby file stored under config/initializers
in your application. You can use initializers to hold configuration settings that should be made after all of the frameworks and gems are loaded, such as options to configure settings for these parts.
You can use subfolders to organize your initializers if you like, because Rails will look into the whole file hierarchy from the initializers folder on down.
If you have any ordering dependency in your initializers, you can control the load order through naming. Initializer files are loaded in alphabetical order by their path. For example, 01_critical.rb
will be loaded before 02_normal.rb
.
Rails has 5 initialization events which can be hooked into (listed in the order that they are run):
before_configuration
: This is run as soon as the application constant inherits from Rails::Application
. The config
calls are evaluated before this happens.before_initialize
: This is run directly before the initialization process of the application occurs with the :bootstrap_hook
initializer near the beginning of the Rails initialization process.to_prepare
: Run after the initializers are run for all Railties (including the application itself), but before eager loading and the middleware stack is built. More importantly, will run upon every request in development
, but only once (during boot-up) in production
and test
.before_eager_load
: This is run directly before eager loading occurs, which is the default behavior for the production
environment and not for the development
environment.after_initialize
: Run directly after the initialization of the application, after the application initializers in config/initializers
are run.To define an event for these hooks, use the block syntax within a Rails::Application
, Rails::Railtie
or Rails::Engine
subclass:
Alternatively, you can also do it through the config
method on the Rails.application
object:
Some parts of your application, notably routing, are not yet set up at the point where the after_initialize
block is called.
Rails::Railtie#initializer
Rails has several initializers that run on startup that are all defined by using the initializer
method from Rails::Railtie
. Here's an example of the initialize_whiny_nils
initializer from Active Support:
The initializer
method takes three arguments with the first being the name for the initializer and the second being an options hash (not shown here) and the third being a block. The :before
key in the options hash can be specified to specify which initializer this new initializer must run before, and the :after
key will specify which initializer to run this initializer after.
Initializers defined using the initializer
method will be ran in the order they are defined in, with the exception of ones that use the :before
or :after
methods.
You may put your initializer before or after any other initializer in the chain, as long as it is logical. Say you have 4 initializers called "one" through "four" (defined in that order) and you define "four" to go before "four" but after "three", that just isn't logical and Rails will not be able to determine your initializer order.
The block argument of the initializer
method is the instance of the application itself, and so we can access the configuration on it by using the config
method as done in the example.
Because Rails::Application
inherits from Rails::Railtie
(indirectly), you can use the initializer
method in config/application.rb
to define initializers for the application.
Below is a comprehensive list of all the initializers found in Rails in the order that they are defined (and therefore run in, unless otherwise stated).
load_environment_hook
Serves as a placeholder so that :load_environment_config
can be defined to run before it.load_active_support
Requires active_support/dependencies
which sets up the basis for Active Support. Optionally requires active_support/all
if config.active_support.bare
is un-truthful, which is the default.initialize_logger
Initializes the logger (an ActiveSupport::Logger
object) for the application and makes it accessible at Rails.logger
, provided that no initializer inserted before this point has defined Rails.logger
.initialize_cache
If Rails.cache
isn't set yet, initializes the cache by referencing the value in config.cache_store
and stores the outcome as Rails.cache
. If this object responds to the middleware
method, its middleware is inserted before Rack::Runtime
in the middleware stack.set_clear_dependencies_hook
Provides a hook for active_record.set_dispatch_hooks
to use, which will run before this initializer. This initializer — which runs only if cache_classes
is set to false
— uses ActionDispatch::Callbacks.after
to remove the constants which have been referenced during the request from the object space so that they will be reloaded during the following request.initialize_dependency_mechanism
If config.cache_classes
is true, configures ActiveSupport::Dependencies.mechanism
to require
dependencies rather than load
them.bootstrap_hook
Runs all configured before_initialize
blocks.i18n.callbacks
In the development environment, sets up a to_prepare
callback which will call I18n.reload!
if any of the locales have changed since the last request. In production mode this callback will only run on the first request.active_support.initialize_whiny_nils
Requires active_support/whiny_nil
if config.whiny_nils
is true. This file will output errors such as: active_support.deprecation_behavior
Sets up deprecation reporting for environments, defaulting to :log
for development, :notify
for production and :stderr
for test. If a value isn't set for config.active_support.deprecation
then this initializer will prompt the user to configure this line in the current environment's config/environments
file. Can be set to an array of values.active_support.initialize_time_zone
Sets the default time zone for the application based on the config.time_zone
setting, which defaults to "UTC".active_support.initialize_beginning_of_week
Sets the default beginning of week for the application based on config.beginning_of_week
setting, which defaults to :monday
.action_dispatch.configure
Configures the ActionDispatch::Http::URL.tld_length
to be set to the value of config.action_dispatch.tld_length
.action_view.set_configs
Sets up Action View by using the settings in config.action_view
by send
'ing the method names as setters to ActionView::Base
and passing the values through.action_controller.logger
Sets ActionController::Base.logger
— if it's not already set — to Rails.logger
.action_controller.initialize_framework_caches
Sets ActionController::Base.cache_store
— if it's not already set — to Rails.cache
.action_controller.set_configs
Sets up Action Controller by using the settings in config.action_controller
by send
'ing the method names as setters to ActionController::Base
and passing the values through.action_controller.compile_config_methods
Initializes methods for the config settings specified so that they are quicker to access.active_record.initialize_timezone
Sets ActiveRecord::Base.time_zone_aware_attributes
to true, as well as setting ActiveRecord::Base.default_timezone
to UTC. When attributes are read from the database, they will be converted into the time zone specified by Time.zone
.active_record.logger
Sets ActiveRecord::Base.logger
— if it's not already set — to Rails.logger
.active_record.set_configs
Sets up Active Record by using the settings in config.active_record
by send
'ing the method names as setters to ActiveRecord::Base
and passing the values through.active_record.initialize_database
Loads the database configuration (by default) from config/database.yml
and establishes a connection for the current environment.active_record.log_runtime
Includes ActiveRecord::Railties::ControllerRuntime
which is responsible for reporting the time taken by Active Record calls for the request back to the logger.active_record.set_dispatch_hooks
Resets all reloadable connections to the database if config.cache_classes
is set to false
.action_mailer.logger
Sets ActionMailer::Base.logger
— if it's not already set — to Rails.logger
.action_mailer.set_configs
Sets up Action Mailer by using the settings in config.action_mailer
by send
'ing the method names as setters to ActionMailer::Base
and passing the values through.action_mailer.compile_config_methods
Initializes methods for the config settings specified so that they are quicker to access.set_load_path
This initializer runs before bootstrap_hook
. Adds the vendor
, lib
, all directories of app
and any paths specified by config.load_paths
to $LOAD_PATH
.set_autoload_paths
This initializer runs before bootstrap_hook
. Adds all sub-directories of app
and paths specified by config.autoload_paths
to ActiveSupport::Dependencies.autoload_paths
.add_routing_paths
Loads (by default) all config/routes.rb
files (in the application and railties, including engines) and sets up the routes for the application.add_locales
Adds the files in config/locales
(from the application, railties and engines) to I18n.load_path
, making available the translations in these files.add_view_paths
Adds the directory app/views
from the application, railties and engines to the lookup path for view files for the application.load_environment_config
Loads the config/environments
file for the current environment.append_asset_paths
Finds asset paths for the application and all attached railties and keeps a track of the available directories in config.static_asset_paths
.prepend_helpers_path
Adds the directory app/helpers
from the application, railties and engines to the lookup path for helpers for the application.load_config_initializers
Loads all Ruby files from config/initializers
in the application, railties and engines. The files in this directory can be used to hold configuration settings that should be made after all of the frameworks are loaded.engines_blank_point
Provides a point-in-initialization to hook into if you wish to do anything before engines are loaded. After this point, all railtie and engine initializers are run.add_generator_templates
Finds templates for generators at lib/templates
for the application, railties and engines and adds these to the config.generators.templates
setting, which will make the templates available for all generators to reference.ensure_autoload_once_paths_as_subset
Ensures that the config.autoload_once_paths
only contains paths from config.autoload_paths
. If it contains extra paths, then an exception will be raised.add_to_prepare_blocks
The block for every config.to_prepare
call in the application, a railtie or engine is added to the to_prepare
callbacks for Action Dispatch which will be ran per request in development, or before the first request in production.add_builtin_route
If the application is running under the development environment then this will append the route for rails/info/properties
to the application routes. This route provides the detailed information such as Rails and Ruby version for public/index.html
in a default Rails application.build_middleware_stack
Builds the middleware stack for the application, returning an object which has a call
method which takes a Rack environment object for the request.eager_load!
If config.eager_load
is true, runs the config.before_eager_load
hooks and then calls eager_load!
which will load all config.eager_load_namespaces
.finisher_hook
Provides a hook for after the initialization of process of the application is complete, as well as running all the config.after_initialize
blocks for the application, railties and engines.set_routes_reloader
Configures Action Dispatch to reload the routes file using ActionDispatch::Callbacks.to_prepare
.disable_dependency_loading
Disables the automatic dependency loading if the config.eager_load
is set to true.Active Record database connections are managed by ActiveRecord::ConnectionAdapters::ConnectionPool
which ensures that a connection pool synchronizes the amount of thread access to a limited number of database connections. This limit defaults to 5 and can be configured in database.yml
.
Since the connection pooling is handled inside of Active Record by default, all application servers (Thin, mongrel, Unicorn etc.) should behave the same. Initially, the database connection pool is empty and it will create additional connections as the demand for them increases, until it reaches the connection pool limit.
Any one request will check out a connection the first time it requires access to the database, after which it will check the connection back in, at the end of the request, meaning that the additional connection slot will be available again for the next request in the queue.
If you have enabled Rails.threadsafe!
mode then there could be a chance that several threads may be accessing multiple connections simultaneously. So depending on your current request load, you could very well have multiple threads contending for a limited amount of connections.
There are a few commands that are absolutely critical to your everyday usage of Rails. In the order of how much you'll probably use them are:
rails console
rails server
rake
rails generate
rails dbconsole
rails new app_name
Let's create a simple Rails application to step through each of these commands in context.
rails new
The first thing we'll want to do is create a new Rails application by running the rails new
command after installing Rails.
You can install the rails gem by typing gem install rails
, if you don't have it already.
Rails will set you up with what seems like a huge amount of stuff for such a tiny command! You've got the entire Rails directory structure now with all the code you need to run our simple application right out of the box.
rails server
The rails server
command launches a small web server named WEBrick which comes bundled with Ruby. You'll use this any time you want to access your application through a web browser.
WEBrick isn't your only option for serving Rails. We'll get to that later.
With no further work, rails server
will run our new shiny Rails app:
With just three commands we whipped up a Rails server listening on port 3000. Go to your browser and open http://localhost:3000, you will see a basic Rails app running.
You can also use the alias "s" to start the server: rails s
.
The server can be run on a different port using the -p
option. The default development environment can be changed using -e
.
The -b
option binds Rails to the specified IP, by default it is 0.0.0.0. You can run a server as a daemon by passing a -d
option.
rails generate
The rails generate
command uses templates to create a whole lot of things. Running rails generate
by itself gives a list of available generators:
You can also use the alias "g" to invoke the generator command: rails g
.
You can install more generators through generator gems, portions of plugins you'll undoubtedly install, and you can even create your own!
Using generators will save you a large amount of time by writing boilerplate code, code that is necessary for the app to work.
Let's make our own controller with the controller generator. But what command should we use? Let's ask the generator:
All Rails console utilities have help text. As with most *nix utilities, you can try adding --help
or -h
to the end, for example rails server --help
.
The controller generator is expecting parameters in the form of generate controller ControllerName action1 action2
. Let's make a Greetings
controller with an action of hello, which will say something nice to us.
What all did this generate? It made sure a bunch of directories were in our application, and created a controller file, a view file, a functional test file, a helper for the view, a JavaScript file and a stylesheet file.
Check out the controller and modify it a little (in app/controllers/greetings_controller.rb
):
Then the view, to display our message (in app/views/greetings/hello.html.erb
):
Fire up your server using rails server
.
The URL will be http://localhost:3000/greetings/hello.
With a normal, plain-old Rails application, your URLs will generally follow the pattern of http://(host)/(controller)/(action), and a URL like http://(host)/(controller) will hit the index action of that controller.
Rails comes with a generator for data models too.
For a list of available field types, refer to the API documentation for the column method for the TableDefinition
class.
But instead of generating a model directly (which we'll be doing later), let's set up a scaffold. A scaffold in Rails is a full set of model, database migration for that model, controller to manipulate it, views to view and manipulate the data, and a test suite for each of the above.
We will set up a simple resource called "HighScore" that will keep track of our highest score on video games we play.
The generator checks that there exist the directories for models, controllers, helpers, layouts, functional and unit tests, stylesheets, creates the views, controller, model and database migration for HighScore (creating the high_scores
table and fields), takes care of the route for the resource, and new tests for everything.
The migration requires that we migrate, that is, run some Ruby code (living in that 20120528060026_create_high_scores.rb
) to modify the schema of our database. Which database? The sqlite3 database that Rails will create for you when we run the rake db:migrate
command. We'll talk more about Rake in-depth in a little while.
Let's talk about unit tests. Unit tests are code that tests and makes assertions about code. In unit testing, we take a little part of code, say a method of a model, and test its inputs and outputs. Unit tests are your friend. The sooner you make peace with the fact that your quality of life will drastically increase when you unit test your code, the better. Seriously. We'll make one in a moment.
Let's see the interface Rails created for us.
Go to your browser and open http://localhost:3000/high_scores, now we can create new high scores (55,160 on Space Invaders!)
rails console
The console
command lets you interact with your Rails application from the command line. On the underside, rails console
uses IRB, so if you've ever used it, you'll be right at home. This is useful for testing out quick ideas with code and changing data server-side without touching the website.
You can also use the alias "c" to invoke the console: rails c
.
You can specify the environment in which the console
command should operate.
If you wish to test out some code without changing any data, you can do that by invoking rails console --sandbox
.
rails dbconsole
rails dbconsole
figures out which database you're using and drops you into whichever command line interface you would use with it (and figures out the command line parameters to give to it, too!). It supports MySQL, PostgreSQL, SQLite and SQLite3.
You can also use the alias "db" to invoke the dbconsole: rails db
.
rails runner
runner
runs Ruby code in the context of Rails non-interactively. For instance:
You can also use the alias "r" to invoke the runner: rails r
.
You can specify the environment in which the runner
command should operate using the -e
switch.
rails destroy
Think of destroy
as the opposite of generate
. It'll figure out what generate did, and undo it.
You can also use the alias "d" to invoke the destroy command: rails d
.
Rake is Ruby Make, a standalone Ruby utility that replaces the Unix utility 'make', and uses a 'Rakefile' and .rake
files to build up a list of tasks. In Rails, Rake is used for common administration tasks, especially sophisticated ones that build off of each other.
You can get a list of Rake tasks available to you, which will often depend on your current directory, by typing rake --tasks
. Each task has a description, and should help you find the thing you need.
about
rake about
gives information about version numbers for Ruby, RubyGems, Rails, the Rails subcomponents, your application's folder, the current Rails environment name, your app's database adapter, and schema version. It is useful when you need to ask for help, check if a security patch might affect you, or when you need some stats for an existing Rails installation.
assets
You can precompile the assets in app/assets
using rake assets:precompile
and remove those compiled assets using rake assets:clean
.
db
The most common tasks of the db:
Rake namespace are migrate
and create
, and it will pay off to try out all of the migration rake tasks (up
, down
, redo
, reset
). rake db:version
is useful when troubleshooting, telling you the current version of the database.
More information about migrations can be found in the Migrations guide.
doc
The doc:
namespace has the tools to generate documentation for your app, API documentation, guides. Documentation can also be stripped which is mainly useful for slimming your codebase, like if you're writing a Rails application for an embedded platform.
rake doc:app
generates documentation for your application in doc/app
.rake doc:guides
generates Rails guides in doc/guides
.rake doc:rails
generates API documentation for Rails in doc/api
.notes
rake notes
will search through your code for comments beginning with FIXME, OPTIMIZE or TODO. The search is done in files with extension .builder
, .rb
, .erb
, .haml
and .slim
for both default and custom annotations.
If you are looking for a specific annotation, say FIXME, you can use rake notes:fixme
. Note that you have to lower case the annotation's name.
You can also use custom annotations in your code and list them using rake notes:custom
by specifying the annotation using an environment variable ANNOTATION
.
When using specific annotations and custom annotations, the annotation name (FIXME, BUG etc) is not displayed in the output lines.
By default, rake notes
will look in the app
, config
, lib
, bin
and test
directories. If you would like to search other directories, you can provide them as a comma separated list in an environment variable SOURCE_ANNOTATION_DIRECTORIES
.
routes
rake routes
will list all of your defined routes, which is useful for tracking down routing problems in your app, or giving you a good overview of the URLs in an app you're trying to get familiar with.
test
A good description of unit testing in Rails is given in A Guide to Testing Rails Applications
Rails comes with a test suite called Test::Unit
. Rails owes its stability to the use of tests. The tasks available in the test:
namespace helps in running the different tests you will hopefully write.
tmp
The Rails.root/tmp
directory is, like the *nix /tmp directory, the holding place for temporary files like sessions (if you're using a file store for files), process id files, and cached actions.
The tmp:
namespaced tasks will help you clear the Rails.root/tmp
directory:
rake tmp:cache:clear
clears tmp/cache
.rake tmp:sessions:clear
clears tmp/sessions
.rake tmp:sockets:clear
clears tmp/sockets
.rake tmp:clear
clears all the three: cache, sessions and sockets.rake stats
is great for looking at statistics on your code, displaying things like KLOCs (thousands of lines of code) and your code to test ratio.rake secret
will give you a pseudo-random key to use for your session secret.rake time:zones:all
lists all the timezones Rails knows about.Custom rake tasks have a .rake
extension and are placed in Rails.root/lib/tasks
.
To pass arguments to your custom rake task:
You can group tasks by placing them in namespaces:
Invocation of the tasks will look like:
If your need to interact with your application models, perform database queries and so on, your task should depend on the environment
task, which will load your application code.
More advanced use of the command line is focused around finding useful (even surprising at times) options in the utilities, and fitting those to your needs and specific work flow. Listed here are some tricks up Rails' sleeve.
When creating a new Rails application, you have the option to specify what kind of database and what kind of source code management system your application is going to use. This will save you a few minutes, and certainly many keystrokes.
Let's see what a --git
option and a --database=postgresql
option will do for us:
We had to create the gitapp directory and initialize an empty git repository before Rails would add files it created to our repository. Let's see what it put in our database configuration:
It also generated some lines in our database.yml configuration corresponding to our choice of PostgreSQL for database.
The only catch with using the SCM options is that you have to make your application's directory first, then initialize your SCM, then you can run the rails new
command to generate the basis of your app.
This is an introduction to three types of caching techniques: page, action and fragment caching. Rails provides by default fragment caching. In order to use page and action caching, you will need to add actionpack-page_caching
and actionpack-action_caching
to your Gemfile.
To start playing with caching you'll want to ensure that config.action_controller.perform_caching
is set to true
, if you're running in development mode. This flag is normally set in the corresponding config/environments/*.rb
and caching is disabled by default for development and test, and enabled for production.
Page caching is a Rails mechanism which allows the request for a generated page to be fulfilled by the webserver (i.e. Apache or nginx), without ever having to go through the Rails stack at all. Obviously, this is super-fast. Unfortunately, it can't be applied to every situation (such as pages that need authentication) and since the webserver is literally just serving a file from the filesystem, cache expiration is an issue that needs to be dealt with.
Page Caching has been removed from Rails 4. See the actionpack-page_caching gem. See DHH's key-based cache expiration overview for the newly-preferred method.
Page Caching cannot be used for actions that have before filters - for example, pages that require authentication. This is where Action Caching comes in. Action Caching works like Page Caching except the incoming web request hits the Rails stack so that before filters can be run on it before the cache is served. This allows authentication and other restrictions to be run while still serving the result of the output from a cached copy.
Action Caching has been removed from Rails 4. See the actionpack-action_caching gem. See DHH's key-based cache expiration overview for the newly-preferred method.
Life would be perfect if we could get away with caching the entire contents of a page or action and serving it out to the world. Unfortunately, dynamic web applications usually build pages with a variety of components not all of which have the same caching characteristics. In order to address such a dynamically created page where different parts of the page need to be cached and expired differently, Rails provides a mechanism called Fragment Caching.
Fragment Caching allows a fragment of view logic to be wrapped in a cache block and served out of the cache store when the next request comes in.
As an example, if you wanted to show all the orders placed on your website in real time and didn't want to cache that part of the page, but did want to cache the part of the page which lists all products available, you could use this piece of code:
The cache block in our example will bind to the action that called it and is written out to the same place as the Action Cache, which means that if you want to cache multiple fragments per action, you should provide an action_suffix
to the cache call:
and you can expire it using the expire_fragment
method, like so:
If you don't want the cache block to bind to the action that called it, you can also use globally keyed fragments by calling the cache
method with a key:
This fragment is then available to all actions in the ProductsController
using the key and can be expired the same way:
If you want to avoid expiring the fragment manually, whenever an action updates a product, you can define a helper method:
This method generates a cache key that depends on all products and can be used in the view:
You can also use an Active Record model as the cache key:
Behind the scenes, a method called cache_key
will be invoked on the model and it returns a string like products/23-20130109142513
. The cache key includes the model name, the id and finally the updated_at timestamp. Thus it will automatically generate a new fragment when the product is updated because the key changes.
You can also combine the two schemes which is called "Russian Doll Caching":
It's called "Russian Doll Caching" because it nests multiple fragments. The advantage is that if a single product is updated, all the other inner fragments can be reused when regenerating the outer fragment.
Query caching is a Rails feature that caches the result set returned by each query so that if Rails encounters the same query again for that request, it will use the cached result set as opposed to running the query against the database again.
For example:
Rails provides different stores for the cached data created by action and fragment caches.
Page caches are always stored on disk.
You can set up your application's default cache store by calling config.cache_store=
in the Application definition inside your config/application.rb
file or in an Application.configure block in an environment specific configuration file (i.e. config/environments/*.rb
). The first argument will be the cache store to use and the rest of the argument will be passed as arguments to the cache store constructor.
Alternatively, you can call ActionController::Base.cache_store
outside of a configuration block.
You can access the cache by calling Rails.cache
.
This class provides the foundation for interacting with the cache in Rails. This is an abstract class and you cannot use it on its own. Rather you must use a concrete implementation of the class tied to a storage engine. Rails ships with several implementations documented below.
The main methods to call are read
, write
, delete
, exist?
, and fetch
. The fetch method takes a block and will either return an existing value from the cache, or evaluate the block and write the result to the cache if no value exists.
There are some common options used by all cache implementations. These can be passed to the constructor or the various methods to interact with entries.
:namespace
- This option can be used to create a namespace within the cache store. It is especially useful if your application shares a cache with other applications. The default value will include the application name and Rails environment.:compress
- This option can be used to indicate that compression should be used in the cache. This can be useful for transferring large cache entries over a slow network.:compress_threshold
- This options is used in conjunction with the :compress
option to indicate a threshold under which cache entries should not be compressed. This defaults to 16 kilobytes.:expires_in
- This option sets an expiration time in seconds for the cache entry when it will be automatically removed from the cache.:race_condition_ttl
- This option is used in conjunction with the :expires_in
option. It will prevent race conditions when cache entries expire by preventing multiple processes from simultaneously regenerating the same entry (also known as the dog pile effect). This option sets the number of seconds that an expired entry can be reused while a new value is being regenerated. It's a good practice to set this value if you use the :expires_in
option.This cache store keeps entries in memory in the same Ruby process. The cache store has a bounded size specified by the :size
options to the initializer (default is 32Mb). When the cache exceeds the allotted size, a cleanup will occur and the least recently used entries will be removed.
If you're running multiple Ruby on Rails server processes (which is the case if you're using mongrel_cluster or Phusion Passenger), then your Rails server process instances won't be able to share cache data with each other. This cache store is not appropriate for large application deployments, but can work well for small, low traffic sites with only a couple of server processes or for development and test environments.
This cache store uses the file system to store entries. The path to the directory where the store files will be stored must be specified when initializing the cache.
With this cache store, multiple server processes on the same host can share a cache. Servers processes running on different hosts could share a cache by using a shared file system, but that set up would not be ideal and is not recommended. The cache store is appropriate for low to medium traffic sites that are served off one or two hosts.
Note that the cache will grow until the disk is full unless you periodically clear out old entries.
This is the default cache store implementation.
This cache store uses Danga's memcached
server to provide a centralized cache for your application. Rails uses the bundled dalli
gem by default. This is currently the most popular cache store for production websites. It can be used to provide a single, shared cache cluster with very a high performance and redundancy.
When initializing the cache, you need to specify the addresses for all memcached servers in your cluster. If none is specified, it will assume memcached is running on the local host on the default port, but this is not an ideal set up for larger sites.
The write
and fetch
methods on this cache accept two additional options that take advantage of features specific to memcached. You can specify :raw
to send a value directly to the server with no serialization. The value must be a string or number. You can use memcached direct operation like increment
and decrement
only on raw values. You can also specify :unless_exist
if you don't want memcached to overwrite an existing entry.
If you are using JRuby you can use Terracotta's Ehcache as the cache store for your application. Ehcache is an open source Java cache that also offers an enterprise version with increased scalability, management, and commercial support. You must first install the jruby-ehcache-rails3 gem (version 1.1.0 or later) to use this cache store.
When initializing the cache, you may use the :ehcache_config
option to specify the Ehcache config file to use (where the default is "ehcache.xml" in your Rails config directory), and the :cache_name option to provide a custom name for your cache (the default is rails_cache).
In addition to the standard :expires_in
option, the write
method on this cache can also accept the additional :unless_exist
option, which will cause the cache store to use Ehcache's putIfAbsent
method instead of put
, and therefore will not overwrite an existing entry. Additionally, the write
method supports all of the properties exposed by the Ehcache Element class , including:
Property | Argument Type | Description |
---|---|---|
elementEvictionData | ElementEvictionData | Sets this element's eviction data instance. |
eternal | boolean | Sets whether the element is eternal. |
timeToIdle, tti | int | Sets time to idle |
timeToLive, ttl, expires_in | int | Sets time to Live |
version | long | Sets the version attribute of the ElementAttributes object. |
These options are passed to the write
method as Hash options using either camelCase or underscore notation, as in the following examples:
For more information about Ehcache, see http://ehcache.org/ . For more information about Ehcache for JRuby and Rails, see http://ehcache.org/documentation/jruby.html
This cache store implementation is meant to be used only in development or test environments and it never stores anything. This can be very useful in development when you have code that interacts directly with Rails.cache
, but caching may interfere with being able to see the results of code changes. With this cache store, all fetch
and read
operations will result in a miss.
You can create your own custom cache store by simply extending ActiveSupport::Cache::Store
and implementing the appropriate methods. In this way, you can swap in any number of caching technologies into your Rails application.
To use a custom cache store, simple set the cache store to a new instance of the class.
The keys used in a cache can be any object that responds to either :cache_key
or to :to_param
. You can implement the :cache_key
method on your classes if you need to generate custom keys. Active Record will generate keys based on the class name and record id.
You can use Hashes and Arrays of values as cache keys.
The keys you use on Rails.cache
will not be the same as those actually used with the storage engine. They may be modified with a namespace or altered to fit technology backend constraints. This means, for instance, that you can't save values with Rails.cache
and then try to pull them out with the memcache-client
gem. However, you also don't need to worry about exceeding the memcached size limit or violating syntax rules.
Conditional GETs are a feature of the HTTP specification that provide a way for web servers to tell browsers that the response to a GET request hasn't changed since the last request and can be safely pulled from the browser cache.
They work by using the HTTP_IF_NONE_MATCH
and HTTP_IF_MODIFIED_SINCE
headers to pass back and forth both a unique content identifier and the timestamp of when the content was last changed. If the browser makes a request where the content identifier (etag) or last modified since timestamp matches the server’s version then the server only needs to send back an empty response with a not modified status.
It is the server's (i.e. our) responsibility to look for a last modified timestamp and the if-none-match header and determine whether or not to send back the full response. With conditional-get support in Rails this is a pretty easy task:
Instead of a options hash, you can also simply pass in a model, Rails will use the updated_at
and cache_key
methods for setting last_modified
and etag
:
If you don't have any special response processing and are using the default rendering mechanism (i.e. you're not using respond_to or calling render yourself) then you’ve got an easy helper in fresh_when:
The asset pipeline provides a framework to concatenate and minify or compress JavaScript and CSS assets. It also adds the ability to write these assets in other languages such as CoffeeScript, Sass and ERB.
Making the asset pipeline a core feature of Rails means that all developers can benefit from the power of having their assets pre-processed, compressed and minified by one central library, Sprockets. This is part of Rails' "fast by default" strategy as outlined by DHH in his keynote at RailsConf 2011.
The asset pipeline is enabled by default. It can be disabled in config/application.rb
by putting this line inside the application class definition:
You can also disable the asset pipeline while creating a new application by passing the --skip-sprockets
option.
You should use the defaults for all new applications unless you have a specific reason to avoid the asset pipeline.
The first feature of the pipeline is to concatenate assets. This is important in a production environment, because it can reduce the number of requests that a browser makes to render a web page. Web browsers are limited in the number of requests that they can make in parallel, so fewer requests can mean faster loading for your application.
Rails 2.x introduced the ability to concatenate JavaScript and CSS assets by placing cache: true
at the end of the javascript_include_tag
and stylesheet_link_tag
methods. But this technique has some limitations. For example, it cannot generate the caches in advance, and it is not able to transparently include assets provided by third-party libraries.
Starting with version 3.1, Rails defaults to concatenating all JavaScript files into one master .js
file and all CSS files into one master .css
file. As you'll learn later in this guide, you can customize this strategy to group files any way you like. In production, Rails inserts an MD5 fingerprint into each filename so that the file is cached by the web browser. You can invalidate the cache by altering this fingerprint, which happens automatically whenever you change the file contents.
The second feature of the asset pipeline is asset minification or compression. For CSS files, this is done by removing whitespace and comments. For JavaScript, more complex processes can be applied. You can choose from a set of built in options or specify your own.
The third feature of the asset pipeline is that it allows coding assets via a higher-level language, with precompilation down to the actual assets. Supported languages include Sass for CSS, CoffeeScript for JavaScript, and ERB for both by default.
Fingerprinting is a technique that makes the name of a file dependent on the contents of the file. When the file contents change, the filename is also changed. For content that is static or infrequently changed, this provides an easy way to tell whether two versions of a file are identical, even across different servers or deployment dates.
When a filename is unique and based on its content, HTTP headers can be set to encourage caches everywhere (whether at CDNs, at ISPs, in networking equipment, or in web browsers) to keep their own copy of the content. When the content is updated, the fingerprint will change. This will cause the remote clients to request a new copy of the content. This is generally known as cache busting.
The technique that Rails uses for fingerprinting is to insert a hash of the content into the name, usually at the end. For example a CSS file global.css
could be renamed with an MD5 digest of its contents:
This is the strategy adopted by the Rails asset pipeline.
Rails' old strategy was to append a date-based query string to every asset linked with a built-in helper. In the source the generated code looked like this:
The query string strategy has several disadvantages:
Fingerprinting fixes these problems by avoiding query strings, and by ensuring that filenames are consistent based on their content.
Fingerprinting is enabled by default for production and disabled for all other environments. You can enable or disable it in your configuration through the config.assets.digest
option.
More reading:
In previous versions of Rails, all assets were located in subdirectories of public
such as images
, javascripts
and stylesheets
. With the asset pipeline, the preferred location for these assets is now the app/assets
directory. Files in this directory are served by the Sprockets middleware included in the sprockets gem.
Assets can still be placed in the public
hierarchy. Any assets under public
will be served as static files by the application or web server. You should use app/assets
for files that must undergo some pre-processing before they are served.
In production, Rails precompiles these files to public/assets
by default. The precompiled copies are then served as static assets by the web server. The files in app/assets
are never served directly in production.
When you generate a scaffold or a controller, Rails also generates a JavaScript file (or CoffeeScript file if the coffee-rails
gem is in the Gemfile
) and a Cascading Style Sheet file (or SCSS file if sass-rails
is in the Gemfile
) for that controller.
For example, if you generate a ProjectsController
, Rails will also add a new file at app/assets/javascripts/projects.js.coffee
and another at app/assets/stylesheets/projects.css.scss
. By default these files will be ready to use by your application immediately using the require_tree
directive. See Manifest Files and Directives for more details on require_tree.
You can also opt to include controller specific stylesheets and JavaScript files only in their respective controllers using the following: <%= javascript_include_tag params[:controller] %>
or <%= stylesheet_link_tag params[:controller] %>
. Ensure that you are not using the require_tree
directive though, as this will result in your assets being included more than once.
When using asset precompilation (the production default), you will need to ensure that your controller assets will be precompiled when loading them on a per page basis. By default .coffee and .scss files will not be precompiled on their own. This will result in false positives during development as these files will work just fine since assets will be compiled on the fly. When running in production however, you will see 500 errors since live compilation is turned off by default. See Precompiling Assets for more information on how precompiling works.
You must have an ExecJS supported runtime in order to use CoffeeScript. If you are using Mac OS X or Windows you have a JavaScript runtime installed in your operating system. Check ExecJS documentation to know all supported JavaScript runtimes.
You can also disable the generation of asset files when generating a controller by adding the following to your config/application.rb
configuration:
Pipeline assets can be placed inside an application in one of three locations: app/assets
, lib/assets
or vendor/assets
.
app/assets
is for assets that are owned by the application, such as custom images, JavaScript files or stylesheets.lib/assets
is for your own libraries' code that doesn't really fit into the scope of the application or those libraries which are shared across applications.vendor/assets
is for assets that are owned by outside entities, such as code for JavaScript plugins and CSS frameworks.If you are upgrading from Rails 3, please take into account that assets under lib/assets
or vendor/assets
are available for inclusion via the application manifests but no longer part of the precompile array. See Precompiling Assets for guidance.
When a file is referenced from a manifest or a helper, Sprockets searches the three default asset locations for it.
The default locations are: app/assets/images
and the subdirectories javascripts
and stylesheets
in all three asset locations, but these subdirectories are not special. Any path under assets/*
will be searched.
For example, these files:
would be referenced in a manifest like this:
Assets inside subdirectories can also be accessed.
is referenced as:
You can view the search path by inspecting Rails.application.config.assets.paths
in the Rails console.
Besides the standard assets/*
paths, additional (fully qualified) paths can be added to the pipeline in config/application.rb
. For example:
Paths are traversed in the order that they occur in the search path. By default, this means the files in app/assets
take precedence, and will mask corresponding paths in lib
and vendor
.
It is important to note that files you want to reference outside a manifest must be added to the precompile array or they will not be available in the production environment.
Sprockets uses files named index
(with the relevant extensions) for a special purpose.
For example, if you have a jQuery library with many modules, which is stored in lib/assets/library_name
, the file lib/assets/library_name/index.js
serves as the manifest for all files in this library. This file could include a list of all the required files in order, or a simple require_tree
directive.
The library as a whole can be accessed in the site's application manifest like so:
This simplifies maintenance and keeps things clean by allowing related code to be grouped before inclusion elsewhere.
Sprockets does not add any new methods to access your assets - you still use the familiar javascript_include_tag
and stylesheet_link_tag
.
In regular views you can access images in the assets/images
directory like this:
Provided that the pipeline is enabled within your application (and not disabled in the current environment context), this file is served by Sprockets. If a file exists at public/assets/rails.png
it is served by the web server.
Alternatively, a request for a file with an MD5 hash such as public/assets/rails-af27b6a414e6da00003503148be9b409.png
is treated the same way. How these hashes are generated is covered in the In Production section later on in this guide.
Sprockets will also look through the paths specified in config.assets.paths
which includes the standard application paths and any path added by Rails engines.
Images can also be organized into subdirectories if required, and they can be accessed by specifying the directory's name in the tag:
If you're precompiling your assets (see In Production below), linking to an asset that does not exist will raise an exception in the calling page. This includes linking to a blank string. As such, be careful using image_tag
and the other helpers with user-supplied data.
The asset pipeline automatically evaluates ERB. This means that if you add an erb
extension to a CSS asset (for example, application.css.erb
), then helpers like asset_path
are available in your CSS rules:
This writes the path to the particular asset being referenced. In this example, it would make sense to have an image in one of the asset load paths, such as app/assets/images/image.png
, which would be referenced here. If this image is already available in public/assets
as a fingerprinted file, then that path is referenced.
If you want to use a data URI — a method of embedding the image data directly into the CSS file — you can use the asset_data_uri
helper.
This inserts a correctly-formatted data URI into the CSS source.
Note that the closing tag cannot be of the style -%>
.
When using the asset pipeline, paths to assets must be re-written and sass-rails
provides -url
and -path
helpers (hyphenated in Sass, underscored in Ruby) for the following asset classes: image, font, video, audio, JavaScript and stylesheet.
image-url("rails.png")
becomes url(/assets/rails.png)
image-path("rails.png")
becomes "/assets/rails.png"
.The more generic form can also be used:
asset-url("rails.png")
becomes url(/assets/rails.png)
asset-path("rails.png")
becomes "/assets/rails.png"
If you add an erb
extension to a JavaScript asset, making it something such as application.js.erb
, then you can use the asset_path
helper in your JavaScript code:
This writes the path to the particular asset being referenced.
Similarly, you can use the asset_path
helper in CoffeeScript files with erb
extension (e.g., application.js.coffee.erb
):
Sprockets uses manifest files to determine which assets to include and serve. These manifest files contain directives — instructions that tell Sprockets which files to require in order to build a single CSS or JavaScript file. With these directives, Sprockets loads the files specified, processes them if necessary, concatenates them into one single file and then compresses them (if Rails.application.config.assets.compress
is true). By serving one file rather than many, the load time of pages can be greatly reduced because the browser makes fewer requests. Compression also reduces the file size enabling the browser to download it faster.
For example, a new Rails application includes a default app/assets/javascripts/application.js
file which contains the following lines:
In JavaScript files, the directives begin with //=
. In this case, the file is using the require
and the require_tree
directives. The require
directive is used to tell Sprockets the files that you wish to require. Here, you are requiring the files jquery.js
and jquery_ujs.js
that are available somewhere in the search path for Sprockets. You need not supply the extensions explicitly. Sprockets assumes you are requiring a .js
file when done from within a .js
file.
The require_tree
directive tells Sprockets to recursively include all JavaScript files in the specified directory into the output. These paths must be specified relative to the manifest file. You can also use the require_directory
directive which includes all JavaScript files only in the directory specified, without recursion.
Directives are processed top to bottom, but the order in which files are included by require_tree
is unspecified. You should not rely on any particular order among those. If you need to ensure some particular JavaScript ends up above some other in the concatenated file, require the prerequisite file first in the manifest. Note that the family of require
directives prevents files from being included twice in the output.
Rails also creates a default app/assets/stylesheets/application.css
file which contains these lines:
The directives that work in the JavaScript files also work in stylesheets (though obviously including stylesheets rather than JavaScript files). The require_tree
directive in a CSS manifest works the same way as the JavaScript one, requiring all stylesheets from the current directory.
In this example require_self
is used. This puts the CSS contained within the file (if any) at the precise location of the require_self
call. If require_self
is called more than once, only the last call is respected.
If you want to use multiple Sass files, you should generally use the Sass @import
rule instead of these Sprockets directives. Using Sprockets directives all Sass files exist within their own scope, making variables or mixins only available within the document they were defined in.
You can have as many manifest files as you need. For example the admin.css
and admin.js
manifest could contain the JS and CSS files that are used for the admin section of an application.
The same remarks about ordering made above apply. In particular, you can specify individual files and they are compiled in the order specified. For example, you might concatenate three CSS files together this way:
The file extensions used on an asset determine what preprocessing is applied. When a controller or a scaffold is generated with the default Rails gemset, a CoffeeScript file and a SCSS file are generated in place of a regular JavaScript and CSS file. The example used before was a controller called "projects", which generated an app/assets/javascripts/projects.js.coffee
and an app/assets/stylesheets/projects.css.scss
file.
When these files are requested, they are processed by the processors provided by the coffee-script
and sass
gems and then sent back to the browser as JavaScript and CSS respectively.
Additional layers of preprocessing can be requested by adding other extensions, where each extension is processed in a right-to-left manner. These should be used in the order the processing should be applied. For example, a stylesheet called app/assets/stylesheets/projects.css.scss.erb
is first processed as ERB, then SCSS, and finally served as CSS. The same applies to a JavaScript file — app/assets/javascripts/projects.js.coffee.erb
is processed as ERB, then CoffeeScript, and served as JavaScript.
Keep in mind that the order of these preprocessors is important. For example, if you called your JavaScript file app/assets/javascripts/projects.js.erb.coffee
then it would be processed with the CoffeeScript interpreter first, which wouldn't understand ERB and therefore you would run into problems.
In development mode, assets are served as separate files in the order they are specified in the manifest file.
This manifest app/assets/javascripts/application.js
:
would generate this HTML:
The body
param is required by Sprockets.
You can turn off debug mode by updating config/environments/development.rb
to include:
When debug mode is off, Sprockets concatenates and runs the necessary preprocessors on all files. With debug mode turned off the manifest above would generate instead:
Assets are compiled and cached on the first request after the server is started. Sprockets sets a must-revalidate
Cache-Control HTTP header to reduce request overhead on subsequent requests — on these the browser gets a 304 (Not Modified) response.
If any of the files in the manifest have changed between requests, the server responds with a new compiled file.
Debug mode can also be enabled in the Rails helper methods:
The :debug
option is redundant if debug mode is on.
You could potentially also enable compression in development mode as a sanity check, and disable it on-demand as required for debugging.
In the production environment Rails uses the fingerprinting scheme outlined above. By default Rails assumes that assets have been precompiled and will be served as static assets by your web server.
During the precompilation phase an MD5 is generated from the contents of the compiled files, and inserted into the filenames as they are written to disc. These fingerprinted names are used by the Rails helpers in place of the manifest name.
For example this:
generates something like this:
Note: with the Asset Pipeline the :cache and :concat options aren't used anymore, delete these options from the javascript_include_tag
and stylesheet_link_tag
.
The fingerprinting behavior is controlled by the setting of config.assets.digest
setting in Rails (which defaults to true
for production and false
for everything else).
Under normal circumstances the default option should not be changed. If there are no digests in the filenames, and far-future headers are set, remote clients will never know to refetch the files when their content changes.
Rails comes bundled with a rake task to compile the asset manifests and other files in the pipeline to the disk.
Compiled assets are written to the location specified in config.assets.prefix
. By default, this is the public/assets
directory.
You can call this task on the server during deployment to create compiled versions of your assets directly on the server. See the next section for information on compiling locally.
The rake task is:
For faster asset precompiles, you can partially load your application by setting config.assets.initialize_on_precompile
to false in config/application.rb
, though in that case templates cannot see application objects or methods. Heroku requires this to be false.
If you set config.assets.initialize_on_precompile
to false, be sure to test rake assets:precompile
locally before deploying. It may expose bugs where your assets reference application objects or methods, since those are still in scope in development mode regardless of the value of this flag. Changing this flag also affects engines. Engines can define assets for precompilation as well. Since the complete environment is not loaded, engines (or other gems) will not be loaded, which can cause missing assets.
Capistrano (v2.8.0 and above) includes a recipe to handle this in deployment. Add the following line to Capfile
:
This links the folder specified in config.assets.prefix
to shared/assets
. If you already use this shared folder you'll need to write your own deployment task.
It is important that this folder is shared between deployments so that remotely cached pages that reference the old compiled assets still work for the life of the cached page.
The default matcher for compiling files includes application.js
, application.css
and all non-JS/CSS files (this will include all image assets automatically) from app/assets
folders including your gems:
The matcher (and other members of the precompile array; see below) is applied to final compiled file names. This means that anything that compiles to JS/CSS is excluded, as well as raw JS/CSS files; for example, .coffee
and .scss
files are not automatically included as they compile to JS/CSS.
If you have other manifests or individual stylesheets and JavaScript files to include, you can add them to the precompile
array in config/application.rb
:
Or you can opt to precompile all assets with something like this:
Always specify an expected compiled filename that ends with js or css, even if you want to add Sass or CoffeeScript files to the precompile array.
The rake task also generates a manifest.yml
that contains a list with all your assets and their respective fingerprints. This is used by the Rails helper methods to avoid handing the mapping requests back to Sprockets. A typical manifest file looks like:
The default location for the manifest is the root of the location specified in config.assets.prefix
('/assets' by default).
If there are missing precompiled files in production you will get an Sprockets::Helpers::RailsHelper::AssetPaths::AssetNotPrecompiledError
exception indicating the name of the missing file(s).
Precompiled assets exist on the filesystem and are served directly by your web server. They do not have far-future headers by default, so to get the benefit of fingerprinting you'll have to update your server configuration to add them.
For Apache:
For nginx:
When files are precompiled, Sprockets also creates a gzipped (.gz) version of your assets. Web servers are typically configured to use a moderate compression ratio as a compromise, but since precompilation happens once, Sprockets uses the maximum compression ratio, thus reducing the size of the data transfer to the minimum. On the other hand, web servers can be configured to serve compressed content directly from disk, rather than deflating non-compressed files themselves.
Nginx is able to do this automatically enabling gzip_static
:
This directive is available if the core module that provides this feature was compiled with the web server. Ubuntu packages, even nginx-light
have the module compiled. Otherwise, you may need to perform a manual compilation:
If you're compiling nginx with Phusion Passenger you'll need to pass that option when prompted.
A robust configuration for Apache is possible but tricky; please Google around. (Or help update this Guide if you have a good example configuration for Apache.)
There are several reasons why you might want to precompile your assets locally. Among them are:
Local compilation allows you to commit the compiled files into source control, and deploy as normal.
There are two caveats:
In config/environments/development.rb
, place the following line:
You will also need this in application.rb:
The prefix
change makes Rails use a different URL for serving assets in development mode, and pass all requests to Sprockets. The prefix is still set to /assets
in the production environment. Without this change, the application would serve the precompiled assets from public/assets
in development, and you would not see any local changes until you compile assets again.
The initialize_on_precompile
change tells the precompile task to run without invoking Rails. This is because the precompile task runs in production mode by default, and will attempt to connect to your specified production database. Please note that you cannot have code in pipeline files that relies on Rails resources (such as the database) when compiling locally with this option.
You will also need to ensure that any compressors or minifiers are available on your development system.
In practice, this will allow you to precompile locally, have those files in your working tree, and commit those files to source control when needed. Development mode will work as expected.
In some circumstances you may wish to use live compilation. In this mode all requests for assets in the pipeline are handled by Sprockets directly.
To enable this option set:
On the first request the assets are compiled and cached as outlined in development above, and the manifest names used in the helpers are altered to include the MD5 hash.
Sprockets also sets the Cache-Control
HTTP header to max-age=31536000
. This signals all caches between your server and the client browser that this content (the file served) can be cached for 1 year. The effect of this is to reduce the number of requests for this asset from your server; the asset has a good chance of being in the local browser cache or some intermediate cache.
This mode uses more memory, performs more poorly than the default and is not recommended.
If you are deploying a production application to a system without any pre-existing JavaScript runtimes, you may want to add one to your Gemfile:
If your assets are being served by a CDN, ensure they don't stick around in your cache forever. This can cause problems. If you use config.action_controller.perform_caching = true
, Rack::Cache will use Rails.cache
to store assets. This can cause your cache to fill up quickly.
Every cache is different, so evaluate how your CDN handles caching and make sure that it plays nicely with the pipeline. You may find quirks related to your specific set up, you may not. The defaults nginx uses, for example, should give you no problems when used as an HTTP cache.
There is currently one option for compressing CSS, YUI. The YUI CSS compressor provides minification.
The following line enables YUI compression, and requires the yui-compressor
gem.
The config.assets.compress
must be set to true
to enable CSS compression.
Possible options for JavaScript compression are :closure
, :uglifier
and :yui
. These require the use of the closure-compiler
, uglifier
or yui-compressor
gems, respectively.
The default Gemfile includes uglifier. This gem wraps UglifierJS (written for NodeJS) in Ruby. It compresses your code by removing white space. It also includes other optimizations such as changing your if
and else
statements to ternary operators where possible.
The following line invokes uglifier
for JavaScript compression.
Note that config.assets.compress
must be set to true
to enable JavaScript compression
You will need an ExecJS supported runtime in order to use uglifier
. If you are using Mac OS X or Windows you have a JavaScript runtime installed in your operating system. Check the ExecJS documentation for information on all of the supported JavaScript runtimes.
The compressor config settings for CSS and JavaScript also take any object. This object must have a compress
method that takes a string as the sole argument and it must return a string.
To enable this, pass a new object to the config option in application.rb
:
The public path that Sprockets uses by default is /assets
.
This can be changed to something else:
This is a handy option if you are updating an older project that didn't use the asset pipeline and that already uses this path or you wish to use this path for a new resource.
The X-Sendfile header is a directive to the web server to ignore the response from the application, and instead serve a specified file from disk. This option is off by default, but can be enabled if your server supports it. When enabled, this passes responsibility for serving the file to the web server, which is faster.
Apache and nginx support this option, which can be enabled in config/environments/production.rb
.
If you are upgrading an existing application and intend to use this option, take care to paste this configuration option only into production.rb
and any other environments you define with production behavior (not application.rb
).
The default Rails cache store will be used by Sprockets to cache assets in development and production. This can be changed by setting config.assets.cache_store
.
The options accepted by the assets cache store are the same as the application's cache store.
Assets can also come from external sources in the form of gems.
A good example of this is the jquery-rails
gem which comes with Rails as the standard JavaScript library gem. This gem contains an engine class which inherits from Rails::Engine
. By doing this, Rails is informed that the directory for this gem may contain assets and the app/assets
, lib/assets
and vendor/assets
directories of this engine are added to the search path of Sprockets.
As Sprockets uses Tilt as a generic interface to different templating engines, your gem should just implement the Tilt template protocol. Normally, you would subclass Tilt::Template
and reimplement evaluate
method to return final output. Template source is stored at @code
. Have a look at Tilt::Template
sources to learn more.
Now that you have a Template
class, it's time to associate it with an extension for template files:
There are a few issues when upgrading. The first is moving the files from public/
to the new locations. See Asset Organization above for guidance on the correct locations for different file types.
Next will be avoiding duplicate JavaScript files. Since jQuery is the default JavaScript library from Rails 3.1 onwards, you don't need to copy jquery.js
into app/assets
and it will be included automatically.
The third is updating the various environment files with the correct default options. The following changes reflect the defaults in version 3.1.0.
In application.rb
:
In development.rb
:
And in production.rb
:
You should not need to change test.rb
. The defaults in the test environment are: config.assets.compile
is true and config.assets.compress
, config.assets.debug
and config.assets.digest
are false.
The following should also be added to Gemfile
:
If you use the assets
group with Bundler, please make sure that your config/application.rb
has the following Bundler require statement:
Instead of the generated version:
In order to understand Ajax, you must first understand what a web browser does normally.
When you type http://localhost:3000
into your browser's address bar and hit 'Go,' the browser (your 'client') makes a request to the server. It parses the response, then fetches all associated assets, like JavaScript files, stylesheets and images. It then assembles the page. If you click a link, it does the same process: fetch the page, fetch the assets, put it all together, show you the results. This is called the 'request response cycle.'
JavaScript can also make requests to the server, and parse the response. It also has the ability to update information on the page. Combining these two powers, a JavaScript writer can make a web page that can update just parts of itself, without needing to get the full page data from the server. This is a powerful technique that we call Ajax.
Rails ships with CoffeeScript by default, and so the rest of the examples in this guide will be in CoffeeScript. All of these lessons, of course, apply to vanilla JavaScript as well.
As an example, here's some CoffeeScript code that makes an Ajax request using the jQuery library:
This code fetches data from "/test", and then appends the result to the div
with an id of results
.
Rails provides quite a bit of built-in support for building web pages with this technique. You rarely have to write this code yourself. The rest of this guide will show you how Rails can help you write websites in this way, but it's all built on top of this fairly simple technique.
Rails uses a technique called "Unobtrusive JavaScript" to handle attaching JavaScript to the DOM. This is generally considered to be a best-practice within the frontend community, but you may occasionally read tutorials that demonstrate other ways.
Here's the simplest way to write JavaScript. You may see it referred to as 'inline JavaScript':
When clicked, the link background will become red. Here's the problem: what happens when we have lots of JavaScript we want to execute on a click?
Awkward, right? We could pull the function definition out of the click handler, and turn it into CoffeeScript:
And then on our page:
That's a little bit better, but what about multiple links that have the same effect?
Not very DRY, eh? We can fix this by using events instead. We'll add a data-*
attribute to our link, and then bind a handler to the click event of every link that has that attribute:
We call this 'unobtrusive' JavaScript because we're no longer mixing our JavaScript into our HTML. We've properly separated our concerns, making future change easy. We can easily add behavior to any link by adding the data attribute. We can run all of our JavaScript through a minimizer and concatenator. We can serve our entire JavaScript bundle on every page, which means that it'll get downloaded on the first page load and then be cached on every page after that. Lots of little benefits really add up.
The Rails team strongly encourages you to write your CoffeeScript (and JavaScript) in this style, and you can expect that many libraries will also follow this pattern.
Rails provides a bunch of view helper methods written in Ruby to assist you in generating HTML. Sometimes, you want to add a little Ajax to those elements, and Rails has got your back in those cases.
Because of Unobtrusive JavaScript, the Rails "Ajax helpers" are actually in two parts: the JavaScript half and the Ruby half.
rails.js provides the JavaScript half, and the regular Ruby view helpers add appropriate tags to your DOM. The CoffeeScript in rails.js then listens for these attributes, and attaches appropriate handlers.
form_for
is a helper that assists with writing forms. form_for
takes a :remote
option. It works like this:
This will generate the following HTML:
Note the data-remote='true'
. Now, the form will be submitted by Ajax rather than by the browser's normal submit mechanism.
You probably don't want to just sit there with a filled out <form>
, though. You probably want to do something upon a successful submission. To do that, bind to the ajax:success
event. On failure, use ajax:error
. Check it out:
Obviously, you'll want to be a bit more sophisticated than that, but it's a start.
form_tag
is very similar to form_for
. It has a :remote
option that you can use like this:
Everything else is the same as form_for
. See its documentation for full details.
link_to
is a helper that assists with generating links. It has a :remote
option you can use like this:
which generates
You can bind to the same Ajax events as form_for
. Here's an example. Let's assume that we have a list of posts that can be deleted with just one click. We would generate some HTML like this:
and write some CoffeeScript like this:
button_to
is a helper that helps you create buttons. It has a :remote
option that you can call like this:
this generates
Since it's just a <form>
, all of the information on form_for
also applies.
Ajax isn't just client-side, you also need to do some work on the server side to support it. Often, people like their Ajax requests to return JSON rather than HTML. Let's discuss what it takes to make that happen.
Imagine you have a series of users that you would like to display and provide a form on that same page to create a new user. The index action of your controller looks like this:
The index view (app/views/users/index.html.erb
) contains:
The app/views/users/_user.html.erb
partial contains the following:
The top portion of the index page displays the users. The bottom portion provides a form to create a new user.
The bottom form will call the create action on the Users controller. Because the form's remote option is set to true, the request will be posted to the users controller as an Ajax request, looking for JavaScript. In order to service that request, the create action of your controller would look like this:
Notice the format.js in the respond_to
block; that allows the controller to respond to your Ajax request. You then have a corresponding app/views/users/create.js.erb
view file that generates the actual JavaScript code that will be sent and executed on the client side.
Rails 4 ships with the Turbolinks gem. This gem uses Ajax to speed up page rendering in most applications.
Turbolinks attaches a click handler to all <a>
on the page. If your browser supports PushState, Turbolinks will make an Ajax request for the page, parse the response, and replace the entire <body>
of the page with the <body>
of the response. It will then use PushState to change the URL to the correct one, preserving refresh semantics and giving you pretty URLs.
The only thing you have to do to enable Turbolinks is have it in your Gemfile, and put //= require turbolinks
in your CoffeeScript manifest, which is usually app/assets/javascripts/application.js
.
If you want to disable Turbolinks for certain links, add a data-no-turbolink
attribute to the tag:
When writing CoffeeScript, you'll often want to do some sort of processing upon page load. With jQuery, you'd write something like this:
However, because Turbolinks overrides the normal page loading process, the event that this relies on will not be fired. If you have code that looks like this, you must change your code to do this instead:
For more details, including other events you can bind to, check out the Turbolinks README.
Here are some helpful links to help you learn even more:
Engines can be considered miniature applications that provide functionality to their host applications. A Rails application is actually just a "supercharged" engine, with the Rails::Application
class inheriting a lot of its behavior from Rails::Engine
.
Therefore, engines and applications can be thought of almost the same thing, just with subtle differences, as you'll see throughout this guide. Engines and applications also share a common structure.
Engines are also closely related to plugins where the two share a common lib
directory structure and are both generated using the rails plugin new
generator. The difference being that an engine is considered a "full plugin" by Rails as indicated by the --full
option that's passed to the generator command, but this guide will refer to them simply as "engines" throughout. An engine can be a plugin, and a plugin can be an engine.
The engine that will be created in this guide will be called "blorgh". The engine will provide blogging functionality to its host applications, allowing for new posts and comments to be created. At the beginning of this guide, you will be working solely within the engine itself, but in later sections you'll see how to hook it into an application.
Engines can also be isolated from their host applications. This means that an application is able to have a path provided by a routing helper such as posts_path
and use an engine also that provides a path also called posts_path
, and the two would not clash. Along with this, controllers, models and table names are also namespaced. You'll see how to do this later in this guide.
It's important to keep in mind at all times that the application should always take precedence over its engines. An application is the object that has final say in what goes on in the universe (with the universe being the application's environment) where the engine should only be enhancing it, rather than changing it drastically.
To see demonstrations of other engines, check out Devise, an engine that provides authentication for its parent applications, or Forem, an engine that provides forum functionality. There's also Spree which provides an e-commerce platform, and RefineryCMS, a CMS engine.
Finally, engines would not have been possible without the work of James Adam, Piotr Sarnacki, the Rails Core Team, and a number of other people. If you ever meet them, don't forget to say thanks!
To generate an engine, you will need to run the plugin generator and pass it options as appropriate to the need. For the "blorgh" example, you will need to create a "mountable" engine, running this command in a terminal:
The full list of options for the plugin generator may be seen by typing:
The --full
option tells the generator that you want to create an engine, including a skeleton structure by providing the following:
app
directory treeconfig/routes.rb
file: lib/blorgh/engine.rb
which is identical in function to a standard Rails application's config/application.rb
file: The --mountable
option tells the generator that you want to create a "mountable" and namespace-isolated engine. This generator will provide the same skeleton structure as would the --full
option, and will add:
application.js
and application.css
)ApplicationController
stubApplicationHelper
stubconfig/routes.rb
: lib/blorgh/engine.rb
: Additionally, the --mountable
option tells the generator to mount the engine inside the dummy testing application located at test/dummy
by adding the following to the dummy application's routes file at test/dummy/config/routes.rb
:
At the root of this brand new engine's directory lives a blorgh.gemspec
file. When you include the engine into an application later on, you will do so with this line in the Rails application's Gemfile
:
By specifying it as a gem within the Gemfile
, Bundler will load it as such, parsing this blorgh.gemspec
file and requiring a file within the lib
directory called lib/blorgh.rb
. This file requires the blorgh/engine.rb
file (located at lib/blorgh/engine.rb
) and defines a base module called Blorgh
.
Some engines choose to use this file to put global configuration options for their engine. It's a relatively good idea, and so if you want to offer configuration options, the file where your engine's module
is defined is perfect for that. Place the methods inside the module and you'll be good to go.
Within lib/blorgh/engine.rb
is the base class for the engine:
By inheriting from the Rails::Engine
class, this gem notifies Rails that there's an engine at the specified path, and will correctly mount the engine inside the application, performing tasks such as adding the app
directory of the engine to the load path for models, mailers, controllers and views.
The isolate_namespace
method here deserves special notice. This call is responsible for isolating the controllers, models, routes and other things into their own namespace, away from similar components inside the application. Without this, there is a possibility that the engine's components could "leak" into the application, causing unwanted disruption, or that important engine components could be overridden by similarly named things within the application. One of the examples of such conflicts are helpers. Without calling isolate_namespace
, engine's helpers would be included in an application's controllers.
It is highly recommended that the isolate_namespace
line be left within the Engine
class definition. Without it, classes generated in an engine may conflict with an application.
What this isolation of the namespace means is that a model generated by a call to rails g model
such as rails g model post
won't be called Post
, but instead be namespaced and called Blorgh::Post
. In addition, the table for the model is namespaced, becoming blorgh_posts
, rather than simply posts
. Similar to the model namespacing, a controller called PostsController
becomes Blorgh::PostsController
and the views for that controller will not be at app/views/posts
, but app/views/blorgh/posts
instead. Mailers are namespaced as well.
Finally, routes will also be isolated within the engine. This is one of the most important parts about namespacing, and is discussed later in the Routes section of this guide.
app
directoryInside the app
directory are the standard assets
, controllers
, helpers
, mailers
, models
and views
directories that you should be familiar with from an application. The helpers
, mailers
and models
directories are empty and so aren't described in this section. We'll look more into models in a future section, when we're writing the engine.
Within the app/assets
directory, there are the images
, javascripts
and stylesheets
directories which, again, you should be familiar with due to their similarity to an application. One difference here however is that each directory contains a sub-directory with the engine name. Because this engine is going to be namespaced, its assets should be too.
Within the app/controllers
directory there is a blorgh
directory and inside that a file called application_controller.rb
. This file will provide any common functionality for the controllers of the engine. The blorgh
directory is where the other controllers for the engine will go. By placing them within this namespaced directory, you prevent them from possibly clashing with identically-named controllers within other engines or even within the application.
The ApplicationController
class inside an engine is named just like a Rails application in order to make it easier for you to convert your applications into engines.
Lastly, the app/views
directory contains a layouts
folder which contains a file at blorgh/application.html.erb
which allows you to specify a layout for the engine. If this engine is to be used as a stand-alone engine, then you would add any customization to its layout in this file, rather than the application's app/views/layouts/application.html.erb
file.
If you don't want to force a layout on to users of the engine, then you can delete this file and reference a different layout in the controllers of your engine.
bin
directoryThis directory contains one file, bin/rails
, which enables you to use the rails
sub-commands and generators just like you would within an application. This means that you will very easily be able to generate new controllers and models for this engine by running commands like this:
Keeping in mind, of course, that anything generated with these commands inside an engine that has isolate_namespace
inside the Engine
class will be namespaced.
test
directoryThe test
directory is where tests for the engine will go. To test the engine, there is a cut-down version of a Rails application embedded within it at test/dummy
. This application will mount the engine in the test/dummy/config/routes.rb
file:
This line mounts the engine at the path /blorgh
, which will make it accessible through the application only at that path.
In the test directory there is the test/integration
directory, where integration tests for the engine should be placed. Other directories can be created in the test
directory as well. For example, you may wish to create a test/models
directory for your models tests.
The engine that this guide covers provides posting and commenting functionality and follows a similar thread to the Getting Started Guide, with some new twists.
The first thing to generate for a blog engine is the Post
model and related controller. To quickly generate this, you can use the Rails scaffold generator.
This command will output this information:
The first thing that the scaffold generator does is invoke the active_record
generator, which generates a migration and a model for the resource. Note here, however, that the migration is called create_blorgh_posts
rather than the usual create_posts
. This is due to the isolate_namespace
method called in the Blorgh::Engine
class's definition. The model here is also namespaced, being placed at app/models/blorgh/post.rb
rather than app/models/post.rb
due to the isolate_namespace
call within the Engine
class.
Next, the test_unit
generator is invoked for this model, generating a model test at test/models/blorgh/post_test.rb
(rather than test/models/post_test.rb
) and a fixture at test/fixtures/blorgh/posts.yml
(rather than test/fixtures/posts.yml
).
After that, a line for the resource is inserted into the config/routes.rb
file for the engine. This line is simply resources :posts
, turning the config/routes.rb
file for the engine into this:
Note here that the routes are drawn upon the Blorgh::Engine
object rather than the YourApp::Application
class. This is so that the engine routes are confined to the engine itself and can be mounted at a specific point as shown in the test directory section. It also causes the engine's routes to be isolated from those routes that are within the application. The Routes section of this guide describes it in details.
Next, the scaffold_controller
generator is invoked, generating a controller called Blorgh::PostsController
(at app/controllers/blorgh/posts_controller.rb
) and its related views at app/views/blorgh/posts
. This generator also generates a test for the controller (test/controllers/blorgh/posts_controller_test.rb
) and a helper (app/helpers/blorgh/posts_controller.rb
).
Everything this generator has created is neatly namespaced. The controller's class is defined within the Blorgh
module:
The ApplicationController
class being inherited from here is the Blorgh::ApplicationController
, not an application's ApplicationController
.
The helper inside app/helpers/blorgh/posts_helper.rb
is also namespaced:
This helps prevent conflicts with any other engine or application that may have a post resource as well.
Finally, two files that are the assets for this resource are generated, app/assets/javascripts/blorgh/posts.js
and app/assets/stylesheets/blorgh/posts.css
. You'll see how to use these a little later.
By default, the scaffold styling is not applied to the engine as the engine's layout file, app/views/layouts/blorgh/application.html.erb
doesn't load it. To make this apply, insert this line into the <head>
tag of this layout:
You can see what the engine has so far by running rake db:migrate
at the root of our engine to run the migration generated by the scaffold generator, and then running rails server
in test/dummy
. When you open http://localhost:3000/blorgh/posts
you will see the default scaffold that has been generated. Click around! You've just generated your first engine's first functions.
If you'd rather play around in the console, rails console
will also work just like a Rails application. Remember: the Post
model is namespaced, so to reference it you must call it as Blorgh::Post
.
One final thing is that the posts
resource for this engine should be the root of the engine. Whenever someone goes to the root path where the engine is mounted, they should be shown a list of posts. This can be made to happen if this line is inserted into the config/routes.rb
file inside the engine:
Now people will only need to go to the root of the engine to see all the posts, rather than visiting /posts
. This means that instead of http://localhost:3000/blorgh/posts
, you only need to go to http://localhost:3000/blorgh
now.
Now that the engine can create new blog posts, it only makes sense to add commenting functionality as well. To do this, you'll need to generate a comment model, a comment controller and then modify the posts scaffold to display comments and allow people to create new ones.
Run the model generator and tell it to generate a Comment
model, with the related table having two columns: a post_id
integer and text
text column.
This will output the following:
This generator call will generate just the necessary model files it needs, namespacing the files under a blorgh
directory and creating a model class called Blorgh::Comment
.
To show the comments on a post, edit app/views/blorgh/posts/show.html.erb
and add this line before the "Edit" link:
This line will require there to be a has_many
association for comments defined on the Blorgh::Post
model, which there isn't right now. To define one, open app/models/blorgh/post.rb
and add this line into the model:
Turning the model into this:
Because the has_many
is defined inside a class that is inside the Blorgh
module, Rails will know that you want to use the Blorgh::Comment
model for these objects, so there's no need to specify that using the :class_name
option here.
Next, there needs to be a form so that comments can be created on a post. To add this, put this line underneath the call to render @post.comments
in app/views/blorgh/posts/show.html.erb
:
Next, the partial that this line will render needs to exist. Create a new directory at app/views/blorgh/comments
and in it a new file called _form.html.erb
which has this content to create the required partial:
When this form is submitted, it is going to attempt to perform a POST
request to a route of /posts/:post_id/comments
within the engine. This route doesn't exist at the moment, but can be created by changing the resources :posts
line inside config/routes.rb
into these lines:
This creates a nested route for the comments, which is what the form requires.
The route now exists, but the controller that this route goes to does not. To create it, run this command:
This will generate the following things:
The form will be making a POST
request to /posts/:post_id/comments
, which will correspond with the create
action in Blorgh::CommentsController
. This action needs to be created and can be done by putting the following lines inside the class definition in app/controllers/blorgh/comments_controller.rb
:
This is the final part required to get the new comment form working. Displaying the comments however, is not quite right yet. If you were to create a comment right now you would see this error:
The engine is unable to find the partial required for rendering the comments. Rails looks first in the application's (test/dummy
) app/views
directory and then in the engine's app/views
directory. When it can't find it, it will throw this error. The engine knows to look for blorgh/comments/comment
because the model object it is receiving is from the Blorgh::Comment
class.
This partial will be responsible for rendering just the comment text, for now. Create a new file at app/views/blorgh/comments/_comment.html.erb
and put this line inside it:
The comment_counter
local variable is given to us by the <%= render @post.comments %>
call, as it will define this automatically and increment the counter as it iterates through each comment. It's used in this example to display a small number next to each comment when it's created.
That completes the comment function of the blogging engine. Now it's time to use it within an application.
Using an engine within an application is very easy. This section covers how to mount the engine into an application and the initial setup required, as well as linking the engine to a User
class provided by the application to provide ownership for posts and comments within the engine.
First, the engine needs to be specified inside the application's Gemfile
. If there isn't an application handy to test this out in, generate one using the rails new
command outside of the engine directory like this:
Usually, specifying the engine inside the Gemfile would be done by specifying it as a normal, everyday gem.
However, because you are developing the blorgh
engine on your local machine, you will need to specify the :path
option in your Gemfile
:
As described earlier, by placing the gem in the Gemfile
it will be loaded when Rails is loaded, as it will first require lib/blorgh.rb
in the engine and then lib/blorgh/engine.rb
, which is the file that defines the major pieces of functionality for the engine.
To make the engine's functionality accessible from within an application, it needs to be mounted in that application's config/routes.rb
file:
This line will mount the engine at /blog
in the application. Making it accessible at http://localhost:3000/blog
when the application runs with rails server
.
Other engines, such as Devise, handle this a little differently by making you specify custom helpers such as devise_for
in the routes. These helpers do exactly the same thing, mounting pieces of the engines's functionality at a pre-defined path which may be customizable.
The engine contains migrations for the blorgh_posts
and blorgh_comments
table which need to be created in the application's database so that the engine's models can query them correctly. To copy these migrations into the application use this command:
If you have multiple engines that need migrations copied over, use railties:install:migrations
instead:
This command, when run for the first time, will copy over all the migrations from the engine. When run the next time, it will only copy over migrations that haven't been copied over already. The first run for this command will output something such as this:
The first timestamp ([timestamp_1]
) will be the current time and the second timestamp ([timestamp_2]
) will be the current time plus a second. The reason for this is so that the migrations for the engine are run after any existing migrations in the application.
To run these migrations within the context of the application, simply run rake db:migrate
. When accessing the engine through http://localhost:3000/blog
, the posts will be empty. This is because the table created inside the application is different from the one created within the engine. Go ahead, play around with the newly mounted engine. You'll find that it's the same as when it was only an engine.
If you would like to run migrations only from one engine, you can do it by specifying SCOPE
:
This may be useful if you want to revert engine's migrations before removing it. In order to revert all migrations from blorgh engine you can run such code:
When an engine is created, it may want to use specific classes from an application to provide links between the pieces of the engine and the pieces of the application. In the case of the blorgh
engine, making posts and comments have authors would make a lot of sense.
A typical application might have a User
class that would be used to represent authors for a post or a comment. But there could be a case where the application calls this class something different, such as Person
. For this reason, the engine should not hardcode associations specifically for a User
class.
To keep it simple in this case, the application will have a class called User
which will represent the users of the application. It can be generated using this command inside the application:
The rake db:migrate
command needs to be run here to ensure that our application has the users
table for future use.
Also, to keep it simple, the posts form will have a new text field called author_name
where users can elect to put their name. The engine will then take this name and create a new User
object from it or find one that already has that name, and then associate the post with it.
First, the author_name
text field needs to be added to the app/views/blorgh/posts/_form.html.erb
partial inside the engine. This can be added above the title
field with this code:
The Blorgh::Post
model should then have some code to convert the author_name
field into an actual User
object and associate it as that post's author
before the post is saved. It will also need to have an attr_accessor
setup for this field so that the setter and getter methods are defined for it.
To do all this, you'll need to add the attr_accessor
for author_name
, the association for the author and the before_save
call into app/models/blorgh/post.rb
. The author
association will be hard-coded to the User
class for the time being.
By defining that the author
association's object is represented by the User
class a link is established between the engine and the application. There needs to be a way of associating the records in the blorgh_posts
table with the records in the users
table. Because the association is called author
, there should be an author_id
column added to the blorgh_posts
table.
To generate this new column, run this command within the engine:
Due to the migration's name and the column specification after it, Rails will automatically know that you want to add a column to a specific table and write that into the migration for you. You don't need to tell it any more than this.
This migration will need to be run on the application. To do that, it must first be copied using this command:
Notice here that only one migration was copied over here. This is because the first two migrations were copied over the first time this command was run.
Run this migration using this command:
Now with all the pieces in place, an action will take place that will associate an author — represented by a record in the users
table — with a post, represented by the blorgh_posts
table from the engine.
Finally, the author's name should be displayed on the post's page. Add this code above the "Title" output inside app/views/blorgh/posts/show.html.erb
:
By outputting @post.author
using the <%=
tag, the to_s
method will be called on the object. By default, this will look quite ugly:
This is undesirable and it would be much better to have the user's name there. To do this, add a to_s
method to the User
class within the application:
Now instead of the ugly Ruby object output the author's name will be displayed.
Because Rails controllers generally share code for things like authentication and accessing session variables, by default they inherit from ApplicationController
. Rails engines, however are scoped to run independently from the main application, so each engine gets a scoped ApplicationController
. This namespace prevents code collisions, but often engine controllers should access methods in the main application's ApplicationController
. An easy way to provide this access is to change the engine's scoped ApplicationController
to inherit from the main application's ApplicationController
. For our Blorgh engine this would be done by changing app/controllers/blorgh/application_controller.rb
to look like:
By default, the engine's controllers inherit from Blorgh::ApplicationController
. So, after making this change they will have access to the main applications ApplicationController
as though they were part of the main application.
This change does require that the engine is run from a Rails application that has an ApplicationController
.
This section covers how to make the User
class configurable, followed by general configuration tips for the engine.
The next step is to make the class that represents a User
in the application customizable for the engine. This is because, as explained before, that class may not always be User
. To make this customizable, the engine will have a configuration setting called author_class
that will be used to specify what the class representing users is inside the application.
To define this configuration setting, you should use a mattr_accessor
inside the Blorgh
module for the engine, located at lib/blorgh.rb
inside the engine. Inside this module, put this line:
This method works like its brothers attr_accessor
and cattr_accessor
, but provides a setter and getter method on the module with the specified name. To use it, it must be referenced using Blorgh.author_class
.
The next step is switching the Blorgh::Post
model over to this new setting. For the belongs_to
association inside this model (app/models/blorgh/post.rb
), it will now become this:
The set_author
method also located in this class should also use this class:
To save having to call constantize
on the author_class
result all the time, you could instead just override the author_class
getter method inside the Blorgh
module in the lib/blorgh.rb
file to always call constantize
on the saved value before returning the result:
This would then turn the above code for set_author
into this:
Resulting in something a little shorter, and more implicit in its behavior. The author_class
method should always return a Class
object.
Since we changed the author_class
method to no longer return a String
but a Class
we must also modify our belongs_to
definition in the Blorgh::Post
model:
To set this configuration setting within the application, an initializer should be used. By using an initializer, the configuration will be set up before the application starts and calls the engine's models which may depend on this configuration setting existing.
Create a new initializer at config/initializers/blorgh.rb
inside the application where the blorgh
engine is installed and put this content in it:
It's very important here to use the String
version of the class, rather than the class itself. If you were to use the class, Rails would attempt to load that class and then reference the related table, which could lead to problems if the table wasn't already existing. Therefore, a String
should be used and then converted to a class using constantize
in the engine later on.
Go ahead and try to create a new post. You will see that it works exactly in the same way as before, except this time the engine is using the configuration setting in config/initializers/blorgh.rb
to learn what the class is.
There are now no strict dependencies on what the class is, only what the API for the class must be. The engine simply requires this class to define a find_or_create_by
method which returns an object of that class to be associated with a post when it's created. This object, of course, should have some sort of identifier by which it can be referenced.
Within an engine, there may come a time where you wish to use things such as initializers, internationalization or other configuration options. The great news is that these things are entirely possible because a Rails engine shares much the same functionality as a Rails application. In fact, a Rails application's functionality is actually a superset of what is provided by engines!
If you wish to use an initializer — code that should run before the engine is loaded — the place for it is the config/initializers
folder. This directory's functionality is explained in the Initializers section of the Configuring guide, and works precisely the same way as the config/initializers
directory inside an application. Same goes for if you want to use a standard initializer.
For locales, simply place the locale files in the config/locales
directory, just like you would in an application.
When an engine is generated there is a smaller dummy application created inside it at test/dummy
. This application is used as a mounting point for the engine to make testing the engine extremely simple. You may extend this application by generating controllers, models or views from within the directory, and then use those to test your engine.
The test
directory should be treated like a typical Rails testing environment, allowing for unit, functional and integration tests.
A matter worth taking into consideration when writing functional tests is that the tests are going to be running on an application — the test/dummy
application — rather than your engine. This is due to the setup of the testing environment; an engine needs an application as a host for testing its main functionality, especially controllers. This means that if you were to make a typical GET
to a controller in a controller's functional test like this:
It may not function correctly. This is because the application doesn't know how to route these requests to the engine unless you explicitly tell it how. To do this, you must pass the :use_route
option (as a parameter) on these requests also:
This tells the application that you still want to perform a GET
request to the index
action of this controller, just that you want to use the engine's route to get there, rather than the application.
This section explains how to add and/or override engine MVC functionality in the main Rails application.
Engine model and controller classes can be extended by open classing them in the main Rails application (since model and controller classes are just Ruby classes that inherit Rails specific functionality). Open classing an Engine class redefines it for use in the main application. This is usually implemented by using the decorator pattern.
For simple class modifications use Class#class_eval
, and for complex class modifications, consider using ActiveSupport::Concern
.
Adding Post#time_since_created
,
Overriding Post#summary
Using Class#class_eval
is great for simple adjustments, but for more complex class modifications, you might want to consider using ActiveSupport::Concern
. ActiveSupport::Concern manages load order of interlinked dependent modules and classes at run time allowing you to significantly modularize your code.
Adding Post#time_since_created
and Overriding Post#summary
When Rails looks for a view to render, it will first look in the app/views
directory of the application. If it cannot find the view there, then it will check in the app/views
directories of all engines which have this directory.
In the blorgh
engine, there is a currently a file at app/views/blorgh/posts/index.html.erb
. When the engine is asked to render the view for Blorgh::PostsController
's index
action, it will first see if it can find it at app/views/blorgh/posts/index.html.erb
within the application and then if it cannot it will look inside the engine.
You can override this view in the application by simply creating a new file at app/views/blorgh/posts/index.html.erb
. Then you can completely change what this view would normally output.
Try this now by creating a new file at app/views/blorgh/posts/index.html.erb
and put this content in it:
Routes inside an engine are, by default, isolated from the application. This is done by the isolate_namespace
call inside the Engine
class. This essentially means that the application and its engines can have identically named routes and they will not clash.
Routes inside an engine are drawn on the Engine
class within config/routes.rb
, like this:
By having isolated routes such as this, if you wish to link to an area of an engine from within an application, you will need to use the engine's routing proxy method. Calls to normal routing methods such as posts_path
may end up going to undesired locations if both the application and the engine both have such a helper defined.
For instance, the following example would go to the application's posts_path
if that template was rendered from the application, or the engine's posts_path
if it was rendered from the engine:
To make this route always use the engine's posts_path
routing helper method, we must call the method on the routing proxy method that shares the same name as the engine.
If you wish to reference the application inside the engine in a similar way, use the main_app
helper:
If you were to use this inside an engine, it would always go to the application's root. If you were to leave off the main_app
"routing proxy" method call, it could potentially go to the engine's or application's root, depending on where it was called from.
If a template is rendered from within an engine and it's attempting to use one of the application's routing helper methods, it may result in an undefined method call. If you encounter such an issue, ensure that you're not attempting to call the application's routing methods without the main_app
prefix from within the engine.
Assets within an engine work in an identical way to a full application. Because the engine class inherits from Rails::Engine
, the application will know to look up in the engine's app/assets
and lib/assets
directories for potential assets.
Much like all the other components of an engine, the assets should also be namespaced. This means if you have an asset called style.css
, it should be placed at app/assets/stylesheets/[engine name]/style.css
, rather than app/assets/stylesheets/style.css
. If this asset wasn't namespaced, then there is a possibility that the host application could have an asset named identically, in which case the application's asset would take precedence and the engine's one would be all but ignored.
Imagine that you did have an asset located at app/assets/stylesheets/blorgh/style.css
To include this asset inside an application, just use stylesheet_link_tag
and reference the asset as if it were inside the engine:
You can also specify these assets as dependencies of other assets using the Asset Pipeline require statements in processed files:
Remember that in order to use languages like Sass or CoffeeScript, you should add the relevant library to your engine's .gemspec
.
There are some situations where your engine's assets are not required by the host application. For example, say that you've created an admin functionality that only exists for your engine. In this case, the host application doesn't need to require admin.css
or admin.js
. Only the gem's admin layout needs these assets. It doesn't make sense for the host app to include "blorg/admin.css"
in it's stylesheets. In this situation, you should explicitly define these assets for precompilation. This tells sprockets to add your engine assets when rake assets:precompile
is ran.
You can define assets for precompilation in engine.rb
For more information, read the Asset Pipeline guide
Gem dependencies inside an engine should be specified inside the .gemspec
file at the root of the engine. The reason is that the engine may be installed as a gem. If dependencies were to be specified inside the Gemfile
, these would not be recognized by a traditional gem install and so they would not be installed, causing the engine to malfunction.
To specify a dependency that should be installed with the engine during a traditional gem install
, specify it inside the Gem::Specification
block inside the .gemspec
file in the engine:
To specify a dependency that should only be installed as a development dependency of the application, specify it like this:
Both kinds of dependencies will be installed when bundle install
is run inside the application. The development dependencies for the gem will only be used when the tests for the engine are running.
Note that if you want to immediately require dependencies when the engine is required, you should require them before the engine's initialization. For example:
Now we finally boot and initialize the app. It all starts with your app's bin/rails
executable. A Rails application is usually started by running rails console
or rails server
.
bin/rails
This file is as follows:
The APP_PATH
constant will be used later in rails/commands
. The config/boot
file referenced here is the config/boot.rb
file in our application which is responsible for loading Bundler and setting it up.
config/boot.rb
config/boot.rb
contains:
In a standard Rails application, there's a Gemfile
which declares all dependencies of the application. config/boot.rb
sets ENV['BUNDLE_GEMFILE']
to the location of this file. If the Gemfile exists, bundler/setup
is then required.
A standard Rails application depends on several gems, specifically:
rails/commands.rb
Once config/boot.rb
has finished, the next file that is required is rails/commands
which will execute a command based on the arguments passed in. In this case, the ARGV
array simply contains server
which is extracted into the command
variable using these lines:
As you can see, an empty ARGV list will make Rails show the help snippet.
If we used s
rather than server
, Rails will use the aliases
defined in the file and match them to their respective commands. With the server
command, Rails will run this code:
This file will change into the Rails root directory (a path two directories up from APP_PATH
which points at config/application.rb
), but only if the config.ru
file isn't found. This then requires rails/commands/server
which sets up the Rails::Server
class.
fileutils
and optparse
are standard Ruby libraries which provide helper functions for working with files and parsing options.
actionpack/lib/action_dispatch.rb
Action Dispatch is the routing component of the Rails framework. It adds functionality like routing, session, and common middlewares.
rails/commands/server.rb
The Rails::Server
class is defined in this file by inheriting from Rack::Server
. When Rails::Server.new
is called, this calls the initialize
method in rails/commands/server.rb
:
Firstly, super
is called which calls the initialize
method on Rack::Server
.
lib/rack/server.rb
Rack::Server
is responsible for providing a common server interface for all Rack-based applications, which Rails is now a part of.
The initialize
method in Rack::Server
simply sets a couple of variables:
In this case, options
will be nil
so nothing happens in this method.
After super
has finished in Rack::Server
, we jump back to rails/commands/server.rb
. At this point, set_environment
is called within the context of the Rails::Server
object and this method doesn't appear to do much at first glance:
In fact, the options
method here does quite a lot. This method is defined in Rack::Server
like this:
Then parse_options
is defined like this:
With the default_options
set to this:
There is no REQUEST_METHOD
key in ENV
so we can skip over that line. The next line merges in the options from opt_parser
which is defined plainly in Rack::Server
The class is defined in Rack::Server
, but is overwritten in Rails::Server
to take different arguments. Its parse!
method begins like this:
This method will set up keys for the options
which Rails will then be able to use to determine how its server should run. After initialize
has finished, we jump back into rails/server
where APP_PATH
(which was set earlier) is required.
config/application
When require APP_PATH
is executed, config/application.rb
is loaded. This file exists in your app and it's free for you to change based on your needs.
Rails::Server#start
After config/application
is loaded, server.start
is called. This method is defined like this:
This is where the first output of the Rails initialization happens. This method creates a trap for INT
signals, so if you CTRL-C
the server, it will exit the process. As we can see from the code here, it will create the tmp/cache
, tmp/pids
, tmp/sessions
and tmp/sockets
directories. It then calls wrapped_app
which is responsible for creating the Rack app, before creating and assigning an instance of ActiveSupport::Logger
.
The super
method will call Rack::Server.start
which begins its definition like this:
The interesting part for a Rails app is the last line, server.run
. Here we encounter the wrapped_app
method again, which this time we're going to explore more (even though it was executed before, and thus memorized by now).
The app
method here is defined like so:
The options[:config]
value defaults to config.ru
which contains this:
The Rack::Builder.parse_file
method here takes the content from this config.ru
file and parses it using this code:
The initialize
method of Rack::Builder
will take the block here and execute it within an instance of Rack::Builder
. This is where the majority of the initialization process of Rails happens. The require
line for config/environment.rb
in config.ru
is the first to run:
config/environment.rb
This file is the common file required by config.ru
(rails server
) and Passenger. This is where these two ways to run the server meet; everything before this point has been Rack and Rails setup.
This file begins with requiring config/application.rb
.
config/application.rb
This file requires config/boot.rb
, but only if it hasn't been required before, which would be the case in rails server
but wouldn't be the case with Passenger.
Then the fun begins!
The next line in config/application.rb
is:
railties/lib/rails/all.rb
This file is responsible for requiring all the individual frameworks of Rails:
This is where all the Rails frameworks are loaded and thus made available to the application. We won't go into detail of what happens inside each of those frameworks, but you're encouraged to try and explore them on your own.
For now, just keep in mind that common functionality like Rails engines, I18n and Rails configuration are all being defined here.
config/environment.rb
When config/application.rb
has finished loading Rails, and defined the application namespace, we go back to config/environment.rb
, where the application is initialized. For example, if the application was called Blog
, here we would find Blog::Application.initialize!
, which is defined in rails/application.rb
railties/lib/rails/application.rb
The initialize!
method looks like this:
As you can see, you can only initialize an app once. This is also where the initializers are run.
review this
The initializers code itself is tricky. What Rails is doing here is it traverses all the class ancestors looking for an initializers
method, sorting them and running them. For example, the Engine
class will make all the engines available by providing the initializers
method.
After this is done we go back to Rack::Server
Last time we left when the app
method was being defined:
At this point app
is the Rails app itself (a middleware), and what happens next is Rack will call all the provided middlewares:
Remember, build_app
was called (by wrapped_app) in the last line of Server#start
. Here's how it looked like when we left:
At this point, the implementation of server.run
will depend on the server you're using. For example, if you were using Mongrel, here's what the run
method would look like:
We won't dig into the server configuration itself, but this is the last piece of our journey in the Rails initialization process.
This high level overview will help you understand when your code is executed and how, and overall become a better Rails developer. If you still want to know more, the Rails source code itself is probably the best place to go next.
Currently, Rails plugins are built as gems, gemified plugins. They can be shared across different rails applications using RubyGems and Bundler if desired.
Rails ships with a rails plugin new
command which creates a skeleton for developing any kind of Rails extension with the ability to run integration tests using a dummy Rails application. Create your plugin with the command:
See usage and options by asking for help:
You can navigate to the directory that contains the plugin, run the bundle install
command and run the one generated test using the rake
command.
You should see:
This will tell you that everything got generated properly and you are ready to start adding functionality.
This section will explain how to add a method to String that will be available anywhere in your rails application.
In this example you will add a method to String named to_squawk
. To begin, create a new test file with a few assertions:
Run rake
to run the test. This test should fail because we haven't implemented the to_squawk
method:
Great - now you are ready to start development.
Then in lib/yaffle.rb
add require "yaffle/core_ext"
:
Finally, create the core_ext.rb
file and add the to_squawk
method:
To test that your method does what it says it does, run the unit tests with rake
from your plugin directory.
To see this in action, change to the test/dummy directory, fire up a console and start squawking:
A common pattern in plugins is to add a method called 'acts_as_something' to models. In this case, you want to write a method called 'acts_as_yaffle' that adds a 'squawk' method to your Active Record models.
To begin, set up your files so that you have:
This plugin will expect that you've added a method to your model named 'last_squawk'. However, the plugin users might have already defined a method on their model named 'last_squawk' that they use for something else. This plugin will allow the name to be changed by adding a class method called 'yaffle_text_field'.
To start out, write a failing test that shows the behavior you'd like:
When you run rake
, you should see the following:
This tells us that we don't have the necessary models (Hickwall and Wickwall) that we are trying to test. We can easily generate these models in our "dummy" Rails application by running the following commands from the test/dummy directory:
Now you can create the necessary database tables in your testing database by navigating to your dummy app and migrating the database. First
While you are here, change the Hickwall and Wickwall models so that they know that they are supposed to act like yaffles.
We will also add code to define the acts_as_yaffle method.
You can then return to the root directory (cd ../..
) of your plugin and rerun the tests using rake
.
Getting closer... Now we will implement the code of the acts_as_yaffle method to make the tests pass.
When you run rake
you should see the tests all pass:
This plugin will add a method named 'squawk' to any Active Record object that calls 'acts_as_yaffle'. The 'squawk' method will simply set the value of one of the fields in the database.
To start out, write a failing test that shows the behavior you'd like:
Run the test to make sure the last two tests fail with an error that contains "NoMethodError: undefined method `squawk'", then update 'acts_as_yaffle.rb' to look like this:
Run rake
one final time and you should see:
The use of write_attribute
to write to the field in model is just one example of how a plugin can interact with the model, and will not always be the right method to use. For example, you could also use send("#{self.class.yaffle_text_field}=", string.to_squawk)
.
Generators can be included in your gem simply by creating them in a lib/generators directory of your plugin. More information about the creation of generators can be found in the Generators Guide
Gem plugins currently in development can easily be shared from any Git repository. To share the Yaffle gem with others, simply commit the code to a Git repository (like GitHub) and add a line to the Gemfile of the application in question:
After running bundle install
, your gem functionality will be available to the application.
When the gem is ready to be shared as a formal release, it can be published to RubyGems. For more information about publishing gems to RubyGems, see: Creating and Publishing Your First Ruby Gem
Once your plugin is stable and you are ready to deploy do everyone else a favor and document it! Luckily, writing documentation for your plugin is easy.
The first step is to update the README file with detailed information about how to use your plugin. A few key things to include are:
Once your README is solid, go through and add rdoc comments to all of the methods that developers will use. It's also customary to add '#:nodoc:' comments to those parts of the code that are not included in the public API.
Once your comments are good to go, navigate to your plugin directory and run:
Rack provides a minimal, modular and adaptable interface for developing web applications in Ruby. By wrapping HTTP requests and responses in the simplest way possible, it unifies and distills the API for web servers, web frameworks, and software in between (the so-called middleware) into a single method call.
Explaining Rack is not really in the scope of this guide. In case you are not familiar with Rack's basics, you should check out the Resources section below.
ApplicationName::Application
is the primary Rack application object of a Rails application. Any Rack compliant web server should be using ApplicationName::Application
object to serve a Rails application. Rails.application
refers to the same application object.
rails server
rails server
does the basic job of creating a Rack::Server
object and starting the webserver.
Here's how rails server
creates an instance of Rack::Server
The Rails::Server
inherits from Rack::Server
and calls the Rack::Server#start
method this way:
Here's how it loads the middlewares:
Rails::Rack::Debugger
is primarily useful only in the development environment. The following table explains the usage of the loaded middlewares:
Middleware | Purpose |
---|---|
Rails::Rack::Debugger | Starts Debugger |
Rack::ContentLength | Counts the number of bytes in the response and set the HTTP Content-Length header |
rackup
To use rackup
instead of Rails' rails server
, you can put the following inside config.ru
of your Rails application's root directory:
And start the server:
To find out more about different rackup
options:
Many of Action Dispatcher's internal components are implemented as Rack middlewares. Rails::Application
uses ActionDispatch::MiddlewareStack
to combine various internal and external middlewares to form a complete Rails Rack application.
ActionDispatch::MiddlewareStack
is Rails equivalent of Rack::Builder
, but built for better flexibility and more features to meet Rails' requirements.
Rails has a handy rake task for inspecting the middleware stack in use:
For a freshly generated Rails application, this might produce something like:
Purpose of each of this middlewares is explained in the Internal Middlewares section.
Rails provides a simple configuration interface config.middleware
for adding, removing and modifying the middlewares in the middleware stack via application.rb
or the environment specific configuration file environments/<environment>.rb
.
You can add a new middleware to the middleware stack using any of the following methods:
config.middleware.use(new_middleware, args)
- Adds the new middleware at the bottom of the middleware stack.config.middleware.insert_before(existing_middleware, new_middleware, args)
- Adds the new middleware before the specified existing middleware in the middleware stack.config.middleware.insert_after(existing_middleware, new_middleware, args)
- Adds the new middleware after the specified existing middleware in the middleware stack.You can swap an existing middleware in the middleware stack using config.middleware.swap
.
The middleware stack behaves just like a normal Enumerable
. You can use any Enumerable
methods to manipulate or interrogate the stack. The middleware stack also implements some Array
methods including []
, unshift
and delete
. Methods described in the section above are just convenience methods.
Append following lines to your application configuration:
And now if you inspect the middleware stack, you'll find that Rack::Lock
will not be part of it.
If you want to remove session related middleware, do the following:
And to remove browser related middleware,
Much of Action Controller's functionality is implemented as Middlewares. The following list explains the purpose of each of them:
Rack::Sendfile
config.action_dispatch.x_sendfile_header
option. ActionDispatch::Static
config.serve_static_assets
is false
. Rack::Lock
env["rack.multithread"]
flag to false
and wraps the application within a Mutex. ActiveSupport::Cache::Strategy::LocalCache::Middleware
Rack::Runtime
Rack::MethodOverride
params[:_method]
is set. This is the middleware which supports the PUT and DELETE HTTP method types. ActionDispatch::RequestId
X-Request-Id
header available to the response and enables the ActionDispatch::Request#uuid
method. Rails::Rack::Logger
ActionDispatch::ShowExceptions
ActionDispatch::DebugExceptions
ActionDispatch::RemoteIp
ActionDispatch::Reloader
ActionDispatch::Callbacks
ActiveRecord::ConnectionAdapters::ConnectionManagement
rack.test
key in the request environment is set to true
. ActiveRecord::QueryCache
ActionDispatch::Cookies
ActionDispatch::Session::CookieStore
ActionDispatch::Flash
config.action_controller.session_store
is set to a value. ActionDispatch::ParamsParser
params
. ActionDispatch::Head
GET
requests and serves them as so. Rack::ConditionalGet
GET
" so that server responds with nothing if page wasn't changed. Rack::ETag
It's possible to use any of the above middlewares in your custom Rack stack.
The following shows how to replace use Rack::Builder
instead of the Rails supplied MiddlewareStack
.
Clear the existing Rails middleware stack
Add a config.ru
file to Rails.root
When you create an application using the rails
command, you are in fact using a Rails generator. After that, you can get a list of all available generators by just invoking rails generate
:
You will get a list of all generators that comes with Rails. If you need a detailed description of the helper generator, for example, you can simply do:
Since Rails 3.0, generators are built on top of Thor. Thor provides powerful options parsing and a great API for manipulating files. For instance, let's build a generator that creates an initializer file named initializer.rb
inside config/initializers
.
The first step is to create a file at lib/generators/initializer_generator.rb
with the following content:
create_file
is a method provided by Thor::Actions
. Documentation for create_file
and other Thor methods can be found in Thor's documentation
Our new generator is quite simple: it inherits from Rails::Generators::Base
and has one method definition. When a generator is invoked, each public method in the generator is executed sequentially in the order that it is defined. Finally, we invoke the create_file
method that will create a file at the given destination with the given content. If you are familiar with the Rails Application Templates API, you'll feel right at home with the new generators API.
To invoke our new generator, we just need to do:
Before we go on, let's see our brand new generator description:
Rails is usually able to generate good descriptions if a generator is namespaced, as ActiveRecord::Generators::ModelGenerator
, but not in this particular case. We can solve this problem in two ways. The first one is calling desc
inside our generator:
Now we can see the new description by invoking --help
on the new generator. The second way to add a description is by creating a file named USAGE
in the same directory as our generator. We are going to do that in the next step.
Generators themselves have a generator:
This is the generator just created:
First, notice that we are inheriting from Rails::Generators::NamedBase
instead of Rails::Generators::Base
. This means that our generator expects at least one argument, which will be the name of the initializer, and will be available in our code in the variable name
.
We can see that by invoking the description of this new generator (don't forget to delete the old generator file):
We can also see that our new generator has a class method called source_root
. This method points to where our generator templates will be placed, if any, and by default it points to the created directory lib/generators/initializer/templates
.
In order to understand what a generator template means, let's create the file lib/generators/initializer/templates/initializer.rb
with the following content:
And now let's change the generator to copy this template when invoked:
And let's execute our generator:
We can see that now an initializer named core_extensions was created at config/initializers/core_extensions.rb
with the contents of our template. That means that copy_file
copied a file in our source root to the destination path we gave. The method file_name
is automatically created when we inherit from Rails::Generators::NamedBase
.
The methods that are available for generators are covered in the final section of this guide.
When you run rails generate initializer core_extensions
Rails requires these files in turn until one is found:
If none is found you get an error message.
The examples above put files under the application's lib
because said directory belongs to $LOAD_PATH
.
Rails own generators are flexible enough to let you customize scaffolding. They can be configured in config/application.rb
, these are some defaults:
Before we customize our workflow, let's first see what our scaffold looks like:
Looking at this output, it's easy to understand how generators work in Rails 3.0 and above. The scaffold generator doesn't actually generate anything, it just invokes others to do the work. This allows us to add/replace/remove any of those invocations. For instance, the scaffold generator invokes the scaffold_controller generator, which invokes erb, test_unit and helper generators. Since each generator has a single responsibility, they are easy to reuse, avoiding code duplication.
Our first customization on the workflow will be to stop generating stylesheets and test fixtures for scaffolds. We can achieve that by changing our configuration to the following:
If we generate another resource with the scaffold generator, we can see that neither stylesheets nor fixtures are created anymore. If you want to customize it further, for example to use DataMapper and RSpec instead of Active Record and TestUnit, it's just a matter of adding their gems to your application and configuring your generators.
To demonstrate this, we are going to create a new helper generator that simply adds some instance variable readers. First, we create a generator within the rails namespace, as this is where rails searches for generators used as hooks:
After that, we can delete both the templates
directory and the source_root
class method call from our new generator, because we are not going to need them. Add the method below, so our generator looks like the following:
We can try out our new generator by creating a helper for users:
And it will generate the following helper file in app/helpers
:
Which is what we expected. We can now tell scaffold to use our new helper generator by editing config/application.rb
once again:
and see it in action when invoking the generator:
We can notice on the output that our new helper was invoked instead of the Rails default. However one thing is missing, which is tests for our new generator and to do that, we are going to reuse old helpers test generators.
Since Rails 3.0, this is easy to do due to the hooks concept. Our new helper does not need to be focused in one specific test framework, it can simply provide a hook and a test framework just needs to implement this hook in order to be compatible.
To do that, we can change the generator this way:
Now, when the helper generator is invoked and TestUnit is configured as the test framework, it will try to invoke both Rails::TestUnitGenerator
and TestUnit::MyHelperGenerator
. Since none of those are defined, we can tell our generator to invoke TestUnit::Generators::HelperGenerator
instead, which is defined since it's a Rails generator. To do that, we just need to add:
And now you can re-run scaffold for another resource and see it generating tests as well!
In the step above we simply wanted to add a line to the generated helper, without adding any extra functionality. There is a simpler way to do that, and it's by replacing the templates of already existing generators, in that case Rails::Generators::HelperGenerator
.
In Rails 3.0 and above, generators don't just look in the source root for templates, they also search for templates in other paths. And one of them is lib/templates
. Since we want to customize Rails::Generators::HelperGenerator
, we can do that by simply making a template copy inside lib/templates/rails/helper
with the name helper.rb
. So let's create that file with the following content:
and revert the last change in config/application.rb
:
If you generate another resource, you can see that we get exactly the same result! This is useful if you want to customize your scaffold templates and/or layout by just creating edit.html.erb
, index.html.erb
and so on inside lib/templates/erb/scaffold
.
One last feature about generators which is quite useful for plugin generators is fallbacks. For example, imagine that you want to add a feature on top of TestUnit like shoulda does. Since TestUnit already implements all generators required by Rails and shoulda just wants to overwrite part of it, there is no need for shoulda to reimplement some generators again, it can simply tell Rails to use a TestUnit
generator if none was found under the Shoulda
namespace.
We can easily simulate this behavior by changing our config/application.rb
once again:
Now, if you create a Comment scaffold, you will see that the shoulda generators are being invoked, and at the end, they are just falling back to TestUnit generators:
Fallbacks allow your generators to have a single responsibility, increasing code reuse and reducing the amount of duplication.
Now that you've seen how generators can be used inside an application, did you know they can also be used to generate applications too? This kind of generator is referred as a "template". This is a brief overview of the Templates API. For detailed documentation see the Rails Application Templates guide.
In the above template we specify that the application relies on the rspec-rails
and cucumber-rails
gem so these two will be added to the test
group in the Gemfile
. Then we pose a question to the user about whether or not they would like to install Devise. If the user replies "y" or "yes" to this question, then the template will add Devise to the Gemfile
outside of any group and then runs the devise:install
generator. This template then takes the users input and runs the devise
generator, with the user's answer from the last question being passed to this generator.
Imagine that this template was in a file called template.rb
. We can use it to modify the outcome of the rails new
command by using the -m
option and passing in the filename:
This command will generate the Thud
application, and then apply the template to the generated output.
Templates don't have to be stored on the local system, the -m
option also supports online templates:
Whilst the final section of this guide doesn't cover how to generate the most awesome template known to man, it will take you through the methods available at your disposal so that you can develop it yourself. These same methods are also available for generators.
The following are methods available for both generators and templates for Rails.
Methods provided by Thor are not covered this guide and can be found in Thor's documentation
gem
Specifies a gem dependency of the application.
Available options are:
:group
- The group in the Gemfile
where this gem should go.:version
- The version string of the gem you want to use. Can also be specified as the second argument to the method.:git
- The URL to the git repository for this gem.Any additional options passed to this method are put on the end of the line:
The above code will put the following line into Gemfile
:
gem_group
Wraps gem entries inside a group:
add_source
Adds a specified source to Gemfile
:
inject_into_file
Injects a block of code into a defined position in your file.
gsub_file
Replaces text inside a file.
Regular Expressions can be used to make this method more precise. You can also use append_file and prepend_file in the same way to place code at the beginning and end of a file respectively.
application
Adds a line to config/application.rb
directly after the application class definition.
This method can also take a block:
Available options are:
:env
- Specify an environment for this configuration option. If you wish to use this option with the block syntax the recommended syntax is as follows:git
Runs the specified git command:
The values of the hash here being the arguments or options passed to the specific git command. As per the final example shown here, multiple git commands can be specified at a time, but the order of their running is not guaranteed to be the same as the order that they were specified in.
vendor
Places a file into vendor
which contains the specified code.
This method also takes a block:
lib
Places a file into lib
which contains the specified code.
This method also takes a block:
rakefile
Creates a Rake file in the lib/tasks
directory of the application.
This method also takes a block:
initializer
Creates an initializer in the config/initializers
directory of the application:
This method also takes a block, expected to return a string:
generate
Runs the specified generator where the first argument is the generator name and the remaining arguments are passed directly to the generator.
rake
Runs the specified Rake task.
Available options are:
:env
- Specifies the environment in which to run this rake task.:sudo
- Whether or not to run this task using sudo
. Defaults to false
.capify!
Runs the capify
command from Capistrano at the root of the application which generates Capistrano configuration.
route
Adds text to the config/routes.rb
file:
readme
Output the contents of a file in the template's source_path
, usually a README.
Ruby on Rails uses GitHub Issue Tracking to track issues (primarily bugs and contributions of new code). If you've found a bug in Ruby on Rails, this is the place to start. You'll need to create a (free) GitHub account in order to submit an issue, to comment on them or to create pull requests.
Bugs in the most recent released version of Ruby on Rails are likely to get the most attention. Also, the Rails core team is always interested in feedback from those who can take the time to test edge Rails (the code for the version of Rails that is currently under development). Later in this guide you'll find out how to get edge Rails for testing.
If you've found a problem in Ruby on Rails which is not a security risk, do a search in GitHub under Issues in case it was already reported. If you find no issue addressing it you can add a new one. (See the next section for reporting security issues.)
At the minimum, your issue report needs a title and descriptive text. But that's only a minimum. You should include as much relevant information as possible. You need at least to post the code sample that has the issue. Even better is to include a unit test that shows how the expected behavior is not occurring. Your goal should be to make it easy for yourself — and others — to replicate the bug and figure out a fix.
Then, don't get your hopes up! Unless you have a "Code Red, Mission Critical, the World is Coming to an End" kind of bug, you're creating this issue report in the hope that others with the same problem will be able to collaborate with you on solving it. Do not expect that the issue report will automatically see any activity or that others will jump to fix it. Creating an issue like this is mostly to help yourself start on the path of fixing the problem and for others to confirm it with an "I'm having this problem too" comment.
If you are filing a bug report, please use Active Record template for gems or Action Controller template for gems if the bug is found in a published gem, and Active Record template for master or Action Controller template for master if the bug happens in the master branch.
Please do not report security vulnerabilities with public GitHub issue reports. The Rails security policy page details the procedure to follow for security issues.
Please don't put "feature request" items into GitHub Issues. If there's a new feature that you want to see added to Ruby on Rails, you'll need to write the code yourself - or convince someone else to partner with you to write the code. Later in this guide you'll find detailed instructions for proposing a patch to Ruby on Rails. If you enter a wishlist item in GitHub Issues with no code, you can expect it to be marked "invalid" as soon as it's reviewed.
Sometimes, the line between 'bug' and 'feature' is a hard one to draw. Generally, a feature is anything that adds new behavior, while a bug is anything that fixes already existing behavior that is mis-behaving. Sometimes, the core team will have to make a judgement call. That said, the distinction generally just affects which release your patch will get in to; we love feature submissions! They just won't get backported to maintenance branches.
If you'd like feedback on an idea for a feature before doing the work for make a patch, please send an email to the rails-core mailing list. You might get no response, which means that everyone is indifferent. You might find someone who's also interested in building that feature. You might get a "This won't be accepted." But it's the proper place to discuss new ideas. GitHub Issues are not a particularly good venue for the sometimes long and involved discussions new features require.
To move on from submitting bugs to helping resolve existing issues or contributing your own code to Ruby on Rails, you must be able to run its test suite. In this section of the guide you'll learn how to set up the tests on your own computer.
The easiest and recommended way to get a development environment ready to hack is to use the Rails development box.
In case you can't use the Rails development box, see section above, check this other guide.
The --dev
flag of rails new
generates an application that uses your local branch:
The application generated in ~/my-test-app
runs against your local branch and in particular sees any modifications upon server reboot.
This is how you run the Active Record test suite only for SQLite3:
You can now run the tests as you did for sqlite3
. The tasks are respectively
Finally,
will now run the four of them in turn.
You can also run any single test separately:
You can invoke test_jdbcmysql
, test_jdbcsqlite3
or test_jdbcpostgresql
also. See the file activerecord/RUNNING_UNIT_TESTS.rdoc
for information on running more targeted database tests, or the file ci/travis.rb
for the test suite run by the continuous integration server.
The test suite runs with warnings enabled. Ideally, Ruby on Rails should issue no warnings, but there may be a few, as well as some from third-party libraries. Please ignore (or fix!) them, if any, and submit patches that do not issue new warnings.
As of this writing (December, 2010) they are especially noisy with Ruby 1.9. If you are sure about what you are doing and would like to have a more clear output, there's a way to override the flag:
If you want to add a fix to older versions of Ruby on Rails, you'll need to set up and switch to your own local tracking branch. Here is an example to switch to the 3-0-stable branch:
You may want to put your Git branch name in your shell prompt to make it easier to remember which version of the code you're working with.
As a next step beyond reporting issues, you can help the core team resolve existing issues. If you check the Everyone's Issues list in GitHub Issues, you'll find lots of issues already requiring attention. What can you do for these? Quite a bit, actually:
For starters, it helps just to verify bug reports. Can you reproduce the reported issue on your own computer? If so, you can add a comment to the issue saying that you're seeing the same thing.
If something is very vague, can you help squash it down into something specific? Maybe you can provide additional information to help reproduce a bug, or help by eliminating needless steps that aren't required to demonstrate the problem.
If you find a bug report without a test, it's very useful to contribute a failing test. This is also a great way to get started exploring the source code: looking at the existing test files will teach you how to write more tests. New tests are best contributed in the form of a patch, as explained later on in the "Contributing to the Rails Code" section.
Anything you can do to make bug reports more succinct or easier to reproduce is a help to folks trying to write code to fix those bugs - whether you end up writing the code yourself or not.
You can also help out by examining pull requests that have been submitted to Ruby on Rails via GitHub. To apply someone's changes you need first to create a dedicated branch:
Then you can use their remote branch to update your codebase. For example, let's say the GitHub user JohnSmith has forked and pushed to a topic branch "orange" located at https://github.com/JohnSmith/rails.
After applying their branch, test it out! Here are some things to think about:
Once you're happy that the pull request contains a good change, comment on the GitHub issue indicating your approval. Your comment should indicate that you like the change and what you like about it. Something like:
I like the way you've restructured that code in generate_finder_sql — much nicer. The tests look good too.
If your comment simply says "+1", then odds are that other reviewers aren't going to take it too seriously. Show that you took the time to review the pull request.
Ruby on Rails has two main sets of documentation: the guides help you in learning about Ruby on Rails, and the API is a reference.
You can help improve the Rails guides by making them more coherent, consistent or readable, adding missing information, correcting factual errors, fixing typos, or bringing it up to date with the latest edge Rails. To get involved in the translation of Rails guides, please see Translating Rails Guides.
You can either open a pull request to Rails or ask the Rails core team for commit access on docrails if you contribute regularly. Please do not open pull requests in docrails, if you'd like to get feedback on your change, ask for it in Rails instead.
Docrails is merged with master regularly, so you are effectively editing the Ruby on Rails documentation.
If you are unsure of the documentation changes, you can create an issue in the Rails issues tracker on GitHub.
When working with documentation, please take into account the API Documentation Guidelines and the Ruby on Rails Guides Guidelines.
As explained earlier, ordinary code patches should have proper documentation coverage. Docrails is only used for isolated documentation improvements.
To help our CI servers you can add [ci skip] to your documentation commit message to skip build on that commit. Please remember to use it for commits containing only documentation changes.
Docrails has a very strict policy: no code can be touched whatsoever, no matter how trivial or small the change. Only RDoc and guides can be edited via docrails. Also, CHANGELOGs should never be edited in docrails.
The first thing you need to do to be able to contribute code is to clone the repository:
and create a dedicated branch:
It doesn’t matter much what name you use, because this branch will only exist on your local computer and your personal repository on GitHub. It won't be part of the Rails Git repository.
Now get busy and add or edit code. You’re on your branch now, so you can write whatever you want (you can check to make sure you’re on the right branch with git branch -a
). But if you’re planning to submit your change back for inclusion in Rails, keep a few things in mind:
It is not customary in Rails to run the full test suite before pushing changes. The railties test suite in particular takes a long time, and even more if the source code is mounted in /vagrant
as happens in the recommended workflow with the rails-dev-box.
As a compromise, test what your code obviously affects, and if the change is not in railties run the whole test suite of the affected component. If all is green that's enough to propose your contribution. We have Travis CI as a safety net for catching unexpected breakages elsewhere.
Changes that are cosmetic in nature and do not add anything substantial to the stability, functionality, or testability of Rails will generally not be accepted.
Rails follows a simple set of coding style conventions:
{ a: :b }
over { :a => :b }
.&&
/||
over and
/or
.MyClass.my_method(my_arg)
not my_method(my_arg)
or my_method my_arg
.a = b
and not a=b
.method { do_stuff }
instead of method{do_stuff}
for single-line blocks.The above are guidelines — please use your best judgment in using them.
The CHANGELOG is an important part of every release. It keeps the list of changes for every Rails version.
You should add an entry to the CHANGELOG of the framework that you modified if you're adding or removing a feature, committing a bug fix or adding deprecation notices. Refactorings and documentation changes generally should not go to the CHANGELOG.
A CHANGELOG entry should summarize what was changed and should end with author's name. You can use multiple lines if you need more space and you can attach code examples indented with 4 spaces. If a change is related to a specific issue, you should attach issue's number. Here is an example CHANGELOG entry:
Your name can be added directly after the last word if you don't provide any code examples or don't need multiple paragraphs. Otherwise, it's best to make as a new paragraph.
You should not be the only person who looks at the code before you submit it. If you know someone else who uses Rails, try asking them if they'll check out your work. If you don't know anyone else using Rails, try hopping into the IRC room or posting about your idea to the rails-core mailing list. Doing this in private before you push a patch out publicly is the “smoke test” for a patch: if you can’t convince one other developer of the beauty of your code, you’re unlikely to convince the core team either.
When you're happy with the code on your computer, you need to commit the changes to Git:
At this point, your editor should be fired up and you can write a message for this commit. Well formatted and descriptive commit messages are extremely helpful for the others, especially when figuring out why given change was made, so please take the time to write it.
Good commit message should be formatted according to the following example:
Please squash your commits into a single commit when appropriate. This simplifies future cherry picks, and also keeps the git log clean.
It’s pretty likely that other changes to master have happened while you were working. Go get them:
Now reapply your patch on top of the latest changes:
No conflicts? Tests still pass? Change still seems reasonable to you? Then move on.
Navigate to the Rails GitHub repository and press "Fork" in the upper right hand corner.
Add the new remote to your local repository on your local machine:
Push to your remote:
You might have cloned your forked repository into your machine and might want to add the original Rails repository as a remote instead, if that's the case here's what you have to do.
In the directory you cloned your fork:
Download new commits and branches from the official repository:
Merge the new content:
Update your fork:
If you want to update another branch:
Navigate to the Rails repository you just pushed to (e.g. https://github.com/your-user-name/rails) and click on "Pull Requests" seen in the right panel. On the next page, press "New pull request" in the upper right hand corner.
Click on "Edit", if you need to change the branches being compared (it compares "master" by default) and press "Click to create a pull request for this comparison".
Ensure the changesets you introduced are included. Fill in some details about your potential patch including a meaningful title. When finished, press "Send pull request". The Rails core team will be notified about your submission.
Most pull requests will go through a few iterations before they get merged. Different contributors will sometimes have different opinions, and often patches will need revised before they can get merged.
Some contributors to Rails have email notifications from GitHub turned on, but others do not. Furthermore, (almost) everyone who works on Rails is a volunteer, and so it may take a few days for you to get your first feedback on a pull request. Don't despair! Sometimes it's quick, sometimes it's slow. Such is the open source life.
If it's been over a week, and you haven't heard anything, you might want to try and nudge things along. You can use the rubyonrails-core mailing list for this. You can also leave another comment on the pull request.
While you're waiting for feedback on your pull request, open up a few other pull requests and give someone else some! I'm sure they'll appreciate it in the same way that you appreciate feedback on your patches.
It’s entirely possible that the feedback you get will suggest changes. Don’t get discouraged: the whole point of contributing to an active open source project is to tap into community knowledge. If people are encouraging you to tweak your code, then it’s worth making the tweaks and resubmitting. If the feedback is that your code doesn’t belong in the core, you might still think about releasing it as a gem.
One of the things that we may ask you to do is "squash your commits," which will combine all of your commits into a single commit. We prefer pull requests that are a single commit. This makes it easier to backport changes to stable branches, squashing makes it easier to revert bad commits, and the git history can be a bit easier to follow. Rails is a large project, and a bunch of extraneous commits can add a lot of noise.
In order to do this, you'll need to have a git remote that points at the main Rails repository. This is useful anyway, but just in case you don't have it set up, make sure that you do this first:
You can call this remote whatever you'd like, but if you don't use upstream
, then change the name to your own in the instructions below.
Given that your remote branch is called my_pull_request
, then you can do the following:
You should be able to refresh the pull request on GitHub and see that it has been updated.
Changes that are merged into master are intended for the next major release of Rails. Sometimes, it might be beneficial for your changes to propagate back to the maintenance releases for older stable branches. Generally, security fixes and bug fixes are good candidates for a backport, while new features and patches that introduce a change in behavior will not be accepted. When in doubt, it is best to consult a Rails team member before backporting your changes to avoid wasted effort.
For simple fixes, the easiest way to backport your changes is to extract a diff from your changes in master and apply them to the target branch.
First make sure your changes are the only difference between your current branch and master:
Then extract the diff:
Switch over to the target branch and apply your changes:
This works well for simple changes. However, if your changes are complicated or if the code in master has deviated significantly from your target branch, it might require more work on your part. The difficulty of a backport varies greatly from case to case, and sometimes it is simply not worth the effort.
Once you have resolved all conflicts and made sure all the tests are passing, push your changes and open a separate pull request for your backport. It is also worth noting that older branches might have a different set of build targets than master. When possible, it is best to first test your backport locally against the Ruby versions listed in .travis.yml
before submitting your pull request.
And then... think about your next contribution!
All contributions, either via master or docrails, get credit in Rails Contributors.
The Rails API documentation is generated with RDoc. Please consult the documentation for help with the markup, and also take into account these additional directives.
Write simple, declarative sentences. Brevity is a plus: get to the point.
Write in present tense: "Returns a hash that...", rather than "Returned a hash that..." or "Will return a hash that...".
Start comments in upper case. Follow regular punctuation rules:
Communicate to the reader the current way of doing things, both explicitly and implicitly. Use the idioms recommended in edge. Reorder sections to emphasize favored approaches if needed, etc. The documentation should be a model for best practices and canonical, modern Rails usage.
Documentation has to be concise but comprehensive. Explore and document edge cases. What happens if a module is anonymous? What if a collection is empty? What if an argument is nil?
The proper names of Rails components have a space in between the words, like "Active Support". ActiveRecord
is a Ruby module, whereas Active Record is an ORM. All Rails documentation should consistently refer to Rails components by their proper name, and if in your next blog post or presentation you remember this tidbit and take it into account that'd be phenomenal.
Spell names correctly: Arel, Test::Unit, RSpec, HTML, MySQL, JavaScript, ERB. When in doubt, please have a look at some authoritative source like their official documentation.
Use the article "an" for "SQL", as in "an SQL statement". Also "an SQLite database".
When using pronouns in reference to a hypothetical person, such as "a user with a session cookie", gender neutral pronouns (they/their/them) should be used. Instead of:
Please use American English (color, center, modularize, etc).. See a list of American and British English spelling differences here.
Choose meaningful examples that depict and cover the basics as well as interesting points or gotchas.
Use two spaces to indent chunks of code--that is, for markup purposes, two spaces with respect to the left margin. The examples themselves should use Rails coding conventions.
Short docs do not need an explicit "Examples" label to introduce snippets; they just follow paragraphs:
On the other hand, big chunks of structured documentation may have a separate "Examples" section:
The results of expressions follow them and are introduced by "# => ", vertically aligned:
If a line is too long, the comment may be placed on the next line:
Avoid using any printing methods like puts
or p
for that purpose.
On the other hand, regular comments do not use an arrow:
As a rule of thumb, use filenames relative to the application root:
Use fixed-width fonts for:
nil
, false
, true
, self
.Using a pair of +...+
for fixed-width font only works with words; that is: anything matching \A\w+\z
. For anything else use <tt>...</tt>
, notably symbols, setters, inline snippets, etc.
When "true" and "false" are English words rather than Ruby keywords use a regular font:
In lists of options, parameters, etc. use a hyphen between the item and its description (reads better than a colon because normally options are symbols):
The description starts in upper case and ends with a full stop—it's standard English.
Methods created with (module|class)_eval(STRING)
have a comment by their side with an instance of the generated code. That comment is 2 spaces away from the template:
If the resulting lines are too wide, say 200 columns or more, put the comment above the call:
Guides are written in GitHub Flavored Markdown. There is comprehensive documentation for Markdown, a cheatsheet, and additional documentation on the differences from traditional Markdown.
Each guide should start with motivational text at the top (that's the little introduction in the blue area). The prologue should tell the reader what the guide is about, and what they will learn. See for example the Routing Guide.
The title of every guide uses h1
; guide sections use h2
; subsections h3
; etc. However, the generated HTML output will have the heading tag starting from <h2>
.
Capitalize all words except for internal articles, prepositions, conjunctions, and forms of the verb to be:
Use the same typography as in regular text:
The guides and the API should be coherent and consistent where appropriate. Please have a look at these particular sections of the API Documentation Guidelines
Those guidelines apply also to guides.
Before generating the guides, make sure that you have the latest version of Bundler installed on your system. As of this writing, you must install Bundler 1.3.5 on your device.
To install the latest version of Bundler, simply run the gem install bundler
command
To generate all the guides, just cd
into the guides
directory, run bundle install
and execute:
or
To process my_guide.md
and nothing else use the ONLY
environment variable:
By default, guides that have not been modified are not processed, so ONLY
is rarely needed in practice.
To force processing all the guides, pass ALL=1
.
It is also recommended that you work with WARNINGS=1
. This detects duplicate IDs and warns about broken internal links.
If you want to generate guides in a language other than English, you can keep them in a separate directory under source
(eg. source/es
) and use the GUIDES_LANGUAGE
environment variable:
If you want to see all the environment variables you can use to configure the generation script just run:
Please validate the generated HTML with:
Particularly, titles get an ID generated from their content and this often leads to duplicates. Please set WARNINGS=1
when generating guides to detect them. The warning messages suggest a solution.
To generate guides for the Kindle, use the following rake task:
New features are only added to the master branch and will not be made available in point releases.
Only the latest release series will receive bug fixes. When enough bugs are fixed and its deemed worthy to release a new gem, this is the branch it happens from.
Currently included series: 4.0.z
The current release series and the next most recent one will receive patches and new versions in case of a security issue.
These releases are created by taking the last released version, applying the security patches, and releasing. Those patches are then applied to the end of the x-y-stable branch. For example, a theoretical 1.2.3 security release would be built from 1.2.2, and then added to the end of 1-2-stable. This means that security releases are easy to upgrade to if you're running the latest version of Rails.
Currently included series: 4.0.z, 3.2.z
For severe security issues we will provide new versions as above, and also the last major release series will receive patches and new versions. The classification of the security issue is judged by the core team.
Currently included series: 4.0.z, 3.2.z
When a release series is no longer supported, it's your own responsibility to deal with bugs and security issues. We may provide backports of the fixes and publish them to git, however there will be no new versions released. If you are not comfortable maintaining your own versions, you should upgrade to a supported version.
Before attempting to upgrade an existing application, you should be sure you have a good reason to upgrade. You need to balance out several factors: the need for new features, the increasing difficulty of finding support for old code, and your available time and skills, to name a few.
The best way to be sure that your application still works after upgrading is to have good test coverage before you start the process. If you don't have automated tests that exercise the bulk of your application, you'll need to spend time manually exercising all the parts that have changed. In the case of a Rails upgrade, that will mean every single piece of functionality in the application. Do yourself a favor and make sure your test coverage is good before you start an upgrade.
Rails generally stays close to the latest released Ruby version when it's released:
Ruby 1.8.7 p248 and p249 have marshaling bugs that crash Rails. Ruby Enterprise Edition has these fixed since the release of 1.8.7-2010.02. On the 1.9 front, Ruby 1.9.1 is not usable because it outright segfaults, so if you want to use 1.9.x, jump straight to 1.9.3 for smooth sailing.
This section is a work in progress.
If your application is currently on any version of Rails older than 3.2.x, you should upgrade to Rails 3.2 before attempting one to Rails 4.0.
The following changes are meant for upgrading your application to Rails 4.0.
Rails 4.0 removed the assets
group from Gemfile. You'd need to remove that line from your Gemfile when upgrading. You should also update your application file (in config/application.rb
):
Rails 4.0 no longer supports loading plugins from vendor/plugins
. You must replace any plugins by extracting them to gems and adding them to your Gemfile. If you choose not to make them gems, you can move them into, say, lib/my_plugin/*
and add an appropriate initializer in config/initializers/my_plugin.rb
.
config.active_record.identity_map
.delete
method in collection associations can now receive Fixnum
or String
arguments as record ids, besides records, pretty much like the destroy
method does. Previously it raised ActiveRecord::AssociationTypeMismatch
for such arguments. From Rails 4.0 on delete
automatically tries to find the records matching the given ids before deleting them.serialized_attributes
and attr_readonly
to class methods only. You shouldn't use instance methods since it's now deprecated. You should change them to use class methods, e.g. self.serialized_attributes
to self.class.serialized_attributes
.attr_accessible
and attr_protected
feature in favor of Strong Parameters. You can use the Protected Attributes gem to a smoothly upgrade path.whitelist_attributes
or mass_assignment_sanitizer
options.ActiveRecord::Fixtures
in favor of ActiveRecord::FixtureSet
.ActiveRecord::TestCase
in favor of ActiveSupport::TestCase
.find_by_...
and find_by_...!
are deprecated. Here's how you can handle the changes: find_all_by_...
becomes where(...)
.find_last_by_...
becomes where(...).last
.scoped_by_...
becomes where(...)
.find_or_initialize_by_...
becomes find_or_initialize_by(...)
.find_or_create_by_...
becomes find_or_create_by(...)
.Rails 4.0 extracted Active Resource to its own gem. If you still need the feature you can add the Active Resource gem in your Gemfile.
ActiveModel::Validations::ConfirmationValidator
. Now when confirmation validations fail, the error will be attached to :#{attribute}_confirmation
instead of attribute
.ActiveModel::Serializers::JSON.include_root_in_json
default value to false
. Now, Active Model Serializers and Active Record objects have the same default behaviour. This means that you can comment or remove the following option in the config/initializers/wrap_parameters.rb
file:ActiveSupport::KeyGenerator
and uses this as a base from which to generate and verify signed cookies (among other things). Existing signed cookies generated with Rails 3.x will be transparently upgraded if you leave your existing secret_token
in place and add the new secret_key_base
.Please note that you should wait to set secret_key_base
until you have 100% of your userbase on Rails 4.x and are reasonably sure you will not need to rollback to Rails 3.x. This is because cookies signed based on the new secret_key_base
in Rails 4.x are not backwards compatible with Rails 3.x. You are free to leave your existing secret_token
in place, not set the new secret_key_base
, and ignore the deprecation warnings until you are reasonably sure that your upgrade is otherwise complete.
If you are relying on the ability for external applications or Javascript to be able to read your Rails app's signed session cookies (or signed cookies in general) you should not set secret_key_base
until you have decoupled these concerns.
secret_key_base
has been set. Rails 3.x signed, but did not encrypt, the contents of cookie-based session. Signed cookies are "secure" in that they are verified to have been generated by your app and are tamper-proof. However, the contents can be viewed by end users, and encrypting the contents eliminates this caveat/concern without a significant performance penalty.Please read Pull Request #9978 for details on the move to encrypted session cookies.
ActionController::Base.asset_path
option. Use the assets pipeline feature.ActionController::Base.page_cache_extension
option. Use ActionController::Base.default_static_extension
instead.actionpack-action_caching
gem in order to use caches_action
and the actionpack-page_caching
to use caches_pages
in your controllers.actionpack-xml_parser
gem if you require this feature.memcache-client
to dalli
. To upgrade, simply add gem 'dalli'
to your Gemfile
.dom_id
and dom_class
methods in controllers (they are fine in views). You will need to include the ActionView::RecordIdentifier
module in controllers requiring this feature.:confirm
option for the link_to
helper. You should instead rely on a data attribute (e.g. data: { confirm: 'Are you sure?' }
). This deprecation also concerns the helpers based on this one (such as link_to_if
or link_to_unless
).assert_generates
, assert_recognizes
, and assert_routing
work. Now all these assertions raise Assertion
instead of ActionController::RoutingError
.ArgumentError
if clashing named routes are defined. This can be triggered by explicitly defined named routes or by the resources
method. Here are two examples that clash with routes named example_path
:In the first case, you can simply avoid using the same name for multiple routes. In the second, you can use the only
or except
options provided by the resources
method to restrict the routes created as detailed in the Routing Guide.
becomes
match
must specify the request method. For example:ActionDispatch::BestStandardsSupport
middleware, <!DOCTYPE html>
already triggers standards mode per http://msdn.microsoft.com/en-us/library/jj676915(v=vs.85).aspx and ChromeFrame header has been moved to config.action_dispatch.default_headers
.Remember you must also remove any references to the middleware from your application code, for example:
Also check your environment settings for config.action_dispatch.best_standards_support
and remove it if present.
vendor/assets
and lib/assets
. Rails application and engine developers should put these assets in app/assets
or configure config.assets.precompile
.ActionController::UnknownFormat
is raised when the action doesn't handle the request format. By default, the exception is handled by responding with 406 Not Acceptable, but you can override that now. In Rails 3, 406 Not Acceptable was always returned. No overrides.ActionDispatch::ParamsParser::ParseError
exception is raised when ParamsParser
fails to parse request params. You will want to rescue this exception instead of the low-level MultiJson::DecodeError
, for example.SCRIPT_NAME
is properly nested when engines are mounted on an app that's served from a URL prefix. You no longer have to set default_url_options[:script_name]
to work around overwritten URL prefixes.ActionController::Integration
in favor of ActionDispatch::Integration
.ActionController::IntegrationTest
in favor of ActionDispatch::IntegrationTest
.ActionController::PerformanceTest
in favor of ActionDispatch::PerformanceTest
.ActionController::AbstractRequest
in favor of ActionDispatch::Request
.ActionController::Request
in favor of ActionDispatch::Request
.ActionController::AbstractResponse
in favor of ActionDispatch::Response
.ActionController::Response
in favor of ActionDispatch::Response
.ActionController::Routing
in favor of ActionDispatch::Routing
.Rails 4.0 removes the j
alias for ERB::Util#json_escape
since j
is already used for ActionView::Helpers::JavaScriptHelper#escape_javascript
.
The order in which helpers from more than one directory are loaded has changed in Rails 4.0. Previously, they were gathered and then sorted alphabetically. After upgrading to Rails 4.0, helpers will preserve the order of loaded directories and will be sorted alphabetically only within each directory. Unless you explicitly use the helpers_path
parameter, this change will only impact the way of loading helpers from engines. If you rely on the ordering, you should check if correct methods are available after upgrade. If you would like to change the order in which engines are loaded, you can use config.railties_order=
method.
Active Record Observer and Action Controller Sweeper have been extracted to the rails-observers
gem. You will need to add the rails-observers
gem if you require these features.
assets:precompile:primary
has been removed. Use assets:precompile
instead.config.assets.compress
option should be changed to config.assets.js_compressor
like so for instance:asset_url
with two arguments is deprecated. For example: asset-url("rails.png", image)
becomes asset-url("rails.png")
If your application is currently on any version of Rails older than 3.1.x, you should upgrade to Rails 3.1 before attempting an update to Rails 3.2.
The following changes are meant for upgrading your application to Rails 3.2.12, the latest 3.2.x version of Rails.
Make the following changes to your Gemfile
.
There are a couple of new configuration settings that you should add to your development environment:
The mass_assignment_sanitizer
configuration setting should also be be added to config/environments/test.rb
:
Rails 3.2 deprecates vendor/plugins
and Rails 4.0 will remove them completely. While it's not strictly necessary as part of a Rails 3.2 upgrade, you can start replacing any plugins by extracting them to gems and adding them to your Gemfile. If you choose not to make them gems, you can move them into, say, lib/my_plugin/*
and add an appropriate initializer in config/initializers/my_plugin.rb
.
If your application is currently on any version of Rails older than 3.0.x, you should upgrade to Rails 3.0 before attempting an update to Rails 3.1.
The following changes are meant for upgrading your application to Rails 3.1.11, the latest 3.1.x version of Rails.
Make the following changes to your Gemfile
.
The asset pipeline requires the following additions:
If your application is using an "/assets" route for a resource you may want change the prefix used for assets to avoid conflicts:
Remove the RJS setting config.action_view.debug_rjs = true
.
Add these settings if you enable the asset pipeline:
Again, most of the changes below are for the asset pipeline. You can read more about these in the Asset Pipeline guide.
You can help test performance with these additions to your test environment:
Add this file with the following contents, if you wish to wrap parameters into a nested hash. This is on by default in new applications.
You need to change your session key to something new, or remove all sessions:
or
If you're upgrading an existing application, it's a great idea to have good test coverage before going in. You should also first upgrade to Rails 3.2 in case you haven't and make sure your application still runs as expected before attempting an update to Rails 4.0. A list of things to watch out for when upgrading is available in the Upgrading to Rails guide.
Rails now uses a Gemfile
in the application root to determine the gems you require for your application to start. This Gemfile
is processed by the Bundler gem, which then installs all your dependencies. It can even install all the dependencies locally to your application so that it doesn't depend on the system gems.
More information: Bundler homepage
Bundler
and Gemfile
makes freezing your Rails application easy as pie with the new dedicated bundle
command. If you want to bundle straight from the Git repository, you can pass the --edge
flag:
If you have a local checkout of the Rails repository and want to generate an application using that, you can pass the --dev
flag:
Give a list and then talk about each of them briefly. We can point to relevant code commits or documentation from these sections.
In Rails 4.0, several features have been extracted into gems. You can simply add the extracted gems to your Gemfile
to bring the functionality back.
Please refer to the Changelog for detailed changes.
test/models
, test/helpers
, test/controllers
, and test/mailers
. Corresponding rake tasks added as well. (Pull Request)bin/
dir. Run rake rails:update:bin
to get bin/bundle
, bin/rails
, and bin/rake
.--builder
(or -b
) to rails new
has been removed. Consider using application templates instead. (Pull Request)config.threadsafe!
is deprecated in favor of config.eager_load
which provides a more fine grained control on what is eager loaded.Rails::Plugin
has gone. Instead of adding plugins to vendor/plugins
use gems or bundler with path or git dependencies.Please refer to the Changelog for detailed changes.
Please refer to the Changelog for detailed changes.
ActiveModel::ForbiddenAttributesProtection
, a simple module to protect attributes from mass assignment when non-permitted attributes are passed.ActiveModel::Model
, a mixin to make Ruby objects work with Action Pack out of box.Please refer to the Changelog for detailed changes.
memcache-client
gem with dalli
in ActiveSupport::Cache::MemCacheStore.singularize
and pluralize
accept locale as an extra argument.Object#try
will now return nil instead of raise a NoMethodError if the receiving object does not implement the method, but you can still get the old behavior by using the new Object#try!
.String#to_date
now raises ArgumentError: invalid date
instead of NoMethodError: undefined method 'div' for nil:NilClass
when given an invalid date. It is now the same as Date.parse
, and it accepts more invalid dates than 3.x, such as: ActiveSupport::TestCase#pending
method, use skip
from MiniTest instead.ActiveSupport::Benchmarkable#silence
has been deprecated due to its lack of thread safety. It will be removed without replacement in Rails 4.1.ActiveSupport::JSON::Variable
is deprecated. Define your own #as_json
and #encode_json
methods for custom JSON string literals.Module#local_constant_names
, use Module#local_constants
instead (which returns symbols).BufferedLogger
is deprecated. Use ActiveSupport::Logger
, or the logger from Ruby standard library.assert_present
and assert_blank
in favor of assert object.blank?
and assert object.present?
Please refer to the Changelog for detailed changes.
Please refer to the Changelog for detailed changes.
change
migrations, making the old up
& down
methods no longer necessary. drop_table
and remove_column
are now reversible, as long as the necessary information is given. The method remove_column
used to accept multiple column names; instead use remove_columns
(which is not revertible). The method change_table
is also reversible, as long as its block doesn't call remove
, change
or change_default
reversible
makes it possible to specify code to be run when migrating up or down. See the Guide on Migration revert
will revert a whole migration or the given block. If migrating down, the given migration / block is run normally. See the Guide on Migration Relation#load
to explicitly load the record and return self
.Model.all
now returns an ActiveRecord::Relation
, rather than an array of records. Use Relation#to_a
if you really want an array. In some specific cases, this may cause breakage when upgrading.ActiveRecord::Migration.check_pending!
that raises an error if migrations are pending.ActiveRecord::Store
. Now you can set your custom coder like this: mysql
and mysql2
connections will set SQL_MODE=STRICT_ALL_TABLES
by default to avoid silent data loss. This can be disabled by specifying strict: false
in your database.yml
.active_record.auto_explain_threshold_in_seconds
is no longer used and should be removed.ActiveRecord::NullRelation
and ActiveRecord::Relation#none
implementing the null object pattern for the Relation class.create_join_table
migration helper to create HABTM join tables.find_by_...
and find_by_...!
are deprecated. Here's how you can rewrite the code: find_all_by_...
can be rewritten using where(...)
.find_last_by_...
can be rewritten using where(...).last
.scoped_by_...
can be rewritten using where(...)
.find_or_initialize_by_...
can be rewritten using where(...).first_or_initialize
.find_or_create_by_...
can be rewritten using find_or_create_by(...)
or where(...).first_or_create
.find_or_create_by_...!
can be rewritten using find_or_create_by!(...)
or where(...).first_or_create!
.See the full list of contributors to Rails for the many people who spent many hours making Rails, the stable and robust framework it is. Kudos to all of them.
If you're upgrading an existing application, it's a great idea to have good test coverage before going in. You should also first upgrade to Rails 3.1 in case you haven't and make sure your application still runs as expected before attempting an update to Rails 3.2. Then take heed of the following changes:
Rails 3.2 requires Ruby 1.8.7 or higher. Support for all of the previous Ruby versions has been dropped officially and you should upgrade as early as possible. Rails 3.2 is also compatible with Ruby 1.9.2.
Note that Ruby 1.8.7 p248 and p249 have marshaling bugs that crash Rails. Ruby Enterprise Edition has these fixed since the release of 1.8.7-2010.02. On the 1.9 front, Ruby 1.9.1 is not usable because it outright segfaults, so if you want to use 1.9.x, jump on to 1.9.2 or 1.9.3 for smooth sailing.
rails = 3.2.0
sass-rails ~> 3.2.3
coffee-rails ~> 3.2.1
uglifier >= 1.0.3
vendor/plugins
and Rails 4.0 will remove them completely. You can start replacing these plugins by extracting them as gems and adding them in your Gemfile. If you choose not to make them gems, you can move them into, say, lib/my_plugin/*
and add an appropriate initializer in config/initializers/my_plugin.rb
.config/environments/development.rb
: mass_assignment_sanitizer
config also needs to be added in config/environments/test.rb
: Replace the code beneath the comment in script/rails
with the following content:
Rails now uses a Gemfile
in the application root to determine the gems you require for your application to start. This Gemfile
is processed by the Bundler gem, which then installs all your dependencies. It can even install all the dependencies locally to your application so that it doesn't depend on the system gems.
More information: Bundler homepage
Bundler
and Gemfile
makes freezing your Rails application easy as pie with the new dedicated bundle
command. If you want to bundle straight from the Git repository, you can pass the --edge
flag:
If you have a local checkout of the Rails repository and want to generate an application using that, you can pass the --dev
flag:
Rails 3.2 comes with a development mode that's noticeably faster. Inspired by Active Reload, Rails reloads classes only when files actually change. The performance gains are dramatic on a larger application. Route recognition also got a bunch faster thanks to the new Journey engine.
Rails 3.2 comes with a nice feature that explains queries generated by Arel by defining an explain
method in ActiveRecord::Relation
. For example, you can run something like puts Person.active.limit(5).explain
and the query Arel produces is explained. This allows to check for the proper indexes and further optimizations.
Queries that take more than half a second to run are automatically explained in the development mode. This threshold, of course, can be changed.
When running a multi-user, multi-account application, it's a great help to be able to filter the log by who did what. TaggedLogging in Active Support helps in doing exactly that by stamping log lines with subdomains, request ids, and anything else to aid debugging such applications.
From Rails 3.2, the Rails guides are available for the Kindle and free Kindle Reading Apps for the iPad, iPhone, Mac, Android, etc.
config.reload_classes_only_on_change
to false.config.active_record.auto_explain_threshold_in_seconds
in the environments configuration files. With a value of 0.5
in development.rb
and commented out in production.rb
. No mention in test.rb
.config.exceptions_app
to set the exceptions application invoked by the ShowException
middleware when an exception happens. Defaults to ActionDispatch::PublicExceptions.new(Rails.public_path)
.DebugExceptions
middleware which contains features extracted from ShowExceptions
middleware.rake routes
.config.railties_order
like: Rails::Rack::Logger
middleware to apply any tags set in config.log_tags
to ActiveSupport::TaggedLogging
. This makes it easy to tag log lines with debug information like subdomain and request id -- both very helpful in debugging multi-user production applications.rails new
can be set in ~/.railsrc
. You can specify extra command-line arguments to be used every time 'rails new' runs in the .railsrc
configuration file in your home directory.d
for destroy
. This works for engines too.rails g scaffold Post title body:text author
title
and author
with the latter being an unique index. Some types such as decimal accept custom options. In the example, price
will be a decimal column with precision and scale set to 7 and 2 respectively. rails generate plugin
in favor of rails plugin new
command.config.paths.app.controller
API in favor of config.paths["app/controller"]
.Rails::Plugin
is deprecated and will be removed in Rails 4.0. Instead of adding plugins to vendor/plugins
use gems or bundler with path or git dependencies.mail
version to 2.4.0.ActiveSupport::Benchmarkable
a default module for ActionController::Base,
so the #benchmark
method is once again available in the controller context like it used to be.:gzip
option to caches_page
. The default option can be configured globally using page_cache_compression
.:only
and :except
condition, and those conditions fail. :as
option is provided. Earlier versions used "#{as}_#{action}".ActionController::ParamsWrapper
on Active Record models now only wrap attr_accessible
attributes if they were set. If not, only the attributes returned by the class method attribute_names
will be wrapped. This fixes the wrapping of nested attributes by adding them to attr_accessible
.ActionDispatch::ShowExceptions
is refactored. The controller is responsible for choosing to show exceptions. It's possible to override show_detailed_exceptions?
in controllers to specify which requests should provide debugging information on errors.ActionController::TestCase
cookies is refactored. Assigning cookies for test cases should now use cookies[]
clear
. send_file
now guesses the MIME type from the file extension if :type
is not provided.:debug
to :warn
.layout "application"
from ApplicationController
or explicitly set it to nil
in PostsController
. ActionController::UnknownAction
in favour of AbstractController::ActionNotFound
.ActionController::DoubleRenderError
in favour of AbstractController::DoubleRenderError
.method_missing
in favour of action_missing
for missing actions.ActionController#rescue_action
, ActionController#initialize_template_class
and ActionController#assign_shortcuts
.config.action_dispatch.default_charset
to configure default charset for ActionDispatch::Response
.ActionDispatch::RequestId
middleware that'll make a unique X-Request-Id header available to the response and enables the ActionDispatch::Request#uuid
method. This makes it easy to trace requests from end-to-end in the stack and to identify individual requests in mixed logs like Syslog.ShowExceptions
middleware now accepts a exceptions application that is responsible to render an exception when the application fails. The application is invoked with a copy of the exception in env["action_dispatch.exception"]
and with the PATH_INFO
rewritten to the status code.config.action_dispatch.rescue_responses
.config.action_dispatch.default_charset
instead.button_tag
support to ActionView::Helpers::FormBuilder
. This support mimics the default behavior of submit_tag
. :use_two_digit_numbers => true
, that renders select boxes for months and days with a leading zero without changing the respective values. For example, this is useful for displaying ISO 8601-style dates such as '2011-08-01'.select_year
to 1000. Pass :max_years_allowed
option to set your own limit.content_tag_for
and div_for
can now take a collection of records. It will also yield the record as the first argument if you set a receiving argument in your block. So instead of having to do this: font_path
helper method that computes the path to a font asset in public/fonts
.render :template => "foo.html.erb"
is deprecated. Instead, you can provide :handlers and :formats directly as options: render :template => "foo", :formats => [:html, :js], :handlers => :erb
.config.assets.logger
to control Sprockets logging. Set it to false
to turn off logging and to nil
to default to Rails.logger
.timestamps
method creates the created_at
and updated_at
columns, it makes them non-nullable by default.ActiveRecord::Relation#explain
.AR::Base.silence_auto_explain
which allows the user to selectively disable automatic EXPLAINs within a block.config.active_record.auto_explain_threshold_in_seconds
determines what's to be considered a slow query. Setting that to nil disables this feature. Defaults are 0.5 in development mode, and nil in test and production modes. Rails 3.2 supports this feature in SQLite, MySQL (mysql2 adapter), and PostgreSQL.ActiveRecord::Base.store
for declaring simple single-column key/value stores. 01_create_posts.blog.rb
.ActiveRecord::Relation#pluck
method that returns an array of column values directly from the underlying table. This also works with serialized attributes. MyModel::GeneratedFeatureMethods
. It is included into the model class immediately after the generated_attributes_methods
module defined in Active Model, so association methods override attribute methods of the same name.ActiveRecord::Relation#uniq
for generating unique queries. :class_name
option for associations to take a symbol in addition to a string. This is to avoid confusing newbies, and to be consistent with the fact that other options like :foreign_key already allow a symbol or a string. db:drop
also drops the test database in order to be symmetric with db:create
.first_or_create
, first_or_create!
, first_or_initialize
methods to Active Record. This is a better approach over the old find_or_create_by
dynamic methods because it's clearer which arguments are used to find the record and which are used to create it. with_lock
method to Active Record objects, which starts a transaction, locks the object (pessimistically) and yields to the block. The method takes one (optional) parameter and passes it to lock!
. This makes it possible to write the following: set_table_name
, set_inheritance_column
, set_sequence_name
, set_primary_key
, set_locking_column
methods are deprecated. Use an assignment method instead. For example, instead of set_table_name
, use self.table_name=
. self.table_name
method: ActiveModel::Errors#added?
to check if a specific error has been added.strict => true
that always raises exception when fails.define_attr_method
in ActiveModel::AttributeMethods
because this only existed to support methods like set_table_name
in Active Record, which are themselves being deprecated.Model.model_name.partial_path
in favor of model.to_partial_path
.ActiveSupport:TaggedLogging
that can wrap any standard Logger
class to provide tagging capabilities. beginning_of_week
method in Date
, Time
and DateTime
accepts an optional argument representing the day in which the week is assumed to start.ActiveSupport::Notifications.subscribed
provides subscriptions to events while a block runs.Module#qualified_const_defined?
, Module#qualified_const_get
and Module#qualified_const_set
that are analogous to the corresponding methods in the standard API, but accept qualified constant names.#deconstantize
which complements #demodulize
in inflections. This removes the rightmost segment in a qualified constant name.safe_constantize
that constantizes a string but returns nil
instead of raising an exception if the constant (or part of it) does not exist.ActiveSupport::OrderedHash
is now marked as extractable when using Array#extract_options!
.Array#prepend
as an alias for Array#unshift
and Array#append
as an alias for Array#<<
.Time#all_day
, Time#all_week
, Time#all_quarter
and Time#all_year
as a way of generating ranges. instance_accessor: false
as an option to Class#cattr_accessor
and friends.ActiveSupport::OrderedHash
now has different behavior for #each
and #each_pair
when given a block accepting its parameters with a splat.ActiveSupport::Cache::NullStore
for use in development and testing.ActiveSupport::SecureRandom
in favor of SecureRandom
from the standard library.ActiveSupport::Base64
is deprecated in favor of ::Base64
.ActiveSupport::Memoizable
in favor of Ruby memoization pattern.Module#synchronize
is deprecated with no replacement. Please use monitor from ruby's standard library.ActiveSupport::MessageEncryptor#encrypt
and ActiveSupport::MessageEncryptor#decrypt
.ActiveSupport::BufferedLogger#silence
is deprecated. If you want to squelch logs for a certain block, change the log level for that block.ActiveSupport::BufferedLogger#open_log
is deprecated. This method should not have been public in the first place.ActiveSupport::BufferedLogger's
behavior of automatically creating the directory for your log file is deprecated. Please make sure to create the directory for your log file before instantiating.ActiveSupport::BufferedLogger#auto_flushing
is deprecated. Either set the sync level on the underlying file handle like this. Or tune your filesystem. The FS cache is now what controls flushing. ActiveSupport::BufferedLogger#flush
is deprecated. Set sync on your filehandle, or tune your filesystem.See the full list of contributors to Rails for the many people who spent many hours making Rails, the stable and robust framework it is. Kudos to all of them.
Rails 3.2 Release Notes were compiled by Vijay Dev
If you're upgrading an existing application, it's a great idea to have good test coverage before going in. You should also first upgrade to Rails 3 in case you haven't and make sure your application still runs as expected before attempting to update to Rails 3.1. Then take heed of the following changes:
Rails 3.1 requires Ruby 1.8.7 or higher. Support for all of the previous Ruby versions has been dropped officially and you should upgrade as early as possible. Rails 3.1 is also compatible with Ruby 1.9.2.
Note that Ruby 1.8.7 p248 and p249 have marshaling bugs that crash Rails. Ruby Enterprise Edition have these fixed since release 1.8.7-2010.02 though. On the 1.9 front, Ruby 1.9.1 is not usable because it outright segfaults, so if you want to use 1.9.x jump on 1.9.2 for smooth sailing.
The following changes are meant for upgrading your application to Rails 3.1.3, the latest 3.1.x version of Rails.
Make the following changes to your Gemfile
.
config.action_view.debug_rjs = true
.Rails now uses a Gemfile
in the application root to determine the gems you require for your application to start. This Gemfile
is processed by the Bundler gem, which then installs all your dependencies. It can even install all the dependencies locally to your application so that it doesn't depend on the system gems.
More information: - bundler homepage
Bundler
and Gemfile
makes freezing your Rails application easy as pie with the new dedicated bundle
command. If you want to bundle straight from the Git repository, you can pass the --edge
flag:
If you have a local checkout of the Rails repository and want to generate an application using that, you can pass the --dev
flag:
The major change in Rails 3.1 is the Assets Pipeline. It makes CSS and JavaScript first-class code citizens and enables proper organization, including use in plugins and engines.
The assets pipeline is powered by Sprockets and is covered in the Asset Pipeline guide.
HTTP Streaming is another change that is new in Rails 3.1. This lets the browser download your stylesheets and JavaScript files while the server is still generating the response. This requires Ruby 1.9.2, is opt-in and requires support from the web server as well, but the popular combo of nginx and unicorn is ready to take advantage of it.
jQuery is the default JavaScript library that ships with Rails 3.1. But if you use Prototype, it's simple to switch.
Active Record has an Identity Map in Rails 3.1. An identity map keeps previously instantiated records and returns the object associated with the record if accessed again. The identity map is created on a per-request basis and is flushed at request completion.
Rails 3.1 comes with the identity map turned off by default.
-j
which can be an arbitrary string. If passed "foo", the gem "foo-rails" is added to the Gemfile
, and the application JavaScript manifest requires "foo" and "foo_ujs". Currently only "prototype-rails" and "jquery-rails" exist and provide those files via the asset pipeline.bundle install
unless --skip-gemfile
or --skip-bundle
is specified.--skip-assets
). These stubs will use CoffeeScript and Sass, if those libraries are available.--old-style-hash
can be passed.config.force_ssl
configuration which loads Rack::SSL
middleware and force all requests to be under HTTPS protocol.rails plugin new
command which generates a Rails plugin with gemspec, tests and a dummy application for testing.Rack::Etag
and Rack::ConditionalGet
to the default middleware stack.Rack::Cache
to the default middleware stack.force_ssl
in a controller to force the browser to transfer data via HTTPS protocol on that particular controller. To limit to specific actions, :only
or :except
can be used.config.filter_parameters
will now be filtered out from the request paths in the log.nil
for to_param
are now removed from the query string.ActionController::ParamsWrapper
to wrap parameters into a nested hash, and will be turned on for JSON request in new applications by default. This can be customized in config/initializers/wrap_parameters.rb
.config.action_controller.include_all_helpers
. By default helper :all
is done in ActionController::Base
, which includes all the helpers by default. Setting include_all_helpers
to false
will result in including only application_helper and the helper corresponding to controller (like foo_helper for foo_controller).url_for
and named url helpers now accept :subdomain
and :domain
as options.Base.http_basic_authenticate_with
to do simple http basic authentication with a single class method call. :only
or :except
. Please read the docs at ActionController::Streaming
for more information. config.action_dispatch.x_sendfile_header
now defaults to nil
and config/environments/production.rb
doesn't set any particular value for it. This allows servers to set it through X-Sendfile-Type
.ActionDispatch::MiddlewareStack
now uses composition over inheritance and is no longer an array.ActionDispatch::Request.ignore_accept_header
to ignore accept headers.Rack::Cache
to the default stack.ActionDispatch::Response
to the middleware stack.Rack::Session
stores API for more compatibility across the Ruby world. This is backwards incompatible since Rack::Session
expects #get_session
to accept four arguments and requires #destroy_session
instead of simply #destroy
.:authenticity_token
option to form_tag
for custom handling or to omit the token by passing :authenticity_token => false
.ActionView::Renderer
and specified an API for ActionView::Context
.SafeBuffer
mutation is prohibited in Rails 3.1.button_tag
helper.file_field
automatically adds :multipart => true
to the enclosing form.:data
hash of options: Keys are dasherized. Values are JSON-encoded, except for strings and symbols.
csrf_meta_tag
is renamed to csrf_meta_tags
and aliases csrf_meta_tag
for backwards compatibility.config.action_view.cache_template_loading
is brought back which allows to decide whether templates should be cached or not.FormHelper#form_for
to specify the :method
as a direct option instead of through the :html
hash. form_for(@post, remote: true, method: :delete)
instead of form_for(@post, remote: true, html: { method: :delete })
.JavaScriptHelper#j()
as an alias for JavaScriptHelper#escape_javascript()
. This supersedes the Object#j()
method that the JSON gem adds within templates using the JavaScriptHelper.auto_link
has been removed from Rails and extracted into the rails_autolink gem pluralize_table_names
to singularize/pluralize table names of individual models. Previously this could only be set globally for all models through ActiveRecord::Base.pluralize_table_names
. ActiveRecord::Base.attribute_names
to return a list of attribute names. This will return an empty array if the model is abstract or the table does not exist.ActiveRecord#new
, ActiveRecord#create
and ActiveRecord#update_attributes
all accept a second hash as an option that allows you to specify which role to consider when assigning attributes. This is built on top of Active Model's new mass assignment capabilities: default_scope
can now take a block, lambda, or any other object which responds to call for lazy evaluation.ConnectionManagement
middleware is changed to clean up the connection pool after the rack body has been flushed.update_column
method on Active Record. This new method updates a given attribute on an object, skipping validations and callbacks. It is recommended to use update_attributes
or update_attribute
unless you are sure you do not want to execute any callback, including the modification of the updated_at
column. It should not be called on new records.:through
option can now use any association as the through or source association, including other associations which have a :through
option and has_and_belongs_to_many
associations.ActiveRecord::Base.connection_config
.ActiveRecord::Associations::AssociationProxy
has been split. There is now an Association
class (and subclasses) which are responsible for operating on associations, and then a separate, thin wrapper called CollectionProxy
, which proxies collection associations. This prevents namespace pollution, separates concerns, and will allow further refactorings.has_one
, belongs_to
) no longer have a proxy and simply returns the associated record or nil
. This means that you should not use undocumented methods such as bob.mother.create
- use bob.create_mother
instead.:dependent
option on has_many :through
associations. For historical and practical reasons, :delete_all
is the default deletion strategy employed by association.delete(*records)
, despite the fact that the default strategy is :nullify
for regular has_many. Also, this only works at all if the source reflection is a belongs_to. For other situations, you should directly modify the through association.association.destroy
for has_and_belongs_to_many
and has_many :through
is changed. From now on, 'destroy' or 'delete' on an association will be taken to mean 'get rid of the link', not (necessarily) 'get rid of the associated records'.has_and_belongs_to_many.destroy(*records)
would destroy the records themselves. It would not delete any records in the join table. Now, it deletes the records in the join table.has_many_through.destroy(*records)
would destroy the records themselves, and the records in the join table. [Note: This has not always been the case; previous version of Rails only deleted the records themselves.] Now, it destroys only the records in the join table.records.association.each(&:destroy)
.:bulk => true
option to change_table
to make all the schema changes defined in a block using a single ALTER statement. has_and_belongs_to_many
join table. has_many :through
needs to be used.create_association!
method for has_one
and belongs_to
associations.change
method. up
and down
in your migration. If you define something in change that cannot be reversed, an IrreversibleMigration
exception will be raised when going down.change
method instead of the ordinary up
and down
methods.self
is the object which is the owner of the association, unless you are eager loading the association, in which case self
is the class which the association is within. You can have any "normal" conditions inside the proc, so the following will work too: :insert_sql
and :delete_sql
on has_and_belongs_to_many
association allowed you to call 'record' to get the record being inserted or deleted. This is now passed as an argument to the proc.ActiveRecord::Base#has_secure_password
(via ActiveModel::SecurePassword
) to encapsulate dead-simple password usage with BCrypt encryption and salting. add_index
is added by default for belongs_to
or references
columns.belongs_to
object will update the reference to the object.ActiveRecord::Base#dup
and ActiveRecord::Base#clone
semantics have changed to closer match normal Ruby dup and clone semantics.ActiveRecord::Base#clone
will result in a shallow copy of the record, including copying the frozen state. No callbacks will be called.ActiveRecord::Base#dup
will duplicate the record, including calling after initialize hooks. Frozen state will not be copied, and all associations will be cleared. A duped record will return true
for new_record?
, have a nil
id field, and is saveable.attr_accessible
accepts an option :as
to specify a role.InclusionValidator
, ExclusionValidator
, and FormatValidator
now accepts an option which can be a proc, a lambda, or anything that respond to call
. This option will be called with the current record as an argument and returns an object which respond to include?
for InclusionValidator
and ExclusionValidator
, and returns a regular expression object for FormatValidator
.ActiveModel::SecurePassword
to encapsulate dead-simple password usage with BCrypt encryption and salting.ActiveModel::AttributeMethods
allows attributes to be defined on demand.I18n
namespace lookup is no longer supported.self.format = :xml
in the class. For example, ActiveSupport::Dependencies
now raises NameError
if it finds an existing constant in load_missing_constant
.Kernel#quietly
which silences both STDOUT
and STDERR
.String#inquiry
as a convenience method for turning a String into a StringInquirer
object.Object#in?
to test if an object is included in another object.LocalCache
strategy is now a real middleware class and no longer an anonymous class.ActiveSupport::Dependencies::ClassCache
class has been introduced for holding references to reloadable classes.ActiveSupport::Dependencies::Reference
has been refactored to take direct advantage of the new ClassCache
.Range#cover?
as an alias for Range#include?
in Ruby 1.8.weeks_ago
and prev_week
to Date/DateTime/Time.before_remove_const
callback to ActiveSupport::Dependencies.remove_unloadable_constants!
.Deprecations:
ActiveSupport::SecureRandom
is deprecated in favor of SecureRandom
from the Ruby standard library.See the full list of contributors to Rails for the many people who spent many hours making Rails, the stable and robust framework it is. Kudos to all of them.
Rails 3.1 Release Notes were compiled by Vijay Dev
If you're upgrading an existing application, it's a great idea to have good test coverage before going in. You should also first upgrade to Rails 2.3.5 and make sure your application still runs as expected before attempting to update to Rails 3. Then take heed of the following changes:
Rails 3.0 requires Ruby 1.8.7 or higher. Support for all of the previous Ruby versions has been dropped officially and you should upgrade as early as possible. Rails 3.0 is also compatible with Ruby 1.9.2.
Note that Ruby 1.8.7 p248 and p249 have marshaling bugs that crash Rails 3.0. Ruby Enterprise Edition have these fixed since release 1.8.7-2010.02 though. On the 1.9 front, Ruby 1.9.1 is not usable because it outright segfaults on Rails 3.0, so if you want to use Rails 3 with 1.9.x jump on 1.9.2 for smooth sailing.
As part of the groundwork for supporting running multiple Rails applications in the same process, Rails 3 introduces the concept of an Application object. An application object holds all the application specific configurations and is very similar in nature to config/environment.rb
from the previous versions of Rails.
Each Rails application now must have a corresponding application object. The application object is defined in config/application.rb
. If you're upgrading an existing application to Rails 3, you must add this file and move the appropriate configurations from config/environment.rb
to config/application.rb
.
The new script/rails
replaces all the scripts that used to be in the script
directory. You do not run script/rails
directly though, the rails
command detects it is being invoked in the root of a Rails application and runs the script for you. Intended usage is:
Run rails --help
for a list of all the options.
The config.gem
method is gone and has been replaced by using bundler
and a Gemfile
, see Vendoring Gems below.
To help with the upgrade process, a plugin named Rails Upgrade has been created to automate part of it.
Simply install the plugin, then run rake rails:upgrade:check
to check your app for pieces that need to be updated (with links to information on how to update them). It also offers a task to generate a Gemfile
based on your current config.gem
calls and a task to generate a new routes file from your current one. To get the plugin, simply run the following:
You can see an example of how that works at Rails Upgrade is now an Official Plugin
Aside from Rails Upgrade tool, if you need more help, there are people on IRC and rubyonrails-talk that are probably doing the same thing, possibly hitting the same issues. Be sure to blog your own experiences when upgrading so others can benefit from your knowledge!
Rails now uses a Gemfile
in the application root to determine the gems you require for your application to start. This Gemfile
is processed by the Bundler which then installs all your dependencies. It can even install all the dependencies locally to your application so that it doesn't depend on the system gems.
More information: - bundler homepage
Bundler
and Gemfile
makes freezing your Rails application easy as pie with the new dedicated bundle
command, so rake freeze
is no longer relevant and has been dropped.
If you want to bundle straight from the Git repository, you can pass the --edge
flag:
If you have a local checkout of the Rails repository and want to generate an application using that, you can pass the --dev
flag:
There are six major changes in the architecture of Rails.
Railties was updated to provide a consistent plugin API for the entire Rails framework as well as a total rewrite of generators and the Rails bindings, the result is that developers can now hook into any significant stage of the generators and application framework in a consistent, defined manner.
With the merge of Merb and Rails, one of the big jobs was to remove the tight coupling between Rails core components. This has now been achieved, and all Rails core components are now using the same API that you can use for developing plugins. This means any plugin you make, or any core component replacement (like DataMapper or Sequel) can access all the functionality that the Rails core components have access to and extend and enhance at will.
More information: - The Great Decoupling
Part of decoupling the core components was extracting all ties to Active Record from Action Pack. This has now been completed. All new ORM plugins now just need to implement Active Model interfaces to work seamlessly with Action Pack.
More information: - Make Any Ruby Object Feel Like ActiveRecord
Another big part of decoupling the core components was creating a base superclass that is separated from the notions of HTTP in order to handle rendering of views etc. This creation of AbstractController
allowed ActionController
and ActionMailer
to be greatly simplified with common code removed from all these libraries and put into Abstract Controller.
More Information: - Rails Edge Architecture
Arel (or Active Relation) has been taken on as the underpinnings of Active Record and is now required for Rails. Arel provides an SQL abstraction that simplifies out Active Record and provides the underpinnings for the relation functionality in Active Record.
More information: - Why I wrote Arel
Action Mailer ever since its beginnings has had monkey patches, pre parsers and even delivery and receiver agents, all in addition to having TMail vendored in the source tree. Version 3 changes that with all email message related functionality abstracted out to the Mail gem. This again reduces code duplication and helps create definable boundaries between Action Mailer and the email parser.
More information: - New Action Mailer API in Rails 3
The documentation in the Rails tree is being updated with all the API changes, additionally, the Rails Edge Guides are being updated one by one to reflect the changes in Rails 3.0. The guides at guides.rubyonrails.org however will continue to contain only the stable version of Rails (at this point, version 2.3.5, until 3.0 is released).
More Information: - Rails Documentation Projects
A large amount of work has been done with I18n support in Rails 3, including the latest I18n gem supplying many speed improvements.
ActiveModel::Translation
and ActiveModel::Validations
. There is also an errors.messages
fallback for translations.More Information: - Rails 3 I18n changes
With the decoupling of the main Rails frameworks, Railties got a huge overhaul so as to make linking up frameworks, engines or plugins as painless and extensible as possible:
YourAppName.boot
for example, makes interacting with other applications a lot easier.Rails.root/app
is now added to the load path, so you can make app/observers/user_observer.rb
and Rails will load it without any modifications.Rails.config
object, which provides a central repository of all sorts of Rails wide configuration options. Application generation has received extra flags allowing you to skip the installation of test-unit, Active Record, Prototype and Git. Also a new --dev
flag has been added which sets the application up with the Gemfile
pointing to your Rails checkout (which is determined by the path to the rails
binary). See rails --help
for more info. Railties generators got a huge amount of attention in Rails 3.0, basically:
rails generate foo
will look for generators/foo_generator
.Rails.root/lib/templates
.Rails::Generators::TestCase
is also supplied so you can create your own generators and test them.Also, the views generated by Railties generators had some overhaul:
div
tags instead of p
tags._form
partials, instead of duplicated code in the edit and new views.f.submit
which returns "Create ModelName" or "Update ModelName" depending on the state of the object passed in.Finally a couple of enhancements were added to the rake tasks:
rake db:forward
was added, allowing you to roll forward your migrations individually or in groups.rake routes CONTROLLER=x
was added allowing you to just view the routes for one controller.Railties now deprecates:
RAILS_ROOT
in favor of Rails.root
,RAILS_ENV
in favor of Rails.env
, andRAILS_DEFAULT_LOGGER
in favor of Rails.logger
.PLUGIN/rails/tasks
, and PLUGIN/tasks
are no longer loaded all tasks now must be in PLUGIN/lib/tasks
.
More information:
There have been significant internal and external changes in Action Pack.
Abstract Controller pulls out the generic parts of Action Controller into a reusable module that any library can use to render templates, render partials, helpers, translations, logging, any part of the request response cycle. This abstraction allowed ActionMailer::Base
to now just inherit from AbstractController
and just wrap the Rails DSL onto the Mail gem.
It also provided an opportunity to clean up Action Controller, abstracting out what could to simplify the code.
Note however that Abstract Controller is not a user facing API, you will not run into it in your day to day use of Rails.
More Information: - Rails Edge Architecture
application_controller.rb
now has protect_from_forgery
on by default.cookie_verifier_secret
has been deprecated and now instead it is assigned through Rails.application.config.cookie_secret
and moved into its own file: config/initializers/cookie_verification_secret.rb
.session_store
was configured in ActionController::Base.session
, and that is now moved to Rails.application.config.session_store
. Defaults are set up in config/initializers/session_store.rb
.cookies.secure
allowing you to set encrypted values in cookies with cookie.secure[:key] => value
.cookies.permanent
allowing you to set permanent values in the cookie hash cookie.permanent[:key] => value
that raise exceptions on signed values if verification failures.:notice => 'This is a flash message'
or :alert => 'Something went wrong'
to the format
call inside a respond_to
block. The flash[]
hash still works as previously.respond_with
method has now been added to your controllers simplifying the venerable format
blocks.ActionController::Responder
added allowing you flexibility in how your responses get generated.Deprecations:
filter_parameter_logging
is deprecated in favor of config.filter_parameters << :password
.More Information:
Action Dispatch is new in Rails 3.0 and provides a new, cleaner implementation for routing.
rack_mount
with a Rails DSL on top, it is a stand alone piece of software.match
method to the router, you can also pass any Rack application to the matched route.constraints
method to the router, allowing you to guard routers with defined constraints.scope
method to the router, allowing you to namespace routes for different languages or different actions, for example: root
method to the router as a short cut for match '/', :to => path
.match "/:controller(/:action(/:id))(.:format)"
, each parenthesized segment is optional.controller :home { match '/:action' }
.The old style map
commands still work as before with a backwards compatibility layer, however this will be removed in the 3.1 release.
Deprecations
/:controller/:action/:id
) is now commented out.More Information: * The Rails 3 Router: Rack it Up * Revamped Routes in Rails 3 * Generic Actions in Rails 3
Major re-write was done in the Action View helpers, implementing Unobtrusive JavaScript (UJS) hooks and removing the old inline AJAX commands. This enables Rails to use any compliant UJS driver to implement the UJS hooks in the helpers.
What this means is that all previous remote_<method>
helpers have been removed from Rails core and put into the Prototype Legacy Helper To get UJS hooks into your HTML, you now pass :remote => true
instead. For example:
Produces:
Helpers like form_for
or div_for
that insert content from a block use <%=
now:
Your own helpers of that kind are expected to return a string, rather than appending to the output buffer by hand.
Helpers that do something else, like cache
or content_for
, are not affected by this change, they need <%
as before.
h(string)
to escape HTML output, it is on by default in all view templates. If you want the unescaped string, call raw(string)
.f.label :name
will pull the :name
translation.grouped_collection_select
helper to Action View.content_for?
has been added allowing you to check for the existence of content in a view before rendering.:value => nil
to form helpers will set the field's value
attribute to nil as opposed to using the default value:id => nil
to form helpers will cause those fields to be rendered with no id
attribute:alt => nil
to image_tag
will cause the img
tag to render with no alt
attributeActive Model is new in Rails 3.0. It provides an abstraction layer for any ORM libraries to use to interact with Rails by implementing an Active Model interface.
Part of decoupling the core components was extracting all ties to Active Record from Action Pack. This has now been completed. All new ORM plugins now just need to implement Active Model interfaces to work seamlessly with Action Pack.
More Information: - Make Any Ruby Object Feel Like ActiveRecord
Validations have been moved from Active Record into Active Model, providing an interface to validations that works across ORM libraries in Rails 3.
validates :attribute, options_hash
shortcut method that allows you to pass options for all the validates class methods, you can pass more than one option to a validate method.validates
method has the following options: :acceptance => Boolean
.:confirmation => Boolean
.:exclusion => { :in => Enumerable }
.:inclusion => { :in => Enumerable }
.:format => { :with => Regexp, :on => :create }
.:length => { :maximum => Fixnum }
.:numericality => Boolean
.:presence => Boolean
.:uniqueness => Boolean
.All the Rails version 2.3 style validation methods are still supported in Rails 3.0, the new validates method is designed as an additional aid in your model validations, not a replacement for the existing API.
You can also pass in a validator object, which you can then reuse between objects that use Active Model:
There's also support for introspection:
More Information:
Active Record received a lot of attention in Rails 3.0, including abstraction into Active Model, a full update to the Query interface using Arel, validation updates and many enhancements and fixes. All of the Rails 2.x API will be usable through a compatibility layer that will be supported until version 3.1.
Active Record, through the use of Arel, now returns relations on its core methods. The existing API in Rails 2.3.x is still supported and will not be deprecated until Rails 3.1 and not removed until Rails 3.2, however, the new API provides the following new methods that all return relations allowing them to be chained together:
where
- provides conditions on the relation, what gets returned.select
- choose what attributes of the models you wish to have returned from the database.group
- groups the relation on the attribute supplied.having
- provides an expression limiting group relations (GROUP BY constraint).joins
- joins the relation to another table.clause
- provides an expression limiting join relations (JOIN constraint).includes
- includes other relations pre-loaded.order
- orders the relation based on the expression supplied.limit
- limits the relation to the number of records specified.lock
- locks the records returned from the table.readonly
- returns an read only copy of the data.from
- provides a way to select relationships from more than one table.scope
- (previously named_scope
) return relations and can be chained together with the other relation methods.with_scope
- and with_exclusive_scope
now also return relations and so can be chained.default_scope
- also works with relations.More Information:
:destroyed?
to Active Record objects.:inverse_of
to Active Record associations allowing you to pull the instance of an already loaded association without hitting the database.Additionally, many fixes in the Active Record branch:
TIME ZONE
support fixed so it no longer inserts incorrect values.table_name
is now cached.As well as the following deprecations:
named_scope
in an Active Record class is deprecated and has been renamed to just scope
.scope
methods, you should move to using the relation methods, instead of a :conditions => {}
finder method, for example scope :since, lambda {|time| where("created_at > ?", time) }
.save(false)
is deprecated, in favor of save(:validate => false)
.:en.errors.template
.model.errors.on
is deprecated in favor of model.errors[]
ActiveRecord::Base.colorize_logging
and config.active_record.colorize_logging
are deprecated in favor of Rails::LogSubscriber.colorize_logging
or config.colorize_logging
While an implementation of State Machine has been in Active Record edge for some months now, it has been removed from the Rails 3.0 release.
Active Resource was also extracted out to Active Model allowing you to use Active Resource objects with Action Pack seamlessly.
first
, last
and all
aliases for equivalent find scopes.find_every
now does not return a ResourceNotFound
error if nothing returned.save!
which raises ResourceInvalid
unless the object is valid?
.update_attribute
and update_attributes
added to Active Resource models.exists?
.SchemaDefinition
to Schema
and define_schema
to schema
.format
of Active Resources rather than the content-type
of remote errors to load errors.instance_eval
for schema block.ActiveResource::ConnectionError#to_s
when @response
does not respond to #code or #message, handles Ruby 1.9 compatibility.load
works with numeric arrays.Net::HTTP
open_timeout
.Deprecations:
save(false)
is deprecated, in favor of save(:validate => false)
.URI.parse
and .decode
are deprecated and are no longer used in the library.A large effort was made in Active Support to make it cherry pickable, that is, you no longer have to require the entire Active Support library to get pieces of it. This allows the various core components of Rails to run slimmer.
These are the main changes in Active Support:
bundle install
command.ActiveSupport::SafeBuffer
.Array.uniq_by
and Array.uniq_by!
.Array#rand
and backported Array#sample
from Ruby 1.9.TimeZone.seconds_to_utc_offset
returning wrong value.ActiveSupport::Notifications
middleware.ActiveSupport.use_standard_json_time_format
now defaults to true.ActiveSupport.escape_html_entities_in_json
now defaults to false.Integer#multiple_of?
accepts zero as an argument, returns false unless the receiver is zero.string.chars
has been renamed to string.mb_chars
.ActiveSupport::OrderedHash
now can de-serialize through YAML.Object#presence
that returns the object if it's #present?
otherwise returns nil
.String#exclude?
core extension that returns the inverse of #include?
.to_i
to DateTime
in ActiveSupport
so to_yaml
works correctly on models with DateTime
attributes.Enumerable#exclude?
to bring parity to Enumerable#include?
and avoid if !x.include?
.ActiveSupport::HashWithIndifferentAccess
.Enumerable#sum
now works will all enumerables, even if they don't respond to :size
.inspect
on a zero length duration returns '0 seconds' instead of empty string.element
and collection
to ModelName
.String#to_time
and String#to_datetime
handle fractional seconds.:before
and :after
used in before and after callbacks.ActiveSupport::OrderedHash#to_a
method returns an ordered set of arrays. Matches Ruby 1.9's Hash#to_a
.MissingSourceFile
exists as a constant but it is now just equals to LoadError
.Class#class_attribute
, to be able to declare a class-level attribute whose value is inheritable and overwritable by subclasses.DeprecatedCallbacks
in ActiveRecord::Associations
.Object#metaclass
is now Kernel#singleton_class
to match Ruby.The following methods have been removed because they are now available in Ruby 1.8.7 and 1.9.
Integer#even?
and Integer#odd?
String#each_char
String#start_with?
and String#end_with?
(3rd person aliases still kept)String#bytesize
Object#tap
Symbol#to_proc
Object#instance_variable_defined?
Enumerable#none?
The security patch for REXML remains in Active Support because early patch-levels of Ruby 1.8.7 still need it. Active Support knows whether it has to apply it or not.
The following methods have been removed because they are no longer used in the framework:
Kernel#daemonize
Object#remove_subclasses_of
Object#extend_with_included_modules_from
, Object#extended_by
Class#remove_class
Regexp#number_of_captures
, Regexp.unoptionalize
, Regexp.optionalize
, Regexp#number_of_captures
Action Mailer has been given a new API with TMail being replaced out with the new Mail as the Email library. Action Mailer itself has been given an almost complete re-write with pretty much every line of code touched. The result is that Action Mailer now simply inherits from Abstract Controller and wraps the Mail gem in a Rails DSL. This reduces the amount of code and duplication of other libraries in Action Mailer considerably.
app/mailers
by default.attachments
, headers
and mail
.attachments.inline
method.Mail::Message
objects, which can then be sent the deliver
message to send itself.mail
delivery method acts in a similar way to Action Controller's respond_to
, and you can explicitly or implicitly render templates. Action Mailer will turn the email into a multipart email as needed.format.mime_type
calls within the mail block and explicitly render specific types of text, or add layouts or different templates. The render
call inside the proc is from Abstract Controller and supports the same options.Deprecations:
:charset
, :content_type
, :mime_version
, :implicit_parts_order
are all deprecated in favor of ActionMailer.default :key => value
style declarations.create_method_name
and deliver_method_name
are deprecated, just call method_name
which now returns a Mail::Message
object.ActionMailer.deliver(message)
is deprecated, just call message.deliver
.template_root
is deprecated, pass options to a render call inside a proc from the format.mime_type
method inside the mail
generation blockbody
method to define instance variables is deprecated (body {:ivar => value}
), just declare instance variables in the method directly and they will be available in the view.app/models
is deprecated, use app/mailers
instead.More Information:
See the full list of contributors to Rails for the many people who spent many hours making Rails 3. Kudos to all of them.
Rails 3.0 Release Notes were compiled by Mikel Lindsaar
There are two major changes in the architecture of Rails applications: complete integration of the Rack modular web server interface, and renewed support for Rails Engines.
Rails has now broken with its CGI past, and uses Rack everywhere. This required and resulted in a tremendous number of internal changes (but if you use CGI, don't worry; Rails now supports CGI through a proxy interface.) Still, this is a major change to Rails internals. After upgrading to 2.3, you should test on your local environment and your production environment. Some things to test:
Here's a summary of the rack-related changes:
script/server
has been switched to use Rack, which means it supports any Rack compatible server. script/server
will also pick up a rackup configuration file if one exists. By default, it will look for a config.ru
file, but you can override this with the -c
switch.ActionController::Dispatcher
maintains its own default middleware stack. Middlewares can be injected in, reordered, and removed. The stack is compiled into a chain on boot. You can configure the middleware stack in environment.rb
.rake middleware
task has been added to inspect the middleware stack. This is useful for debugging the order of the middleware stack.ActionController::CGIHandler
is a backwards compatible CGI wrapper around Rack. The CGIHandler
is meant to take an old CGI object and convert its environment information into a Rack compatible form.CgiRequest
and CgiResponse
have been removed.CGI::Cookie.new
in your tests for setting a cookie value. Assigning a String
value to request.cookies["foo"] now sets the cookie as expected.CGI::Session::CookieStore
has been replaced by ActionController::Session::CookieStore
.CGI::Session::MemCacheStore
has been replaced by ActionController::Session::MemCacheStore
.CGI::Session::ActiveRecordStore
has been replaced by ActiveRecord::SessionStore
.ActionController::Base.session_store = :active_record_store
.ActionController::Base.session = { :key => "..." }
. However, the :session_domain
option has been renamed to :domain
.ActionController::Lock
.ActionController::AbstractRequest
and ActionController::Request
have been unified. The new ActionController::Request
inherits from Rack::Request
. This affects access to response.headers['type']
in test requests. Use response.content_type
instead.ActiveRecord::QueryCache
middleware is automatically inserted onto the middleware stack if ActiveRecord
has been loaded. This middleware sets up and flushes the per-request Active Record query cache.SomeController.call(env)
. The router stores the routing parameters in rack.routing_args
.ActionController::Request
inherits from Rack::Request
.config.action_controller.session = { :session_key => 'foo', ...
use config.action_controller.session = { :key => 'foo', ...
.ParamsParser
middleware preprocesses any XML, JSON, or YAML requests so they can be read normally with any Rack::Request
object after it.After some versions without an upgrade, Rails 2.3 offers some new features for Rails Engines (Rails applications that can be embedded within other applications). First, routing files in engines are automatically loaded and reloaded now, just like your routes.rb
file (this also applies to routing files in other plugins). Second, if your plugin has an app folder, then app/[models|controllers|helpers] will automatically be added to the Rails load path. Engines also support adding view paths now, and Action Mailer as well as Action View will use views from engines and other plugins.
The Ruby on Rails guides project has published several additional guides for Rails 2.3. In addition, a separate site maintains updated copies of the Guides for Edge Rails. Other documentation efforts include a relaunch of the Rails wiki and early planning for a Rails Book.
Rails 2.3 should pass all of its own tests whether you are running on Ruby 1.8 or the now-released Ruby 1.9.1. You should be aware, though, that moving to 1.9.1 entails checking all of the data adapters, plugins, and other code that you depend on for Ruby 1.9.1 compatibility, as well as Rails core.
Active Record gets quite a number of new features and bug fixes in Rails 2.3. The highlights include nested attributes, nested transactions, dynamic and default scopes, and batch processing.
Active Record can now update the attributes on nested models directly, provided you tell it to do so:
Turning on nested attributes enables a number of things: automatic (and atomic) saving of a record together with its associated children, child-aware validations, and support for nested forms (discussed later).
You can also specify requirements for any new records that are added via nested attributes using the :reject_if
option:
Active Record now supports nested transactions, a much-requested feature. Now you can write code like this:
Nested transactions let you roll back an inner transaction without affecting the state of the outer transaction. If you want a transaction to be nested, you must explicitly add the :requires_new
option; otherwise, a nested transaction simply becomes part of the parent transaction (as it does currently on Rails 2.2). Under the covers, nested transactions are using savepoints so they're supported even on databases that don't have true nested transactions. There is also a bit of magic going on to make these transactions play well with transactional fixtures during testing.
You know about dynamic finders in Rails (which allow you to concoct methods like find_by_color_and_flavor
on the fly) and named scopes (which allow you to encapsulate reusable query conditions into friendly names like currently_active
). Well, now you can have dynamic scope methods. The idea is to put together syntax that allows filtering on the fly and method chaining. For example:
There's nothing to define to use dynamic scopes: they just work.
Rails 2.3 will introduce the notion of default scopes similar to named scopes, but applying to all named scopes or find methods within the model. For example, you can write default_scope :order => 'name ASC'
and any time you retrieve records from that model they'll come out sorted by name (unless you override the option, of course).
You can now process large numbers of records from an Active Record model with less pressure on memory by using find_in_batches
:
You can pass most of the find
options into find_in_batches
. However, you cannot specify the order that records will be returned in (they will always be returned in ascending order of primary key, which must be an integer), or use the :limit
option. Instead, use the :batch_size
option, which defaults to 1000, to set the number of records that will be returned in each batch.
The new find_each
method provides a wrapper around find_in_batches
that returns individual records, with the find itself being done in batches (of 1000 by default):
Note that you should only use this method for batch processing: for small numbers of records (less than 1000), you should just use the regular find methods with your own loop.
each
): When using Active Record callbacks, you can now combine :if
and :unless
options on the same callback, and supply multiple conditions as an array:
Rails now has a :having
option on find (as well as on has_many
and has_and_belongs_to_many
associations) for filtering records in grouped finds. As those with heavy SQL backgrounds know, this allows filtering based on grouped results:
MySQL supports a reconnect flag in its connections - if set to true, then the client will try reconnecting to the server before giving up in case of a lost connection. You can now set reconnect = true
for your MySQL connections in database.yml
to get this behavior from a Rails application. The default is false
, so the behavior of existing applications doesn't change.
AS
was removed from the generated SQL for has_and_belongs_to_many
preloading, making it work better for some databases.ActiveRecord::Base#new_record?
now returns false
rather than nil
when confronted with an existing record.has_many :through
associations was fixed.updated_at
timestamps: cust = Customer.create(:name => "ABC Industries", :updated_at => 1.day.ago)
find_by_attribute!
calls.to_xml
support gets just a little bit more flexible with the addition of a :camelize
option.before_update
or before_create
was fixed.validates_length_of
will use a custom error message with the :in
or :within
options (if one is supplied).Account.scoped(:select => "DISTINCT credit_limit").count
.ActiveRecord::Base#invalid?
now works as the opposite of ActiveRecord::Base#valid?
.Action Controller rolls out some significant changes to rendering, as well as improvements in routing and other areas, in this release.
ActionController::Base#render
is a lot smarter about deciding what to render. Now you can just tell it what to render and expect to get the right results. In older versions of Rails, you often need to supply explicit information to render:
Now in Rails 2.3, you can just supply what you want to render:
Rails chooses between file, template, and action depending on whether there is a leading slash, an embedded slash, or no slash at all in what's to be rendered. Note that you can also use a symbol instead of a string when rendering an action. Other rendering styles (:inline
, :text
, :update
, :nothing
, :json
, :xml
, :js
) still require an explicit option.
If you're one of the people who has always been bothered by the special-case naming of application.rb
, rejoice! It's been reworked to be application_controller.rb in Rails 2.3. In addition, there's a new rake task, rake rails:update:application_controller
to do this automatically for you - and it will be run as part of the normal rake rails:update
process.
Rails now has built-in support for HTTP digest authentication. To use it, you call authenticate_or_request_with_http_digest
with a block that returns the user’s password (which is then hashed and compared against the transmitted credentials):
There are a couple of significant routing changes in Rails 2.3. The formatted_
route helpers are gone, in favor just passing in :format
as an option. This cuts down the route generation process by 50% for any resource - and can save a substantial amount of memory (up to 100MB on large applications). If your code uses the formatted_
helpers, it will still work for the time being - but that behavior is deprecated and your application will be more efficient if you rewrite those routes using the new standard. Another big change is that Rails now supports multiple routing files, not just routes.rb
. You can use RouteSet#add_configuration_file
to bring in more routes at any time - without clearing the currently-loaded routes. While this change is most useful for Engines, you can use it in any application that needs to load routes in batches.
A big change pushed the underpinnings of Action Controller session storage down to the Rack level. This involved a good deal of work in the code, though it should be completely transparent to your Rails applications (as a bonus, some icky patches around the old CGI session handler got removed). It's still significant, though, for one simple reason: non-Rails Rack applications have access to the same session storage handlers (and therefore the same session) as your Rails applications. In addition, sessions are now lazy-loaded (in line with the loading improvements to the rest of the framework). This means that you no longer need to explicitly disable sessions if you don't want them; just don't refer to them and they won't load.
There are a couple of changes to the code for handling MIME types in Rails. First, MIME::Type
now implements the =~
operator, making things much cleaner when you need to check for the presence of a type that has synonyms:
The other change is that the framework now uses the Mime::JS
when checking for JavaScript in various spots, making it handle those alternatives cleanly.
respond_to
In some of the first fruits of the Rails-Merb team merger, Rails 2.3 includes some optimizations for the respond_to
method, which is of course heavily used in many Rails applications to allow your controller to format results differently based on the MIME type of the incoming request. After eliminating a call to method_missing
and some profiling and tweaking, we're seeing an 8% improvement in the number of requests per second served with a simple respond_to
that switches between three formats. The best part? No change at all required to the code of your application to take advantage of this speedup.
Rails now keeps a per-request local cache of read from the remote cache stores, cutting down on unnecessary reads and leading to better site performance. While this work was originally limited to MemCacheStore
, it is available to any remote store than implements the required methods.
Rails can now provide localized views, depending on the locale that you have set. For example, suppose you have a Posts
controller with a show
action. By default, this will render app/views/posts/show.html.erb
. But if you set I18n.locale = :da
, it will render app/views/posts/show.da.html.erb
. If the localized template isn't present, the undecorated version will be used. Rails also includes I18n#available_locales
and I18n::SimpleBackend#available_locales
, which return an array of the translations that are available in the current Rails project.
In addition, you can use the same scheme to localize the rescue files in the public
directory: public/500.da.html
or public/404.en.html
work, for example.
A change to the translation API makes things easier and less repetitive to write key translations within partials. If you call translate(".foo")
from the people/index.html.erb
template, you'll actually be calling I18n.translate("people.index.foo")
If you don't prepend the key with a period, then the API doesn't scope, just as before.
send_file
.ActionController::Base.ip_spoofing_check = false
to disable the check entirely.ActionController::Dispatcher
now implements its own middleware stack, which you can see by running rake middleware
.:type
option of send_file
and send_data
, like this: send_file("fabulous.png", :type => :png)
.:only
and :except
options for map.resources
are no longer inherited by nested resources.expires_in
, stale?
, and fresh_when
methods now accept a :public
option to make them work well with proxy caching.:requirements
option now works properly with additional RESTful member routes.polymorphic_url
does a better job of handling objects with irregular plural names.Action View in Rails 2.3 picks up nested model forms, improvements to render
, more flexible prompts for the date select helpers, and a speedup in asset caching, among other things.
Provided the parent model accepts nested attributes for the child objects (as discussed in the Active Record section), you can create nested forms using form_for
and field_for
. These forms can be nested arbitrarily deep, allowing you to edit complex object hierarchies on a single view without excessive code. For example, given this model:
You can write this view in Rails 2.3:
The render method has been getting smarter over the years, and it's even smarter now. If you have an object or a collection and an appropriate partial, and the naming matches up, you can now just render the object and things will work. For example, in Rails 2.3, these render calls will work in your view (assuming sensible naming):
In Rails 2.3, you can supply custom prompts for the various date select helpers (date_select
, time_select
, and datetime_select
), the same way you can with collection select helpers. You can supply a prompt string or a hash of individual prompt strings for the various components. You can also just set :prompt
to true
to use the custom generic prompt:
You're likely familiar with Rails' practice of adding timestamps to static asset paths as a "cache buster." This helps ensure that stale copies of things like images and stylesheets don't get served out of the user's browser cache when you change them on the server. You can now modify this behavior with the cache_asset_timestamps
configuration option for Action View. If you enable the cache, then Rails will calculate the timestamp once when it first serves an asset, and save that value. This means fewer (expensive) file system calls to serve static assets - but it also means that you can't modify any of the assets while the server is running and expect the changes to get picked up by clients.
Asset hosts get more flexible in edge Rails with the ability to declare an asset host as a specific object that responds to a call. This allows you to implement any complex logic you need in your asset hosting.
Action View already had a bunch of helpers to aid in generating select controls, but now there's one more: grouped_options_for_select
. This one accepts an array or hash of strings, and converts them into a string of option
tags wrapped with optgroup
tags. For example:
returns
The form select helpers (such as select
and options_for_select
) now support a :disabled
option, which can take a single value or an array of values to be disabled in the resulting tags:
returns
You can also use an anonymous function to determine at runtime which options from collections will be selected and/or disabled:
Rails 2.3 includes the ability to enable or disable cached templates for any particular environment. Cached templates give you a speed boost because they don't check for a new template file when they're rendered - but they also mean that you can't replace a template "on the fly" without restarting the server.
In most cases, you'll want template caching to be turned on in production, which you can do by making a setting in your production.rb
file:
This line will be generated for you by default in a new Rails 2.3 application. If you've upgraded from an older version of Rails, Rails will default to caching templates in production and test but not in development.
ActiveSupport::SecureRandom
rather than mucking around with session IDs.auto_link
now properly applies options (such as :target
and :class
) to generated e-mail links.autolink
helper has been refactored to make it a bit less messy and more intuitive.current_page?
now works properly even when there are multiple query parameters in the URL.Active Support has a few interesting changes, including the introduction of Object#try
.
A lot of folks have adopted the notion of using try() to attempt operations on objects. It's especially helpful in views where you can avoid nil-checking by writing code like <%= @person.try(:name) %>
. Well, now it's baked right into Rails. As implemented in Rails, it raises NoMethodError
on private methods and always returns nil
if the object is nil.
Object#tap
is an addition to Ruby 1.9 and 1.8.7 that is similar to the returning
method that Rails has had for a while: it yields to a block, and then returns the object that was yielded. Rails now includes code to make this available under older versions of Ruby as well.
The support for XML parsing in Active Support has been made more flexible by allowing you to swap in different parsers. By default, it uses the standard REXML implementation, but you can easily specify the faster LibXML or Nokogiri implementations for your own applications, provided you have the appropriate gems installed:
The Time
and TimeWithZone
classes include an xmlschema
method to return the time in an XML-friendly string. As of Rails 2.3, TimeWithZone
supports the same argument for specifying the number of digits in the fractional second part of the returned string that Time
does:
If you look up the spec on the "json.org" site, you'll discover that all keys in a JSON structure must be strings, and they must be quoted with double quotes. Starting with Rails 2.3, we do the right thing here, even with numeric keys.
Enumerable#none?
to check that none of the elements match the supplied block.:allow_nil
option lets you return nil
instead of raising an exception when the target object is nil.ActiveSupport::OrderedHash
: now implements each_key
and each_value
.ActiveSupport::MessageEncryptor
provides a simple way to encrypt information for storage in an untrusted location (like cookies).from_xml
no longer depends on XmlSimple. Instead, Rails now includes its own XmlMini implementation, with just the functionality that it requires. This lets Rails dispense with the bundled copy of XmlSimple that it's been carting around.String#parameterize
accepts an optional separator: "Quick Brown Fox".parameterize('_') => "quick_brown_fox"
.number_to_phone
accepts 7-digit phone numbers now.ActiveSupport::Json.decode
now handles \u0000
style escape sequences.In addition to the Rack changes covered above, Railties (the core code of Rails itself) sports a number of significant changes, including Rails Metal, application templates, and quiet backtraces.
Rails Metal is a new mechanism that provides superfast endpoints inside of your Rails applications. Metal classes bypass routing and Action Controller to give you raw speed (at the cost of all the things in Action Controller, of course). This builds on all of the recent foundation work to make Rails a Rack application with an exposed middleware stack. Metal endpoints can be loaded from your application or from plugins.
Rails 2.3 incorporates Jeremy McAnally's rg application generator. What this means is that we now have template-based application generation built right into Rails; if you have a set of plugins you include in every application (among many other use cases), you can just set up a template once and use it over and over again when you run the rails
command. There's also a rake task to apply a template to an existing application:
This will layer the changes from the template on top of whatever code the project already contains.
Building on Thoughtbot's Quiet Backtrace plugin, which allows you to selectively remove lines from Test::Unit
backtraces, Rails 2.3 implements ActiveSupport::BacktraceCleaner
and Rails::BacktraceCleaner
in core. This supports both filters (to perform regex-based substitutions on backtrace lines) and silencers (to remove backtrace lines entirely). Rails automatically adds silencers to get rid of the most common noise in a new application, and builds a config/backtrace_silencers.rb
file to hold your own additions. This feature also enables prettier printing from any gem in the backtrace.
Quite a bit of work was done to make sure that bits of Rails (and its dependencies) are only brought into memory when they're actually needed. The core frameworks - Active Support, Active Record, Action Controller, Action Mailer and Action View - are now using autoload
to lazy-load their individual classes. This work should help keep the memory footprint down and improve overall Rails performance.
You can also specify (by using the new preload_frameworks
option) whether the core libraries should be autoloaded at startup. This defaults to false
so that Rails autoloads itself piece-by-piece, but there are some circumstances where you still need to bring in everything at once - Passenger and JRuby both want to see all of Rails loaded together.
The internals of the various rake gem
tasks have been substantially revised, to make the system work better for a variety of cases. The gem system now knows the difference between development and runtime dependencies, has a more robust unpacking system, gives better information when querying for the status of gems, and is less prone to "chicken and egg" dependency issues when you're bringing things up from scratch. There are also fixes for using gem commands under JRuby and for dependencies that try to bring in external copies of gems that are already vendored.
Test::Unit::TestCase
to ActiveSupport::TestCase
, and the Rails core requires Mocha to test.environment.rb
file has been decluttered.Rails.root
now returns a Pathname
object, which means you can use it directly with the join
method to clean up existing code that uses File.join
.--with-dispatchers
when you run the rails
command, or add them later with rake rails:update:generate_dispatchers
).script/server
now accepts a --path argument to mount a Rails application from a specific path.A few pieces of older code are deprecated in this release:
render_component
goes from "deprecated" to "nonexistent" in Rails 2.3. If you still need it, you can install the render_component plugin script/performance/request
to look at performance based on integration tests, you need to learn a new trick: that script has been removed from core Rails now. There’s a new request_profiler plugin that you can install to get the exact same functionality back.ActionController::Base#session_enabled?
is deprecated because sessions are lazy-loaded now.:digest
and :secret
options to protect_from_forgery
are deprecated and have no effect.response.headers["Status"]
and headers["Status"]
will no longer return anything. Rack does not allow "Status" in its return headers. However you can still use the status
and status_message
helpers. response.headers["cookie"]
and headers["cookie"]
will no longer return any CGI cookies. You can inspect headers["Set-Cookie"]
to see the raw cookie header or use the cookies
helper to get a hash of the cookies sent to the client.formatted_polymorphic_url
is deprecated. Use polymorphic_url
with :format
instead.:http_only
option in ActionController::Response#set_cookie
has been renamed to :httponly
.:connector
and :skip_last_comma
options of to_sentence
have been replaced by :words_connnector
, :two_words_connector
, and :last_word_connector
options.file_field
control used to submit an empty string to the controller. Now it submits a nil, due to differences between Rack's multipart parser and the old Rails one.Release notes compiled by Mike Gunderloy This version of the Rails 2.3 release notes was compiled based on RC2 of Rails 2.3.
Rails 2.2 is a significant release for the infrastructure that keeps Rails humming along and connected to the rest of the world.
Rails 2.2 supplies an easy system for internationalization (or i18n, for those of you tired of typing).
Along with thread safety, a lot of work has been done to make Rails work well with JRuby and the upcoming Ruby 1.9. With Ruby 1.9 being a moving target, running edge Rails on edge Ruby is still a hit-or-miss proposition, but Rails is ready to make the transition to Ruby 1.9 when the latter is released.
The internal documentation of Rails, in the form of code comments, has been improved in numerous places. In addition, the Ruby on Rails Guides project is the definitive source for information on major Rails components. In its first official release, the Guides page includes:
All told, the Guides provide tens of thousands of words of guidance for beginning and intermediate Rails developers.
If you want to generate these guides locally, inside your application:
This will put the guides inside Rails.root/doc/guides
and you may start surfing straight away by opening Rails.root/doc/guides/index.html
in your favourite browser.
Supporting the etag and last modified timestamp in HTTP headers means that Rails can now send back an empty response if it gets a request for a resource that hasn't been modified lately. This allows you to check whether a response needs to be sent at all.
The work done to make Rails thread-safe is rolling out in Rails 2.2. Depending on your web server infrastructure, this means you can handle more requests with fewer copies of Rails in memory, leading to better server performance and higher utilization of multiple cores.
To enable multithreaded dispatching in production mode of your application, add the following line in your config/environments/production.rb
:
There are two big additions to talk about here: transactional migrations and pooled database transactions. There's also a new (and cleaner) syntax for join table conditions, as well as a number of smaller improvements.
Historically, multiple-step Rails migrations have been a source of trouble. If something went wrong during a migration, everything before the error changed the database and everything after the error wasn't applied. Also, the migration version was stored as having been executed, which means that it couldn't be simply rerun by rake db:migrate:redo
after you fix the problem. Transactional migrations change this by wrapping migration steps in a DDL transaction, so that if any of them fail, the entire migration is undone. In Rails 2.2, transactional migrations are supported on PostgreSQL out of the box. The code is extensible to other database types in the future - and IBM has already extended it to support the DB2 adapter.
Connection pooling lets Rails distribute database requests across a pool of database connections that will grow to a maximum size (by default 5, but you can add a pool
key to your database.yml
to adjust this). This helps remove bottlenecks in applications that support many concurrent users. There's also a wait_timeout
that defaults to 5 seconds before giving up. ActiveRecord::Base.connection_pool
gives you direct access to the pool if you need it.
You can now specify conditions on join tables using a hash. This is a big help if you need to query across complex joins.
Two new sets of methods have been added to Active Record's dynamic finders family.
find_last_by_attribute
The find_last_by_attribute
method is equivalent to Model.last(:conditions => {:attribute => value})
find_by_attribute!
The new bang! version of find_by_attribute!
is equivalent to Model.first(:conditions => {:attribute => value}) || raise ActiveRecord::RecordNotFound
Instead of returning nil
if it can't find a matching record, this method will raise an exception if it cannot find a match.
Active Record association proxies now respect the scope of methods on the proxied object. Previously (given User has_one :account) @user.account.private_method
would call the private method on the associated Account object. That fails in Rails 2.2; if you need this functionality, you should use @user.account.send(:private_method)
(or make the method public instead of private or protected). Please note that if you're overriding method_missing
, you should also override respond_to
to match the behavior in order for associations to function normally.
rake db:migrate:redo
now accepts an optional VERSION to target that specific migration to redoconfig.active_record.timestamped_migrations = false
to have migrations with numeric prefix instead of UTC timestamp.:counter_cache => true
) do not need to be initialized to zero any longer.ActiveRecord::Base.human_name
for an internationalization-aware humane translation of model namesOn the controller side, there are several changes that will help tidy up your routes. There are also some internal changes in the routing engine to lower memory usage on complex applications.
Shallow route nesting provides a solution to the well-known difficulty of using deeply-nested resources. With shallow nesting, you need only supply enough information to uniquely identify the resource that you want to work with.
This will enable recognition of (among others) these routes:
You can now supply an array of methods for new member or collection routes. This removes the annoyance of having to define a route as accepting any verb as soon as you need it to handle more than one. With Rails 2.2, this is a legitimate route declaration:
By default, when you use map.resources
to create a route, Rails generates routes for seven default actions (index, show, create, new, edit, update, and destroy). But each of these routes takes up memory in your application, and causes Rails to generate additional routing logic. Now you can use the :only
and :except
options to fine-tune the routes that Rails will generate for resources. You can supply a single action, an array of actions, or the special :all
or :none
options. These options are inherited by nested resources.
/customers/1.xml
) to indicate the format that you want. If you need the Accept headers, you can turn them back on with config.action_controller.use_accept_header = true
.redirect_to
now fully supports URI schemes (so, for example, you can redirect to a svn`ssh: URI).render
now supports a :js
option to render plain vanilla JavaScript with the right mime type.polymorphic_path([@project, @date, @area])
with a nil date will give you project_area_path
.javascript_include_tag
and stylesheet_link_tag
support a new :recursive
option to be used along with :all
, so that you can load an entire tree of files with a single line of code.RJS#page.reload
to reload the browser's current location via JavaScriptatom_feed
helper now takes an :instruct
option to let you insert XML processing instructions.Action Mailer now supports mailer layouts. You can make your HTML emails as pretty as your in-browser views by supplying an appropriately-named layout - for example, the CustomerMailer
class expects to use layouts/customer_mailer.html.erb
.
Action Mailer now offers built-in support for GMail's SMTP servers, by turning on STARTTLS automatically. This requires Ruby 1.8.7 to be installed.
Active Support now offers built-in memoization for Rails applications, the each_with_object
method, prefix support on delegates, and various other new utility methods.
Memoization is a pattern of initializing a method once and then stashing its value away for repeat use. You've probably used this pattern in your own applications:
Memoization lets you handle this task in a declarative fashion:
Other features of memoization include unmemoize
, unmemoize_all
, and memoize_all
to turn memoization on or off.
The each_with_object
method provides an alternative to inject
, using a method backported from Ruby 1.9. It iterates over a collection, passing the current element and the memo into the block.
Lead Contributor: Adam Keys
If you delegate behavior from one class to another, you can now specify a prefix that will be used to identify the delegated methods. For example:
This will produce delegated methods vendor#account_email
and vendor#account_password
. You can also specify a custom prefix:
This will produce delegated methods vendor#owner_email
and vendor#owner_password
.
Lead Contributor: Daniel Schierbeck
ActiveSupport::Multibyte
, including Ruby 1.9 compatibility fixes.ActiveSupport::Rescuable
allows any class to mix in the rescue_from
syntax.past?
, today?
and future?
for Date
and Time
classes to facilitate date/time comparisons.Array#second
through Array#fifth
as aliases for Array#[1]
through Array#[4]
Enumerable#many?
to encapsulate collection.size > 1
Inflector#parameterize
produces a URL-ready version of its input, for use in to_param
.Time#advance
recognizes fractional days and weeks, so you can do 1.7.weeks.ago
, 1.5.hours.since
, and so on.ActiveSuport::StringInquirer
gives you a pretty way to test for equality in strings: ActiveSupport::StringInquirer.new("abc").abc? => true
In Railties (the core code of Rails itself) the biggest changes are in the config.gems
mechanism.
To avoid deployment issues and make Rails applications more self-contained, it's possible to place copies of all of the gems that your Rails application requires in /vendor/gems
. This capability first appeared in Rails 2.1, but it's much more flexible and robust in Rails 2.2, handling complicated dependencies between gems. Gem management in Rails includes these commands:
config.gem _gem_name_
in your config/environment.rb
filerake gems
to list all configured gems, as well as whether they (and their dependencies) are installed, frozen, or framework (framework gems are those loaded by Rails before the gem dependency code is executed; such gems cannot be frozen)rake gems:install
to install missing gems to the computerrake gems:unpack
to place a copy of the required gems into /vendor/gems
rake gems:unpack:dependencies
to get copies of the required gems and their dependencies into /vendor/gems
rake gems:build
to build any missing native extensionsrake gems:refresh_specs
to bring vendored gems created with Rails 2.1 into alignment with the Rails 2.2 way of storing themYou can unpack or install a single gem by specifying GEM=_gem_name_
on the command line.
script/server
now supports Thin directly.script/plugin install <plugin> -r <revision>
now works with git-based as well as svn-based plugins.script/console
now supports a --debugger
optionrake notes:custom ANNOTATION=MYFLAG
lets you list out custom annotations.Rails.env
in StringInquirer
so you can do Rails.env.development?
A few pieces of older code are deprecated in this release:
Rails::SecretKeyGenerator
has been replaced by ActiveSupport::SecureRandom
render_component
is deprecated. There's a render_components plugin available if you need this functionality.customer
inside the partial 'customer'. You should explicitly pass all the variables via :locals hash now. country_select
has been removed. See the deprecation page for more information and a plugin replacement.ActiveRecord::Base.allow_concurrency
no longer has any effect.ActiveRecord::Errors.default_error_messages
has been deprecated in favor of I18n.translate('activerecord.errors.messages')
%s
and %d
interpolation syntax for internationalization is deprecated.String#chars
has been deprecated in favor of String#mb_chars
.Date
and Time
class arithmetic instead.Request#relative_url_root
is deprecated. Use ActionController::Base.relative_url_root
instead.Release notes compiled by Mike Gunderloy